Enhancing cell proliferation in three-dimensional hydrogel scaffolds using digital light processing bioprinting technology
Three-dimensional (3D) bioprinting is gradually emerging as a popular technique driving as a new paradigm in tissue engineering. Enhancing cell proliferation and engraftment within volumetric 3D-bioprinted scaffolds is a key challenge in its implementation. However, basic exploratory studies on cell proliferation enhancement in 3D-bioprinted scaffolds using digital light processing (DLP) technology are still lacking. Traditionally, microchannels in scaffolds have been regarded as non-functional, empty spaces. In this paper, however, we propose that microchannels implanted in DLP-bioprinted scaffolds can provide space for cell proliferation, giving a new definition to microchannel function. To this end, we used fish gelatin methacrylate (F-GelMA) as a bioink with photocurable properties, followed by functional evaluation and optimization through rheological analysis. The morphology of DLP-printed scaffolds using the bioink was analyzed, and their biocompatibility was demonstrated through cell viability analysis. Microchannels of three different sizes were implanted to facilitate oxygenation, nutrient delivery, and media flow by addressing structural barriers identified via morphological analysis. Cell viability and proliferation rates in outer and inner microchannels were then comparatively analyzed. During the long-term culture period (about 5 weeks), the differences in proliferation rates due to changes in the media flow environment were assessed. The results demonstrated that cell survival, growth, and proliferation were significantly enhanced within the DLP-printed scaffolds in which the cells were encapsulated. This approach lends itself useful for basic exploratory study utilizing 3D culture technology in the realms of regenerative medicine and tissue engineering, where effective cell proliferation relative to the same volume is required.
- Cohan M. From petri dish to dinner plate: this is the world’s first 3D-printed, cultivated fish fillet. CNN; 2023. https://edition.cnn.com/travel/article/steakholder-foods- 3d-printed-cultivated-fish-fillet-spc-intl/index.html
- Listek V. Aleph farms’ new cultured steak to join the cultured meat race. 3D print.com; 2023. https://3dprint.com/299484/aleph-farms-new-3d-printed-steak-to-join-the-cultured-meat-race/
- Marr B. The future of food: amazing lab grown and 3D printed meat and fish. Forbes; 2019. https://www.forbes.com/sites/bernardmarr/2019/06/28/ the-future-of-food-amazing-lab-grown-and-3d-printed-meat-and-fish/?sh=6fdf360446f6
- Reiley L. Raising the steaks: first 3-D-printed rib-eye is unveiled. The Washington Post; 2021. https://www.washingtonpost.com/business/2021/02/09/3d-printed-ribeye-steak-usda-fda/
- Ianovici I, Zagury Y, Redenski I, Lavon N, Levenberg S. 3D-printable plant protein-enriched scaffolds for cultivated meat development. Biomaterials. 2022;284:121487. doi: 10.1016/j.biomaterials.2022.121487
- Jeong D, Seo JW, Lee H-G, Jung WK, Park YH, Bae H. Efficient myogenic/adipogenic transdifferentiation of bovine fibroblasts in a 3D bioprinting system for steak- type cultured meat production. Adv Sci. 2022;9(31): 2202877. doi: 10.1002/advs.202202877
- Su L, Jing L, Zeng X, et al. 3D-printed prolamin scaffolds for cell-based meat culture. Adv Mater. 2023;35(2):2207397. doi: 10.1002/adma.202207397
- Nam HK, Kang TW, Kim I-W, Choi R-Y, Kim HW, Park HJ. Physicochemical properties of cricket (Gryllus bimaculatus) gel fraction with soy protein isolate for 3D printing-based meat analogue. Food Biosci. 2023;53:102772. doi: 10.1016/j.fbio.2023.102772
- Mani MP, Sadia M, Jaganathan SK, et al. A review on 3D printing in tissue engineering applications. J Polym Eng. 2022;42(3):243-265. doi: 10.1515/polyeng-2021-0059
- Samadi A, Moammeri A, Pourmadadi M, et al. Cell encapsulation and 3D bioprinting for therapeutic cell transplantation. ACS Biomater Sci Eng. 2023;9(4):1862-1890. doi: 10.1021/acsbiomaterials.2c01183
