AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.1996
Cite this article
159
Download
1841
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Manufacturing and degrading features of 3D-printed porous spinal interbody fusion cages

Zhiwei Jiao1,2 Pengfei Chi1 Hanlin Zou3,4 Yuan Yu1 Weimin Yang1,2 Hao Liu1 Dong Chen3 Haibo Zou3*
Show Less
1 College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China
2 State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
3 Spine Division of Orthopaedic Department, China-Japan Friendship Hospital, Beijing, China
4 Department of Orthopedics, Capital Medical University, Beijing, China
IJB 2024, 10(4), 1996 https://doi.org/10.36922/ijb.1996
Submitted: 9 October 2023 | Accepted: 5 February 2024 | Published: 5 March 2024
© 2024 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Spinal fusion operations are often utilized to address disc degeneration, vertebral slippage, instability, and trauma, and interbody fusion cages have been widely employed in these procedures. The fundamental aim of an interbody fusion cage is to give immediate interbody support, height, and biomechanical stability of the spinal space to enable bone development in the fused area. With the aim to address shortcomings of the currently commonly used clinical spinal interbody fusion cages, such as non-osteogenic activity, non-resorbability, biomechanical mismatch, etc., composites made of polycaprolactone (PCL) were prepared in this study, with the addition of hydroxyapatite (HA) that possesses both osteoinductive properties and enhanced mechanical strength as a functional filler. An innovative bi-directional variable meso-structure scheme is proposed. The porous degradable spinal interbody fusion cage was manufactured by using polymer melt differential three-dimensional (3D) printing technology. The study of the cage’s 3D structural characteristics on the degradation properties and the influence of the degradation process on its mechanical properties was carried out. Preliminary cell viability assays were also conducted. This study showed that the compressive strength of the cages increases with the aperture diameter and the number of crossing layers of the beams, and the compressive modulus is positively associated with the number of crossing layers of the beams. The degradation rate of the cage grew with the reduction of its filling rate and the rise of the number of crossing layers of the beams, i.e., the degradation rate increased with the expansion of the internal aperture. The cage with a 60% internal filling rate and containing 1 or 2 crossing layers of beams is more suited for spinal fusion, and with a pore size between 450 and 490 μm, the fundamental structure of the cage can be preserved while maintaining strong support performance throughout degradation. In addition, the 3D printing process in this study does not cause an increase in cytotoxicity, making it a feasible bioprinting method.

Keywords
Spinal interbody fusion cage
3D printing
Meso-structure
Degradable
Polycaprolactone
Hydroxyapatite
Funding
This work is supported by Beijing Natural Science Foundation (L212047) and National Natural Science Foundation of China (52171149), under the projects of “Research on the Mechanism of 3D Printing Degradable Spinal Interbody Fusion Cage’s Osteogenic Activity” and “Basic research on amorphous nanocrystalline magnetic powder 3D direct printing technology based on polymer bonding and its application,” respectively
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Verma R, Virk S, Qureshi S. Interbody fusions in the lumbar spine: a review. HSS J. 2020;16(2):162-167. doi: 10.1007/s11420-019-09737-4
  2. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. 2015;1(1):2-18. doi: 10.3978/j.issn.2414-469X.2015.10.05
  3. Vaccaro AR, Chiba K, Heller JG, et al. Bone grafting alternatives in spinal surgery. Spine J. 2002;2(3):206-215. doi: 10.1016/S1529-9430(02)00180-8
