Unique benefits and challenges of 3D-printed microneedles
Microneedles, which are used in minimally invasive transdermal drug delivery, have tremendous application potential in the fields of biosensing, disease diagnosis, bioelectrical signal detection, and wound management. Although manufacturing methods for microneedles are technically well-established, continuously evolving scientific and clinical applications require more intricate and bespoke microneedle structures that cannot be fabricated using conventional techniques. Three-dimensional (3D) printing is an advanced manufacturing technology capable of automatically fabricating microneedles with intricate structures. This review provides a comprehensive overview of 3D printing methods and, materials, as well as the mechanical properties and biocompatibility of 3D-printed microneedles, with a particular focus on their inherent advantages and limitations. This offers insights into future trends and strategies for expediting the clinical adoption and commercialization of 3D-printed microneedles.
- Lhernould MS, Deleers M, Delchambre A. Hollow polymer microneedles array resistance and insertion tests. Int J Pharm. 2015;480(1-2):152-157. doi: 10.1016/j.ijpharm.2015.01.019
- Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. iScience. 2021;24(1):102012. doi: 10.1016/j.isci.2020.102012
- Vyatskikh A, Delalande S, Kudo A, Zhang X, Portela CM, Greer JR. Additive manufacturing of 3D nano-architected metals. Nat Commun. 2018;9(1):593. doi: 10.1038/s41467-018-03071-9
- Abu-Much A, Darawshi R, Dawud H, Kasem H, Abu Ammar A. Preparation and characterization of flexible furosemide-loaded biodegradable microneedles for intradermal drug delivery. Biomater Sci. 2022;10(22):6486-6499. doi: 10.1039/d2bm01143c
- Avcil M, Çelik A. Microneedles in drug delivery: progress and challenges. Micromachines. 2021;12(11):1321. doi: 10.3390/mi12111321
- Priya S, Singhvi G. Microneedles-based drug delivery strategies: a breakthrough approach for the management of pain. Biomed Pharmacother. 2022;155:113717. doi: 10.1016/j.biopha.2022.113717
- Jung JH, Jin SG. Microneedle for transdermal drug delivery: current trends and fabrication. J Pharm Investig. 2021;51(5):503-517. doi: 10.1007/s40005-021-00512-4
- Yang J, Liu XL, Fu YZ, Song YJ. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B. 2019;9(3):469-483. doi: 10.1016/j.apsb.2019.03.007
- Detamornrat U, McAlister E, Hutton ARJ, Larrañeta E, Donnelly RF. The role of 3D printing technology in microengineering of microneedles. Small. 2022;18(18):2106392. doi: 10.1002/smll.202106392
- Olowe M, Parupelli SK, Desai S. A review of 3D-printing of microneedles. Pharmaceutics. 2022;14(12):2693. doi: 10.3390/pharmaceutics14122693
- Guo M, Wang Y, Gao B, He B. Shark tooth-inspired microneedle dressing for intelligent wound management. ACS Nano. 2021;15(9):15316-15327. doi: 10.1021/acsnano.1c06279
- Wang R, Bai J, Zhu X, et al. A PDMS-based microneedle array electrode for long-term ECG recording. Biomed Microdevices. 2022;24(3):27. doi: 10.1007/s10544-022-00626-y
- Yin M, Wu J, Deng M, et al. Multifunctional magnesium organic framework-based microneedle patch for accelerating diabetic wound healing. ACS Nano. 2021;15(11):17842-17853. doi: 10.1021/acsnano.1c06036
- Li X, Huang X, Mo J, et al. A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment. Adv Sci. 2021;8(16):2100827. doi: 10.1002/advs.202100827
- Zhang X, Fu X, Chen G, Wang Y, Zhao Y. Versatile ice microneedles for transdermal delivery of diverse actives. Adv Sci. 2021;8(17):2101210. doi: 10.1002/advs.202101210
- Wang PC, Paik SJ, Chen S, Rajaraman S, Kim SH, Allen MG. Fabrication and characterization of polymer hollow microneedle array using UV lithography into micromolds. J Microelectromech Syst. 2013;22(5):1041-1053. doi: 10.1109/JMEMS.2013.2262587