- Wu Y, Su H, Li M, Xing H. Digital light processing-based multi-material bioprinting: processes, applications, and perspectives. J Biomed Mater Res A. 2023;111(4):527-542. doi: 10.1002/jbm.a.37473
- Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang YS. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. Iscience. 2023;26(2):106039. doi: 10.1016/j.isci.2023.106039
- Xing F, Xu J, Yu P, et al. Recent advances in biofabrication strategies based on bioprinting for vascularized tissue repair and regeneration. Mater Des. 2023;111885. doi: 10.1016/j.matdes.2023.111885
- Song P, Li M, Zhang B, et al. DLP fabricating of precision GelMA/HAp porous composite scaffold for bone tissue engineering application. Compos Part B: Eng. 2022;244:110163. doi: 10.1016/j.compositesb.2022.110163
- Ye W, Li H, Yu K, et al. 3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channels. Mater Des. 2020;192:108757. doi: 10.1016/j.matdes.2020.108757
- Peng M, Zhao Q, Wang M, Du X. Reconfigurable scaffolds for adaptive tissue regeneration. Nanoscale. 2023;15(13): 6105-6120. doi: 10.1039/D3NR00281K
- Pham CH, Zuo Y, Chen Y, Tran NM, Nguyen DT, Dang TT. Waffle‐inspired hydrogel‐based macrodevice for spatially controlled distribution of encapsulated therapeutic microtissues and pro‐angiogenic endothelial cells. Bioeng Transl Med. 2023;8(3):e10495. doi: 10.1002/btm2.10495
- Malda J, Rouwkema J, Martens DE, et al. Oxygen gradients in tissue-engineered Pegt/Pbt cartilaginous constructs: measurement and modeling. Biotechnol Bioeng. 2004;86(1):9-18. doi: 10.1002/bit.20038
- Laschke MW, Harder Y, Amon M, et al. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 2006;12(8):2093-2104. doi: 10.1089/ten.2006.12.2093
- Grebenyuk S, Abdel Fattah AR, Kumar M, et al. Large-scale perfused tissues via synthetic 3D soft microfluidics. Nat Commun. 2023;14(1):193. doi: 10.1038/s41467-022-35619-1
- Zohar B, Debbi L, Machour M, et al. A micro-channel array in a tissue engineered vessel graft guides vascular morphogenesis for anastomosis with self-assembled vascular networks. Acta Biomater. 2022;163:182-193. doi: 10.1016/j.actbio.2022.05.026
- Luo Y, Zhang T, Lin X. 3D printed hydrogel scaffolds with macro pores and interconnected microchannel networks for tissue engineering vascularization. Chem Eng J. 2022;430:132926. doi: 10.1016/j.cej.2021.132926
- Tang F, Manz XD, Bongers A, et al. Microchannels are an architectural cue that promotes integration and vascularization of silk biomaterials in vivo. ACS Biomater Sci Eng. 2020;6(3):1476-1486. doi: 10.1021/acsbiomaterials.9b01624
- Lim KS, Baptista M, Moon S, Woodfield TBF, Rnjak- Kovacina J. Microchannels in development, survival, and vascularisation of tissue analogues for regenerative medicine. Trends Biotechnol. 2019;37(11):1189-1201. doi: 10.1016/j.tibtech.2019.04.004
- Miller JS, Stevens KR, Yang MT, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768-774. doi: 10.1038/nmat3357
- Mainardi VL, Rubert M, Sabato C, et al. Culture of 3D bioprinted bone constructs requires an increased fluid dynamic stimulation. Acta Biomater. 2022;153:374-385. doi: 10.1016/j.actbio.2022.09.011
- Homan KA, Gupta N, Kroll KT, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods. 2019;16(3):255-262. doi: 10.1038/s41592-019-0325-y
- Tang MD, Golden AP, Tien J. Fabrication of collagen gels that contain patterned, micrometer-scale cavities. Adv Mater. 2004;16(15):1345-1348. doi: 10.1002/adma.200400766
- Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26(8):434-441. doi: 10.1016/j.tibtech.2008.04.009
- Xia P, Luo Y. Vascularization in tissue engineering: the architecture cues of pores in scaffolds. J Biomed Mater Res Part B App Biomater. 2022;110(5):1206-1214. doi: 10.1002/jbm.b.34979
- Seo JW, Kim GM, Choi Y, Cha JM, Bae H. Improving printability of digital-light-processing 3D bioprinting via photoabsorber pigment adjustment. Int J Mol Sci. 2022;23(10):5428. doi: 10.3390/ijms23105428
- Chavez T, Gerecht S. Engineering of the microenvironment to accelerate vascular regeneration. Trends Mol Med. 2023;29(1):35-47. doi: 10.1016/j.molmed.2022.10.005
- de Souza A, Martignago CCS, Santo GdE, et al. 3D printed wound constructs for skin tissue engineering: a systematic review in experimental animal models. J Biomed Mater Res Part B Appl Biomater. 2023;111(7):1419-1433. doi: 10.1002/jbm.b.35237
- Jodat YA, Zhang T, Tanoury Z, et al. hiPSC-Derived 3D Bioprinted Skeletal Muscle Tissue Implants Regenerate Skeletal Muscle Following Volumetric Muscle Loss. Research Square Publications; 2021. doi: 10.21203/rs.3.rs-146091/v1
- Ciolacu DE, Nicu R, Ciolacu F. Natural polymers in heart valve tissue engineering: strategies, advances and challenges. Biomedicines. 2022;10(5):1095. doi: 10.3390/biomedicines10051095
- Yan J, Li Z, Guo J, Liu S, Guo J. Organ-on-a-chip: a new tool for in vitro research. Biosens Bioelectron. 2022;216:114626. doi: 10.1016/j.bios.2022.114626
- Jakab K, Marga F, Kaesser R, et al. Non-medical applications of tissue engineering: biofabrication of a leather-like material. Mater Today Sustain. 2019;5:100018. doi: 10.1016/j.mtsust.2019.100018
- Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication. 2021;13(3):032001. doi: 10.1088/1758-5090/abec2c
- Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol. 2002;37(6):375-536. doi: 10.1080/10409230290771546
- Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31(21): 5536-5544. doi: 10.1016/j.biomaterials.2010.03.064
- Yoon HJ, Shin SR, Cha JM, et al. Cold water fish gelatin methacryloyl hydrogel for tissue engineering application. PLOS ONE. 2016;11(10):e0163902. doi: 10.1371/journal.pone.0163902
- Randhawa A, Dutta SD, Ganguly K, Patel DK, Patil TV, Lim K-T. Recent advances in 3D printing of photocurable polymers: types, mechanism, and tissue engineering application. Macromol Biosci. 2023;23(1):2200278. doi: 10.1002/mabi.202200278
- Huh J, Moon Y-W, Park J, Atala A, Yoo JJ, Lee SJ. Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting. Biofabrication. 2021;13(3):034103. doi: 10.1088/1758-5090/abfd7a
- Chen Y, Zhang J, Liu X, et al. Noninvasive in vivo 3D bioprinting. Sci Adv. 2020;6(23):eaba7406. doi: 10.1126/sciadv.aba7406
- Goodarzi Hosseinabadi H, Dogan E, Miri AK, Ionov L. Digital light processing bioprinting advances for microtissue models. ACS Biomater Sci Eng. 2022;8(4):1381-1395. doi: 10.1021/acsbiomaterials.1c01509
- Alberts B, Johnson A, Lewis J, et al. The extracellular matrix of animals. In: Molecular Biology of the Cell. 4th ed. New York: Garland Science; 2002.
- Lee RC, Ping J. Calcium antagonists retard extracellular matrix production in connective tissue equivalent. J Surg Res. 1990;49(5):463-466. doi: 10.1016/0022-4804(90)90197-A
- Schmid GJ, Kobayashi C, Sandell LJ, Ornitz DM. Fibroblast growth factor expression during skeletal fracture healing in mice. Dev Dyn. 2009;238(3):766-774. doi: 10.1002/dvdy.21882
- Ross R. The fibroblast and wound repair. Biol Rev. 1968;43(1):51-91. doi: 10.1111/j.1469-185X.1968.tb01109.x
- Darby IA, Hewitson TD. Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol. 2007;257:143-179. doi: 10.1016/S0074-7696(07)57004-X
- Seo JW, Moon JH, Jang G, et al. Cell-laden gelatin methacryloyl bioink for the fabrication of Z-stacked hydrogel scaffolds for tissue engineering. Polymers. 2020;12(12):3027. doi: 10.3390/polym12123027
- Leu Alexa R, Iovu H, Ghitman J, et al. 3D-printed gelatin methacryloyl-based scaffolds with potential application in tissue engineering. Polymers. 2021;13(5):727. doi: 10.3390/polym13050727
- Zu G, Meijer M, Mergel O, Zhang H, van Rijn P. 3D-printable hierarchical nanogel-GelMA composite hydrogel system. Polymers. 2021;13(15):2508. doi: 10.3390/polym13152508
- Ma C, Choi J-B, Jang Y-S, et al. Mammalian and fish gelatin methacryloyl–alginate interpenetrating polymer network hydrogels for tissue engineering. ACS Omega. 2021;6(27):17433-17441. doi: 10.1021/acsomega.1c01806
- Garbern JC, Hoffman AS, Stayton PS. Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers for delivery of angiogenic growth factors. Biomacromolecules. 2010;11(7): 1833-1839. doi: 10.1021/bm100318z
- Yu K, Zhang X, Sun Y, et al. Printability during projection-based 3D bioprinting. Bioact Mater. 2022;11:254-267. doi: 10.1016/j.bioactmat.2021.09.021
- Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001;7(5):557-572. doi: 10.1089/107632701753213183
- Rather JA, Akhter N, Ashraf QS, et al. A comprehensive review on gelatin: Understanding impact of the sources, extraction methods, and modifications on potential packaging applications. Food Pkg Shelf Life. 2022;34:100945. https://www.sciencedirect.com/science/article/pii/ S2214289422001375
- Andreazza R, Morales A, Pieniz S, Labidi J. Gelatin-based hydrogels: potential biomaterials for remediation. Polymers. 2023;15(4):1026. doi: 10.3390/polym15041026
- Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7:33. doi: 10.3389/fmolb.2020.00033
- Wang Y, Huang X, Shen Y, et al. Direct writing alginate bioink inside pre-polymers of hydrogels to create patterned vascular networks. J Mater Sci. 2019;54(10):7883-7892. doi: 10.1007/s10853-019-03447-2
- Ying GL, Jiang N, Maharjan S, et al. Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv Mater. 2018;30(50):e1805460. doi: 10.1002/adma.201805460
- Song YS, Lin RL, Montesano G, et al. Engineered 3D tissue models for cell-laden microfluidic channels. Anal Bioanal Chem. 2009;395(1):185-193. doi: 10.1007/s00216-009-2935-1
- Rnjak-Kovacina J, Wray LS, Golinski JM, Kaplan DL. Arrayed hollow channels in silk-based scaffolds provide functional outcomes for engineering critically sized tissue constructs. Adv Funct Mater. 2014;24(15):2188-2196. doi: 10.1002/adfm.201302901
- Wen N, Qian E, Kang Y. Effects of macro-/micro-channels on vascularization and immune response of tissue engineering scaffolds. Cells. 2021;10(6):1514. doi: 10.3390/cells10061514
- Xie Y, Hardouin P, Zhu Z, Tang T, Dai K, Lu J. Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size β-tricalcium phosphate scaffold. Tissue Eng. 2006;12(12):3535-3543. doi: 10.1089/ten.2006.12.3535
- Nii T, Makino K, Tabata Y. Influence of shaking culture on the biological functions of cell aggregates incorporating gelatin hydrogel microspheres. J Biosci Bioeng. 2019;128(5):606- 612. doi: 10.1016/j.jbiosc.2019.04.013
- Limraksasin P, Kosaka Y, Zhang M, et al. Shaking culture enhances chondrogenic differentiation of mouse induced pluripotent stem cell constructs. Sci Rep. 2020;10(1):14996. doi: 10.1038/s41598-020-72038-y
- Li C, Kuss M, Kong Y, et al. 3D printed hydrogels with aligned microchannels to guide neural stem cell migration. ACS Biomater Sci Eng. 2021;7(2):690-700. doi: 10.1021/acsbiomaterials.0c01619
- Han J, Park S, Kim JE, et al. Development of a scaffold-on-a-chip platform to evaluate cell infiltration and osteogenesis on the 3D-printed scaffold for bone regeneration. ACS Biomater Sci Eng. 2023;9(2):968-977. doi: 10.1021/acsbiomaterials.2c01367
- Dhwaj A, Roy N, Jaiswar A, Prabhakar A, Verma D. 3D-printed impedance micropump for continuous perfusion of the sample and nutrient medium integrated with a liver-on-chip prototype. ACS Omega. 2022;7(45):40900-40910. doi: 10.1021/acsomega.2c03818
- Gao J, Li M, Cheng J, et al. 3D-printed GelMA/PEGDA/ F127DA scaffolds for bone regeneration. J Funct Biomater. 2023;14(2):96. doi: 10.3390/jfb14020096
- Ma H, Xing F, Yu P, et al. Integrated design and fabrication strategies based on bioprinting for skeletal muscle regeneration: current status and future perspectives. Mater Des. 2023;225:111591. doi: 10.1016/j.matdes.2023.111591
- Yu Q, Wang Q, Zhang L, et al. The applications of 3D printing in wound healing: the external delivery of stem cells and antibiosis. Adv Drug Del Rev. 2023;197:114823. doi: 10.1016/j.addr.2023.114823