  4. Liu S, Wang Y, Liang Z, Zhou M, Chen C. Comparative clinical effectiveness and safety of bone morphogenetic protein versus autologous iliac crest bone graft in lumbar fusion: a meta-analysis and systematic review. Spine. 2020;45(12):E729-E741. doi: 10.1097/BRS.0000000000003372
  5. Geisinger JR, Park DK. Allograft bone: uses in spinal surgery. Semin Spine Surg. 2016;28(4):190-195. doi: 10.1053/j.semss.2016.08.002
  6. Rao PJ, Pelletier MH, Walsh WR, Mobbs RJ. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration: bioactivation of spine interbody implant surfaces. Orthop Surg. 2014;6(2):81-89. doi: 10.1111/os.12098
  7. Yin X. Application of biodegradable 3D-printed cage for cervical diseases via anterior cervical discectomy and fusion (ACDF): an in vitro biomechanical study. Biotechnol Lett. 2017;39(9):1433-1439. doi: 10.1007/s10529-017-2367-5
  8. Chen Y, Wang X, Lu X, et al. Comparison of titanium and polyetheretherketone (PEEK) cages in the surgical treatment of multilevel cervical spondylotic myelopathy: a prospective, randomized, control study with over 7-year follow-up. Eur Spine J. 2013;22(7):1539-1546. doi: 10.1007/s00586-013-2772-y
  9. Karikari IO, Jain D, Owens TR, et al. Impact of subsidence on clinical outcomes and radiographic fusion rates in anterior cervical discectomy and fusion: a systematic review. J Spinal Disord Tech. 2014;27(1):1-10. doi: 10.1097/BSD.0b013e31825bd26d
  10. Cuzzocrea F, Ivone A, Jannelli E, et al. PEEK versus metal cages in posterior lumbar interbody fusion: a clinical and radiological comparative study. Musculoskelet Surg. 2019;103(3):237-241. doi: 10.1007/s12306-018-0580-6
  11. Hasegawa T, Ushirozako H, Shigeto E, et al. The titanium-coated PEEK cage maintains better bone fusion with the endplate than the PEEK cage 6 months after PLIF surgery: a multicenter, prospective, randomized study. Spine. 2020;45(15):E892-E902. doi: 10.1097/BRS.0000000000003464
  12. Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: current concepts and future directions. Biomaterials. 2022;288:121699. doi: 10.1016/j.biomaterials.2022.121699
  13. Koutserimpas C, Alpantaki K, Chatzinikolaidou M, Chlouverakis G, Dohm M, Hadjipavlou AG. The effectiveness of biodegradable instrumentation in the treatment of spinal fractures. Injury. 2018;49(12):2111-2120. doi: 10.1016/j.injury.2018.11.008
  14. Daskalakis E, Liu F, Huang B, et al. Investigating the influence of architecture and material composition of 3D printed anatomical design scaffolds for large bone defects. Int J Bioprint. 2021;7(2):268. doi: 10.18063/ijb.v7i2.268  
  15. Han X, Gao Y, Ding Y, et al. In vitro performance of 3D printed PCL −β -TCP degradable spinal fusion cage. J Biomater Appl. 2021;35(10):1304-1314. doi: 10.1177/0885328220978492
  16. Abbah SA, Lam CXF, Ramruttun AK, Goh JCH, Wong HK. Fusion performance of low-dose recombinant human bone morphogenetic protein 2 and bone marrow-derived multipotent stromal cells in biodegradable scaffolds. Spine. 2011;36(21):1752-1759. doi: 10.1097/BRS.0b013e31822576a4
  17. Cao L, Chen Q, Jiang L-B, et al. Bioabsorbable self-retaining PLA/nano-sized beta-TCP cervical spine interbody fusion cage in goat models: an in vivo study. IJN. 2017;12:7197-7205. doi: 10.2147/IJN.S132041
  18. Rezania N. Three-dimensional printing of polycaprolactone/ hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior. J Mater Sci. 2022;33(3):31. doi: 10.1007/s10856-022-06653-8
  19. Liu F, Kang H, Liu Z, et al. 3D printed multi-functional scaffolds based on poly(ε-caprolactone) and hydroxyapatite composites. Nanomaterials. 2021;11(9):2456. doi: 10.3390/nano11092456
  20. Backes EH, Beatrice CAG, Shimomura KMB, et al. Development of poly(Ɛ-polycaprolactone)/hydroxyapatite composites for bone tissue regeneration. J Mater Res. 2021;36(15):3050-3062. doi: 10.1557/s43578-021-00316-0
  21. Wang F, Tankus EB, Santarella F, et al. Fabrication and characterization of PCL/HA filament as a 3D printing material using thermal extrusion technology for bone tissue engineering. Polymers. 2022;14(4):669. doi: 10.3390/polym14040669