- Pérennès F, Marmiroli B, Matteucci M, Tormen M, Vaccari L, Di Fabrizio E. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J Micromech Microeng. 2006;16(3):473-479. doi: 10.1088/0960-1317/16/3/001
- Gassend BLP, Velásquez-García LF, Akinwande AI. Design and fabrication of DRIE-patterned complex needlelike silicon structures. J Microelectromech Syst. 2010;19(3): 589-598. doi: 10.1109/JMEMS.2010.2042680
- Roh H, Yoon YJ, Park JS, et al. Fabrication of high-density out-of-plane microneedle arrays with various heights and diverse cross-sectional shapes. Nano-Micro Lett. 2022;14(1):24. doi: 10.1007/s40820-021-00778-1
- Albarahmieh E, AbuAmmouneh L, Kaddoura Z, AbuHantash F, Alkhalidi BA, Al-Halhouli A. Fabrication of dissolvable microneedle patches using an innovative laser-cut mould design to shortlist potentially transungual delivery systems: in vitro evaluation. AAPS PharmSciTech. 2019;20(5):215. doi: 10.1208/s12249-019-1429-5
- Hara Y, Yamada M, Tatsukawa C, Takahashi T, Suzuki M, Aoyagi S. Fabrication of stainless steel microneedle with laser-cut sharp tip and its penetration and blood sampling performance. Int J Automot Technol. 2016;10(6):950-957. doi: 10.20965/ijat.2016.p0950
- Kun-Tse T, Chen-Kuei C. Fabrication of biodegradable polymer microneedle array via CO2 laser ablation. In: Proceedings of the IEEE International Conference on Nano/ Micro Engineered and Molecular Systems (NEMS). IEEE; 2015: 494-497. doi: 10.1109/NEMS.2015.7147476.
- Zhu Z, Luo H, Lu W, et al. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharm Res. 2014;31(12):3348-3360. doi: 10.1007/s11095-014-1424-1
- Bystrova S, Luttge R. Micromolding for ceramic microneedle arrays. Microelectron Eng. 2011;88:1681-1684. doi: 10.1016/j.mee.2010.12.067
- Silvestre SL, Araújo D, Marques AC, et al. Microneedle arrays of polyhydroxyalkanoate by laser-based micromolding technique. ACS Appl Bio Mater. 2020;3(9):5856-5864. doi: 10.1021/acsabm.0c00570
- Tarbox TN, Watts AB, Cui Z, Williams RO. An update on coating/manufacturing techniques of microneedles. Drug Deliv Transl Res. 2018;8(6):1828-1843. doi: 10.1007/s13346-017-0466-4
- Indermun S, Luttge R, Choonara YE, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130-138. doi: 10.1016/j.jconrel.2014.04.052
- McAllister DV, Wang PM, Davis SP, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. PNAS. 2003;100(24):13755-13760. doi: 10.1073/pnas.2331316100
- Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87(8):922-925. doi: 10.1021/js980042+
- Katwal R, Kaur H, Sharma G, Naushad M, Pathania D. Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J Ind Eng Chem. 2015;31:173-184. doi: 10.1016/j.jiec.2015.06.021
- Wilke N, Mulcahy A, Ye SR, Morrissey A. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J. 2005;36(7):650-656. doi: 10.1016/j.mejo.2005.04.044
- Jung JH, Jin SG. Microneedle for transdermal drug delivery: current trends and fabrication. J Pharm Invest. 2021;51(5):503-517. doi: 10.1007/s40005-021-00512-4
- Li YG, Wu WY, Wang H, Cai JD, Lü T. Fabrication, testing and simulation of microneedle array based on X-ray lithography. Opt Precis Eng. 2018;26(5):1156-1164. doi: 10.3788/OPE.20182605.1156
- Ajay AP, Dasgupta A, Chatterjee D. Fabrication of monolithic SU-8 microneedle arrays having different needle geometries using a simplified process. Int J Adv Manuf Technol. 2021;114(11-12):3615-3626. doi: 10.1007/s00170-021-07038-x
- Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices for transdermal drug delivery. Int J Pharm. 2008;364(2): 227-236. doi: 10.1016/j.ijpharm.2008.08.032
- Chiang K, Amal R, Tran T. Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv Environ Res. 2002;6(4):471-485. doi: 10.1016/S1093-0191(01)00074-0
- Choi CK, Lee KJ, Youn YN, et al. Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. Eur J Pharm Biopharm. 2013;83(2):224-233. doi: 10.1016/j.ejpb.2012.10.020
- Lee K, Lee HC, Lee DS, Jung H. Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv Mater. 2010;22(4):483-486. doi: 10.1002/adma.200902418
- Lee K, Park SH, Lee J, Ryu S, Joo C, Ryu W. Three-step thermal drawing for rapid prototyping of highly customizable microneedles for vascular tissue insertion. Pharmaceutics. 2019;11(3)100. doi: 10.3390/pharmaceutics11030100
- Lee K, Jung H. Drawing lithography for microneedles: a review of fundamentals and biomedical applications. Biomaterials. 2012;33(30):7309-7326. doi: 10.1016/j.biomaterials.2012.06.065
- Banks SL, Pinninti RR, Gill HS, et al. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs. J Pharm Sci. 2010;99(7):3072-3080. doi: 10.1002/jps.22083
- Li CG, Lee CY, Lee K, Jung H. An optimized hollow microneedle for minimally invasive blood extraction. Biomed Microdevices. 2013;15(1):17-25. doi: 10.1007/s10544-012-9683-2
- Arya J, Henry S, Kalluri H, McAllister DV, Pewin WP, Prausnitz MR. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials. 2017;128:1-7. doi: 10.1016/j.biomaterials.2017.02.040
- Nejad HR, Sadeqi A, Kiaee G, Sonkusale S. Low-cost and cleanroom-free fabrication of microneedles. Microsyst Nanoeng. 2018;4(1)17073. doi: 10.1038/MICRONANO.2017.73
- Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites, Part B. 2018;143:172-196. doi: 10.1016/j.compositesb.2018.02.012
- Khosraviboroujeni A, Mirdamadian SZ, Minaiyan M, Taheri A. Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv Transl Res. 2022;12(5):1195-1208. doi: 10.1007/s13346-021-01006-4
- Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212-10290. doi: 10.1021/acs.chemrev.7b00074
- Lee BJ, Hsiao K, Lipkowitz G, Samuelsen T, Tate L, DeSimone JM. Characterization of a 30 microm pixel size CLIP-based 3D printer and its enhancement through dynamic printing optimization. Addit Manuf. 2022;55:102800. doi: 10.1016/j.addma.2022.102800
- Luzuriaga MA, Berry DR, Reagan JC, Smaldone RA, Gassensmith JJ. Biodegradable 3D printed polymer 50. Yao W, Li D, Zhao Y, et al. 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing. Micromachines. 2020;11(1)17. doi: 10.3390/mi11010017
- Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere NA, Doraiswamy A, Narayan RJ. Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol. 2007;4(1):22-29. doi: 10.1111/j.1744-7402.2007.02115.x
- Liao C, Anderson W, Antaw F, Trau M. Two-photon nanolithography of tailored hollow three-dimensional microdevices for biosystems. ACS Omega. 2019;4(1): 1401-1409. doi: 10.1021/acsomega.8b03164
- Szeto B, Aksit A, Valentini C, et al. Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs. Hear Res. 2021;400:108141. doi: 10.1016/j.heares.2020.108141
- Li R, Zhang L, Jiang X, et al. 3D-printed microneedle arrays for drug delivery. J Control Release. 2022;350:933-948. doi: 10.1016/j.jconrel.2022.08.022
- Cordeiro AS, Tekko IA, Jomaa MH, et al. Two-photon polymerisation 3D printing of microneedle array templates with versatile designs: application in the development of polymeric drug delivery systems. Pharm Res. 2020;37(9):174. doi: 10.1007/s11095-020-02887-9
- Xenikakis I, Tsongas K, Tzimtzimis EK, et al. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery. Int J Pharm. 2021;597:120303. doi: 10.1016/j.ijpharm.2021.120303
- Xenikakis I, Tsongas K, Tzimtzimis EK, et al. Transdermal delivery of insulin across human skin in vitro with 3D printed hollow microneedles. J Drug Delivery Sci Technol. 2022;67102891. doi: 10.1016/j.jddst.2021.102891
- Johnson AR, Caudill CL, Tumbleston JR, et al. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS One. 2016;11(9):e0162518. doi: 10.1371/journal.pone.0162518
- Caudill CL, Perry JL, Tian S, Luft JC, DeSimone JM. Spatially controlled coating of continuous liquid Interface production microneedles for transdermal protein delivery. J Controlled Release. 2018;284:122-132. doi: 10.1016/j.jconrel.2018.05.042
- Liu X, Li R, Yuan X, et al. Fast customization of microneedle arrays by static optical projection lithography. ACS Appl Mater Interfaces. 2021;13(50):60522-60530. doi: 10.1021/acsami.1c21489
- Li R, Liu X, Yuan X, et al. Fast customization of hollow microneedle patches for insulin delivery. Int J Bioprint. 2022;8(2):124-135. doi: 10.18063/ijb.v8i2.553
- Fiedler S, Irsig R, Gieseke M, et al. Material processing with femtosecond laser pulses for medical applications. Biomed Tech. 2012;57:603-605. doi: 10.1515/bmt-2012-4405
- Khosraviboroujeni A, Mirdamadian SZ, Minaiyan M, Taheri A. Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv Transl Res. 2022;12(5):1195-1208. doi: 10.1007/s13346-021-01006-4
- Wu L, Park J, Kamaki Y, Kim B. Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles. Microsyst Nanoeng. 2021;7(1):58. doi: 10.1038/s41378-021-00284-9
- Wu M, Zhang Y, Huang H, et al. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater Sci Eng, C. 2020;117:111299. doi: 10.1016/j.msec.2020.111299
- Li Y, Chen K, Pang Y, et al. Multifunctional microneedle patches via direct ink drawing of nanocomposite inks for personalized transdermal drug delivery. ACS Nano. 2023;17(20):19925-19937. doi: 10.1021/acsnano.3c04758
- Yadav V, Sharma PK, Murty US, et al. 3D printed hollow microneedles array using stereolithography for efficient transdermal delivery of rifampicin. Int J Pharm. 2021;605:120815. doi: 10.1016/j.ijpharm.2021.120815
- Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst Nanoeng. 2019;5(1):42. doi: 10.1038/s41378-019-0088-8
- Deng S, Wu J, Dickey MD, Zhao Q, Xie T. Rapid open-air digital light 3D printing of thermoplastic polymer. Adv Mater. 2019;31(39):1903970. doi: 10.1002/adma.201903970
- Lim SH, Ng JY, Kang L. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger. Biofabrication. 2017;9(1):015010. doi: 10.1088/1758-5090/9/1/015010
- Shin D, Hyun J. Silk fibroin microneedles fabricated by digital light processing 3D printing. J Ind Eng Chem. 2021;95:126-133. doi: 10.1016/j.jiec.2020.12.011
- Faraji Rad Z, Prewett PD, Davies GJ. Rapid prototyping and customizable microneedle design: ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques. Manuf Lett. 2021;30:39-43. doi: 10.1016/j.mfglet.2021.10.007
- Rad ZF, Nordon RE, Anthony CJ, et al. High-fidelity replication of thermoplastic microneedles with open microfluidic channels. Microsyst Nanoeng. 2017;3:17034. doi: 10.1038/micronano.2017.34
- Pere CPP, Economidou SN, Lall G, et al. 3D printed microneedles for insulin skin delivery. Int J Pharm. 2018;544(2):425-432. doi: 10.1016/j.ijpharm.2018.03.031
- Uddin MJ, Scoutaris N, Economidou SN, et al. 3D printed microneedles for anticancer therapy of skin tumours. Mater Sci Eng, C. 2020;107:110248. doi: 10.1016/j.msec.2019.110248
- Kruth JP. Material incress manufacturing by rapid prototyping techniques. CIRP Ann. 1991;40(2):603-614. doi: 10.1016/S0007-8506(07)61136-6
- Chen ZE, Wu XH, Tomus D, Davies CHJ. Surface roughness of selective laser melted Ti-6Al-4V alloy components. Addit Manuf. 2018;21:91-103. doi: 10.1016/j.addma.2018.02.009
- Economidou SN, Pere CPP, Reid A, et al. 3D printed microneedle patches using stereolithography (SLA)for intradermal insulin delivery. Mater Sci Eng, C. 2019;102:743-755. doi: 10.1016/j.msec.2019.04.063
- Mathew E, Pitzanti G, dos Santos ALG, Lamprou DA. Optimization of printing parameters for digital light processing 3D printing of hollow microneedle arrays. Pharmaceutics. 2021;13(11):1837. doi: 10.3390/pharmaceutics13111837
- Moussi K, Bukhamsin A, Hidalgo T, Kosel J. Biocompatible 3D printed microneedles for transdermal, intradermal, and percutaneous applications. Adv Eng Mater. 2020;22(2):1901358. doi: 10.1002/adem.201901358
- Ebrahiminejad V, Rad ZF, Prewett PD, Davies GJ. Fabrication and testing of polymer microneedles for transdermal drug delivery. Beilstein J Nanotechnol. 2022;13:629-640. doi: 10.3762/bjnano.13.55
- Gieseke M, Senz V, Vehse M, et al. Additive manufacturing of drug delivery systems. Biomed Tech. 2012;57:398-401. doi: 10.1515/bmt-2012-4109
- Plamadeala C, Gosain SR, Hischen F, et al. Bio-inspired microneedle design for efficient drug/vaccine coating. Biomed Microdevices. 2019;22(1):8. doi: 10.1007/s10544-019-0456-z
- Huang L, Li L, Jiang Y, et al. Tumbler-inspired microneedle containing robots: achieving rapid self-orientation and peristalsis-resistant adhesion for colonic administration. Adv Funct Mater. 2023;33(43):23042767. doi: 10.1002/adfm.202304276
- Song J-M, Kim Y-C, Barlow PG, et al. Improved protection against avian influenza H5N1 virus by a single vaccination with virus-like particles in skin using microneedles. Antiviral Res. 2010;88(2):244-247. doi: 10.1016/j.antiviral.2010.09.001
- Ogai N, Nonaka I, Toda Y, et al. Enhanced immunity in intradermal vaccination by novel hollow microneedles. Skin Res Technol. 2018;24(4):630-635. doi: 10.1111/srt.12576
- Chen MC, Huang SF, Lai KY, Ling MH. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials. 2013;34(12):3077-3086. doi: 10.1016/j.biomaterials.2012.12.041
- Caudill C, Perry JL, Iliadis K, et al. Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity. PNAS. 2021;118(39):e2102595118. doi: 10.1073/pnas.2102595118
- Lim SH, Tiew WJ, Zhang J, Ho PCL, Kachouie NN, Kang L. Geometrical optimisation of a personalised microneedle eye patch for transdermal delivery of anti-wrinkle small peptide. Biofabrication. 2020;12(3):035003. doi: 10.1088/1758-5090/ab6d37
- Zhang Q, Shi L, He H, et al. Down-regulating scar formation by microneedles directly via a mechanical communication pathway. ACS Nano. 2022;16(7):10163-10178. doi: 10.1021/acsnano.1c11016
- Yin MR, Zeng YN, Liu HQ, et al. Dissolving microneedle patch integrated with microspheres for long-acting hair regrowth therapy. ACS Appl Mater Interfaces. 2023;15(14):17532-17542. doi: 10.1021/acsami.2c22814
- Liu YQ, Yu Q, Luo XJ, Yang L, Cui Y. Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst Nanoeng. 2021;7(1):75. doi: 10.1038/s41378-021-00302-w
- Parrilla M, Vanhooydonck A, Johns M, Watts R, De Wael K. 3D-printed microneedle-based potentiometric sensor for pH monitoring in skin interstitial fluid. Sens Actuators, B. 2023;378;133159. doi: 10.1016/j.snb.2022.133159
- Wu Y, Tehrani F, Teymourian H, et al. Microneedle aptamer-based sensors for continuous, real-time therapeutic drug monitoring. Anal Chem. 2022;94(23):8335-8345. doi: 10.1021/acs.analchem.2c00829
- Yang Q, Wang Y, Liu T, et al. Microneedle array encapsulated with programmed DNA hydrogels for rapidly sampling and sensitively sensing of specific MicroRNA in dermal interstitial fluid. ACS Nano. 2022;16(11):18366-18375. doi: 10.1021/acsnano.2c06261
- Ishtiaque Hossain N, Tabassum S. Stem-FIT: a microneedle-based multi-parametric sensor for in situ monitoring of salicylic acid and pH levels in live plants. In: Proceedings of the 2022 IEEE 17th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE; 2022: 312-316. doi: 10.1109/NEMS54180.2022.9791212
- Yi X, Yuan Z, Yu X, Zheng L, Wang C. Novel microneedle patch-based surface-enhanced raman spectroscopy sensor for the detection of pesticide residues. ACS Appl Mater Interfaces. 2023;15(4):4873-4882. doi: 10.1021/acsami.2c17954
- Luo H, Shen Y, Liao Z, Yang X, Gao B, He B. Spidroin composite biomimetic multifunctional skin with meta-structure. Adv Mater Technol. 2022;7(6):2101097. doi: 10.1002/admt.202101097
- Tao K, Yu J, Zhang J, et al. Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin. ACS Nano. 2023;17(16):16160-16173. doi: 10.1021/acsnano.3c05253
- He R, Liu H, Fang T, et al. A colorimetric dermal tattoo biosensor fabricated by microneedle patch for multiplexed detection of health-related biomarkers. Adv Sci. 2021;8(24):2103030. doi: 10.1002/advs.202103030
- Forvi E, Bedoni M, Carabalona R, et al. Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations. Sens Actuators, A. 2012;180:177-186. doi: 10.1016/j.sna.2012.04.019
- Griss P, Tolvanen-Laakso HK, Meriläinen P, Stemme G. Characterization of micromachined spiked biopotential electrodes. IEEE Trans Biomed Eng. 2002;49(6):597-604. doi: 10.1109/TBME.2002.1001974
- Chen KY, Ren L, Chen ZP, Pan CF, Zhou W, Jiang LL. Fabrication of micro-needle electrodes for bio-signal recording by a magnetization-induced self-assembly method. Sensors. 2016;16(9):1533. doi: 10.3390/s16091533
- Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren J, Cardon L. A 3D printed dry electrode for ECG/EEG recording. Sens Actuators, A. 2012;174:96-102. doi: 10.1016/j.sna.2011.12.017
- Ren L, Jiang Q, Chen Z, et al. Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring. Sens Actuators, A. 2017;268:38-45. doi: 10.1016/j.sna.2017.10.042
- Zhang X, Chen G, Sun L, Ye F, Shen X, Zhao Y. Claw-inspired microneedle patches with liquid metal encapsulation for accelerating incisional wound healing. Chem Eng J. 2021;406126741. doi: 10.1016/j.cej.2020.126741
- Zhang X, Chen G, Liu Y, Sun L, Sun L, Zhao Y. Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano. 2020;14(5):5901-5908. doi: 10.1021/acsnano.0c01059
- Liu X, Tian S, Xu S, et al. A pressure-resistant zwitterionic skin sensor for domestic real-time monitoring and pro-healing of pressure injury. Biosens Bioelectron. 2022;214114528. doi: 10.1016/j.bios.2022.114528
- Shao Y, Dong K, Lu X, Gao B, He B. Bioinspired 3D-printed mxene and spidroin-based near-infrared light-responsive microneedle scaffolds for efficient wound management. ACS Appl Mater Interfaces. 2022;14(51):56525-56534. doi: 10.1021/acsami.2c16277
- Gao B, Guo M, Lyu K, Chu T, He B. Intelligent silk fibroin based microneedle dressing (i-SMD). Adv Funct Mater. 2021;31(3):2006839. doi: 10.1002/adfm.202006839
- Chi J, Zhang X, Chen C, Shao C, Zhao Y, Wang Y. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact Mater. 2020;5(2):253-259. doi: 10.1016/j.bioactmat.2020.02.004
- Petlin DG, Tverdokhlebov SI, Anissimov YG. Plasma treatment as an efficient tool for controlled drug release from polymeric materials: a review. J Controlled Release. 2017;266:57-74. doi: 10.1016/j.jconrel.2017.09.023
- Cárcamo-Martínez Á, Mallon B, Domínguez-Robles J, Vora LK, Anjani QK, Donnelly RF. Hollow microneedles: a perspective in biomedical applications. Int J Pharm. 2021;599120455. doi: 10.1016/j.ijpharm.2021.120455
- Kashaninejad N, Munaz A, Moghadas H, Yadav S, Umer M, Nguyen NT. Microneedle arrays for sampling and sensing skin interstitial fluid. Chemosensors. 2021;9(4):83. doi: 10.3390/chemosensors9040083
- Zhu MW, Li HW, Chen XL, Tang YF, Lu MH, Chen YF. Silica needle template fabrication of metal hollow microneedle arrays. J Micromech Microeng. 2009;19(11):115010. doi: 10.1088/0960-1317/19/11/115010
- Kim K, Lee JB. High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector. Microsyst Technol. 2007;13(3-4):231-235. doi: 10.1007/s00542-006-0221-0
- Norman JJ, Choi SO, Tong NT, et al. Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition. Biomed Microdevices. 2013;15(2):203-210. doi: 10.1007/s10544-012-9717-9
- Oh J, Liu K, Medina T, Kralick F, Noh H. A novel microneedle array for the treatment of hydrocephalus. Microsyst Technol. 2014;20(6):1169-1179. doi: 10.1007/s00542-013-1988-4
- Shikida M, Hasada T, Sato K. Fabrication of a hollow needle structure by dicing, wet etching and metal deposition. J Micromech Microeng. 2006;16(10):2230-2239. doi: 10.1088/0960-1317/16/10/041
- Lin L, Wang YQ, Cai MK, et al. Multimicrochannel microneedle microporation platform for enhanced intracellular drug delivery. Adv Funct Mater. 2022;32(21):2109187. doi: 10.1002/adfm.202109187
- Ren Y, Li J, Chen Y, et al. Customized flexible hollow microneedles for psoriasis treatment with reduced-dose drug. Bioeng Transl Med. 2023;8(4):e10530. doi: 10.1002/btm2.10530
- Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise microinjection into skin using hollow microneedles. J Invest Dermatol. 2006;126(5):1080-1087. doi: 10.1038/sj.jid.5700150
- Martanto W, Moore JS, Kashlan O, et al. Microinfusion using hollow microneedles. Pharm Res. 2006;23(1):104-113. doi: 10.1007/s11095-005-8498-8
- Yeung C, Chen S, King B, et al. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics. 2019;13(6):064125. doi: 10.1063/1.5127778
- Li Q, Xu R, Fan H, et al. Smart mushroom-inspired imprintable and lightly detachable (MILD) microneedle patterns for effective COVID-19 vaccination and decentralized information storage. ACS Nano. 2021;16(5):7512-7524. doi: 10.1021/acsnano.1c10718
- Xu R, Guo H, Chen X, et al. Smart hydrothermally responsive microneedle for topical tumor treatment. J Controlled Release. 2023;358:566-578. doi: 10.1016/j.jconrel.2023.05.008
- Ma GJ, Shi LT, Wu CW. Biomechanical property of a natural microneedle: the caterpillar spine. J Med Devices. 2011;5(3):034502. doi: 10.1115/1.4004651
- Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: a review. J Controlled Release. 2017;251:11-23. doi: 10.1016/j.jconrel.2017.02.011
- Chen Z, Lin Y, Lee W, et al. Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl Mater Interfaces. 2018;10(35):29338-29346. doi: 10.1021/acsami.8b09563
- Han D, Morde RS, Mariani S, et al. 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv Funct Mater. 2020;30(11):1909197. doi: 10.1002/adfm.201909197
- Nakamachi E, Jinninn S, Uetsuji Y, Tsuchiya K, Yamamoto H. Sputter generating and characterization of a titanium alloy microneedle for applying to Bio-MEM. Trans Jpn Soc Mech Eng, Part A. 2006;72(4):471-477. doi: 10.1299/kikaia.72.471
- Hegarty C, McKillop S, Dooher T, Dixon D, Davis J. Composite microneedle arrays modified with palladium nanoclusters for electrocatalytic detection of peroxide. IEEE Sens Lett. 2019;3(9):8809207. doi: 10.1109/LSENS.2019.2935831
- Omolu A, Bailly M, Day RM. Assessment of solid microneedle rollers to enhance transmembrane delivery of doxycycline and inhibition of MMP activity. Drug Deliv. 2017;24(1):942-951. doi: 10.1080/10717544.2017.1337826
- Ita K. Ceramic microneedles and hollow microneedles for transdermal drug delivery: two decades of research. J Drug Delivery Sci Technol. 2018;44:314-322. doi: 10.1016/j.jddst.2018.01.004
- Mishra R, Pramanick B, Maiti TK, Bhattacharyya TK. Glassy carbon microneedles—new transdermal drug delivery device derived from a scalable C-MEMS process. Microsyst Nanoeng. 2018;4(1):38. doi: 10.1038/s41378-018-0039-9
- Blyweert P, Nicolas V, Fierro V, Celzard A. 3D printing of carbon-based materials: a review. Carbon. 2021;183: 449-485. doi: 10.1016/j.carbon.2021.07.036
- Marsden AJ, Papageorgiou DG, Vallés C, et al. Electrical percolation in graphene-polymer composites. 2D Materials. 2018;5(3):032003. doi: 10.1088/2053-1583/aac055
- Bagotia N, Choudhary V, Sharma DK. A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites. Polym Adv Technol. 2018;29(6):1547-1567. doi: 10.1002/pat.4277
- Tilve-Martinez D, Neri W, Horaud D, et al. Graphene oxide based transparent resins for accurate 3D printing of conductive materials. Adv Funct Mater. 2023;33(21):2214954. doi: 10.1002/adfm.202214954
- Dornelas PHG, Santos TG, Oliveira JP. Micro-metal additive manufacturing – state-of-art and perspectives. Int J Adv Manuf Technol. 2022;122(9-10):3547-3564. doi: 10.1007/s00170-022-10110-9
- McKee S, Lutey A, Sciancalepore C, Poli F, Selleri S, Cucinotta A. Microfabrication of polymer microneedle arrays using two-photon polymerization. J Photochem Photobiol, B. 2022;229:112424. doi: 10.1016/j.jphotobiol.2022.112424
- Chen Z, Ren L, Li J, et al. Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 2018;65:283-291. doi: 10.1016/j.actbio.2017.10.030
- Yung KL, Xu Y, Kang C, et al. Sharp tipped plastic hollow microneedle array by microinjection moulding. J Micromech Microeng. 2012;22(1):015016. doi: 10.1088/0960-1317/22/1/015016
- Baek JY, Kang KM, Kim HJ, et al. Manufacturing process of polymeric microneedle sensors for mass production. Micromachines. 2021;12(11):1364. doi: 10.3390/mi12111364
- McConville A, Davis J. Transdermal microneedle sensor arrays based on palladium: polymer composites. Electrochem Commun. 2016;72:162-165. doi: 10.1016/j.elecom.2016.09.024
- Li X, Shan W, Yang Y, et al. Limpet tooth-inspired painless microneedles fabricated by magnetic field-assisted 3D printing. Adv Funct Mater. 2021;31(5):2003725. doi: 10.1002/adfm.202003725
- Nishita M, Park SY, Nishio T, et al. Ror2 signaling regulates golgi structure and transport through IFT20 for tumor invasiveness. Sci Rep. 2017;7(1):1. doi: 10.1038/s41598-016-0028-x
- Chen Z, Ye R, Yang J, et al. Rapidly fabricated microneedle arrays using magnetorheological drawing lithography for transdermal drug delivery. ACS Biomater Sci Eng. 2019;5(10):5506-5513. doi: 10.1021/acsbiomaterials.9b00919
- Souissi S, Makni C, Belhadj Ammar L, Bousnina O, Kallel L. Correlation between the intensity of Helicobacter pylori colonization and severity of gastritis: results of a prospective study. Helicobacter. 2022;27(4):e12910. doi: 10.1111/hel.12910
- Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109: 1249-1258. doi: 10.1016/j.biopha.2018.10.078
- Banga AK. Microporation applications for enhancing drug delivery. Expert Opin Drug Delivery. 2009;6(4):343-354. doi: 10.1517/17425240902841935
- Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng, R. 2016; 104:1-32. doi: 10.1016/j.mser.2016.03.001
- Lee H, Song C, Baik S, Kim D, Hyeon T, Kim D-H. Device-assisted transdermal drug delivery. Adv Drug Delivery Rev. 2018;127:35-45. doi: 10.1016/j.addr.2017.08.009
- Bae WG, Ko H, So JY, et al. Snake fang-inspired stamping patch for transdermal delivery of liquid formulations. Sci Transl Med. 2019;11(503):eaaw3329. doi: 10.1126/scitranslmed.aaw3329
- Zhang X, Wang F, Yu Y, et al. Bio-inspired clamping microneedle arrays from flexible ferrofluid-configured moldings. Sci Bull. 2019;64(15):1110-1117. doi: 10.1016/j.scib.2019.06.016
- Trautmann A, Roth GL, Nujiqi B, Walther T, Hellmann R. Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays. Microsyst Nanoeng. 2019;5(1):6. doi: 10.1038/s41378-019-0046-5
- Gardan J. Additive manufacturing technologies: state of the art and trends. In: Badiru AB, Valencia VV, Liu D, eds. Additive Manufacturing Handbook: Product Development for the Defense Industry. Boca Raton: CRC Press; 2017: 149-168. doi: 10.1201/9781315119106
- Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003
- Yang Q, Zhong W, Liu Y, et al. 3D-printed morphology-customized microneedles: understanding the correlation between their morphologies and the received qualities. Int J Pharm. 2023;638122873. doi: 10.1016/j.ijpharm.2023.122873
- Wang Z, Fu R, Han X, et al. Shrinking fabrication of a glucose-responsive glucagon microneedle patch. Adv Sci. 2022;9(28):2203274. doi: 10.1002/advs.202203274
- Zhu Z, Wang J, Pei X, et al. Blue-ringed octopus-inspired microneedle patch for robust tissue surface adhesion and active injection drug delivery. Sci Adv. 2023;9(25):eadh2213. doi: 10.1126/sciadv.adh2213
- Li S, Li C, Khan MI, et al. Microneedle array facilitates hepatic sinusoid construction in a large-scale liver-acinus-chip microsystem. Microsyst Nanoeng. 2023;9(1):75. doi: 10.1038/s41378-023-00544-w