  22. Ma J. Modification of 3D printed PCL scaffolds by PVAc and HA to enhance cytocompatibility and osteogenesis. RSC Adv. 2019;9(10):5338-5346. doi: 10.1039/c8ra06652c
  23. Doyle SE, Henry L, McGennisken E, et al. Characterization of polycaprolactone nanohydroxyapatite composites with tunable degradability suitable for indirect printing. Polymers. 2021;13(2):295. doi: 10.3390/polym13020295
  24. Shikinami Y, Okuno M. Mechanical evaluation of novel spinal interbody fusion cages made of bioactive, resorbable composites. Biomaterials. 2003;24(18):3161-3170. doi: 10.1016/S0142-9612(03)00155-8
  25. Jiao Z, Luo B, Xiang S, Ma H, Yu Y, Yang W. 3D printing of HA / PCL composite tissue engineering scaffolds. Adv Ind Eng Polym Res. 2019;2(4):196-202. doi: 10.1016/j.aiepr.2019.09.003
  26. Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chem Eng J. 2019;362: 269-279. doi: 10.1016/j.cej.2019.01.015
  27. Kim HS, Song JS, Heo W, Cha JH, Rhee DY. Comparative study between a curved and a wedge PEEK cage for single-level anterior cervical discectomy and interbody fusion. Korean J Spine. 2012;9(3):181-186. doi: 10.14245/kjs.2012.9.3.181
  28. Stella JA, D’Amore A, Wagner WR, Sacks MS. On the biomechanical function of scaffolds for engineering load-bearing soft tissues. Acta Biomater. 2010;6(7):2365-2381. doi: 10.1016/j.actbio.2010.01.001
  29. Knutsen AR. Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices. J Mech Behav Biomed Mater. 2015;49:332-342. doi: 10.1016/j.jmbbm.2015.05.015
  30. Bittner SM, Smith BT, Diaz-Gomez L, et al. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater. 2019;90:37-48. doi: 10.1016/j.actbio.2019.03.041
  31. Zhang Y, Yu W, Ba Z, Cui S, Wei J, Li H. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth. Int J Nanomed. 2018;13:5433-5447. doi: 10.2147/IJN.S164869  
  32. Liu H, Ahlinder A, Yassin MA, Finne-Wistrand A, Gasser TC. Computational and experimental characterization of 3D-printed PCL structures toward the design of soft biological tissue scaffolds. Mater Des. 2020;188:11. doi: 10.1016/j.matdes.2020.108488
  33. Scocozza F. Shape fidelity and sterility assessment of 3D printed polycaprolactone and hydroxyapatite scaffolds. J Polym Res. 2021;28(9):327. doi: 10.1007/s10965-021-02675-y
  34. Kia C, Antonacci CL, Wellington I, Makanji HS, Esmende SM. Spinal implant osseointegration and the role of 3D printing: an analysis and review of the literature. Bioengineering. 2022;9(3):108. doi: 10.3390/bioengineering9030108
  35. Wixted CM, Peterson JR, Kadakia RJ, Adams SB. Three-dimensional printing in orthopaedic surgery: current applications and future developments. JAAOS Glob Res Rev. 2021;5(4):e20.00230-11. doi: 10.5435/JAAOSGlobal-D-20-00230
  36. Amelot A, Colman M, Loret J-E. Vertebral body replacement using patient-specific three–dimensional-printed polymer implants in cervical spondylotic myelopathy: an encouraging preliminary report. Spine J. 2018;18(5):892-899. doi: 10.1016/j.spinee.2018.01.019
  37. Pan CT, Lin CH, Huang YS, et al. Design of interbody fusion cages of Ti6Al4V with gradient porosity using a selective laser melting process for spinal fusion arthroplasty. J Laser Micro/Nanoeng. 2017;12(1):34-44. doi: 10.2961/jlmn.2017.01.0007
  38. Egan P, Wang X, Greutert H, Shea K, Wuertz-Kozak K, Ferguson S. Mechanical and biological characterization of 3D printed lattices. 3D Print Addit Manuf. 2019;6(2):73-81. doi: 10.1089/3dp.2018.0125
  39. Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/ polyamide composite scaffolds for bone tissue engineering. Biomaterials. 2007;28(22):3338-3348. doi: 10.1016/j.biomaterials.2007.04.014
  40. Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed. 2018;29(7-9): 863-893. doi: 10.1080/09205063.2017.1394711
  41. Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. 2nd ed. Cambridge, UK: Cambridge University Press; Cambridge, UK. 1999.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing