Bioprinting with adipose stem cells and hydrogel modified with bioactive glass
Bioprinting research is focused on utilizing growth factors and multiple cell types to create clinically relevant three-dimensional (3D) tissue models using hydrogels. Rheological and biological challenges are two main factors that limit the creation of extrudable bioactive hydrogels. In this study, we investigate incorporation of fast dissolving and bioactive borate glass in different weight to volume percentages (0.075 to 0.6%) to alginate-gelatin (1:1) hydrogel to improve rheological properties and enable bioprinting with bioactive glass. The addition of glass improved the stiffness of the hydrogel. Human adipose-derived mesenchymal stem cells (ASCs) were uniformly mixed in this bioink at 1 × 106 cells/mL concentration, and spheroid specimens were cultured in both static and dynamic culture conditions. Grid-shaped scaffolds measuring ~18 × 18 × 1 mm3 were fabricated with the viable glass concentrations, and ASC viability was evaluated using Live/Dead assay. Despite immediate toxicity, an increased viability after 7 days with 0.15 w/v % or less borate glass content demonstrated the potential in utilizing highly resorbable calcium-releasing biomaterials such as bioactive glasses to modify hydrogels suitable for bioprinting cellularized 3D structures.
- Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
- Choudhury D, Anand S, Naing M. The arrival of commercial bioprinters – towards 3D bioprinting revolution! Int J Bioprint. 2018;4(2). doi: 10.18063/IJB.v4i2.139
- Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946. doi: 10.1039/c7bm00765e
- Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20(1):45-53. doi: 10.1016/S0142-9612(98)00107-0
- Smidsrød O, Skjåk-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8(3):71-78. doi: 10.1016/0167-7799(90)90139-O
- Reakasame S, Boccaccini AR. Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromolecules. 2018;19(1):3-21. doi: 10.1021/acs.biomac.7b01331
- Jeon O, Alsberg E. Photofunctionalization of alginate hydrogels to promote adhesion and proliferation of human mesenchymal stem cells. Tissue Eng Part A. 2013;19(11- 12):1424-1432. doi: 10.1089/ten.TEA.2012.0581
- Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ. Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res. 2001;80(11):2025-2029. doi: 10.1177/00220345010800111501
- Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11(4):042001. doi: 10.1088/1758-5090/ab331e
- Giuseppe M Di, Law N, Webb B, et al. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J Mech Behav Biomed Mater. 2018;79:150-157. doi: 10.1016/J.JMBBM.2017.12.018
- Chung JHY, Naficy S, Yue Z, et al. Bio-ink properties and printability for extrusion printing living cells. Biomater Sci. 2013;1(7):763. doi: 10.1039/c3bm00012e
- Jiang T, Munguia-Lopez J, Flores-Torres S, et al. Bioprintable alginate/gelatin hydrogel 3D in vitro model systems induce cell spheroid formation. J Vis Exp. 2018;(137):e57826. doi: 10.3791/57826
- Li Z, Huang S, Liu Y, et al. Tuning alginate-gelatin bioink properties by varying solvent and their impact on stem cell behavior. Sci Rep. 2018;8(1):8020. doi: 10.1038/s41598-018-26407-3
- Duan B, Hockaday LA, Kang KH, Butcher JT. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res Part A. 2013;101A(5): 1255-1264. doi: 10.1002/jbm.a.34420
- Rahaman MN, Day DE, Sonny Bal B, et al. Bioactive glass in tissue engineering. Acta Biomater. 2011;7(6):2355-2373. doi: 10.1016/j.actbio.2011.03.016
- Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15): 2907-2915. doi: 10.1016/j.biomaterials.2006.01.017
- Miguez-Pacheco V, Hench LL, Boccaccini AR. Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 2015;13:1-15. doi: 10.1016/J.ACTBIO.2014.11.004
- Richard M. Bioactive Behavior of a Borate Glass. Master’s Theses. Missouri University of Science and Technology; 2000.
- Jung S. Borate Based Bioactive Glass Scaffolds for Hard and Soft Tissue Engineering. Dissertation. Missouri University of Science and Technology; 2010.
- George J. Dissolution of Borate Glasses and Precipitation of Phosphate Compounds. Dissertation. Missouri University of Science and Technology; 2015.
- Nychka JA, Mazur SLR, Kashyap S, Li D, Yang F. Dissolution of bioactive glasses: the effects of crystallinity coupled with stress. JOM. 2009;61(9):45-51. doi: 10.1007/s11837-009-0132-5
- Liu X, Rahaman MN, Day DE. Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid. J Mater Sci Mater Med. 2013;24(3):583-595. doi: 10.1007/s10856-012-4831-z
- Zhao F, Yang Z, Xiong H, Yan Y, Chen X, Shao L. A bioactive glass functional hydrogel enhances bone augmentation via synergistic angiogenesis, self-swelling and osteogenesis. Bioact Mater. 2023;22:201-210. doi: 10.1016/j.bioactmat.2022.09.007
- Zhu H, Monavari M, Zheng K, et al. 3D bioprinting of multifunctional dynamic nanocomposite bioinks incorporating Cu-doped mesoporous bioactive glass nanoparticles for bone tissue engineering. Small. 2022;18(12):2104996. doi: 10.1002/smll.202104996
- Monavari M, Homaeigohar S, Medhekar R, et al. A 3D-printed wound-healing material composed of alginate dialdehyde-gelatin incorporating astaxanthin and borate bioactive glass microparticles. ACS Appl Mater Interfaces. 2023;15(44):50626-50637. doi: 10.1021/acsami.2c23252
- Kolan KCR, Semon JA, Bromet B, Day DE, Leu MC. Bioprinting with human stem cells-laden alginate-gelatin bioink and bioactive glass for tissue engineering. Int J Bioprint. 2019;5(2.2):3. doi: 10.18063/ijb.v5i2.2.204
- Jung SB. Borate based bioactive glass scaffolds for hard and soft tissue engineering. Zhurnal Eksp i Teor Fiz. 2010;389.
- Watters R, Brown R, Day D. Angiogenic effect of bioactive borate glass microfibers and beads in the hairless mouse. Bioact Glas. 2015;1(1). doi: 10.1515/bglass-2015-0017
- Lin Y, Brown RF, Jung SB, Day DE. Angiogenic effects of borate glass microfibers in a rodent model. J Biomed Mater Res Part A. 2014;102(12):4491-4499. doi: 10.1002/jbm.a.35120
- Thyparambil N, Gutgesell L, Bromet B, et al. Bioactive borate glass triggers phenotypic changes in adipose stem cells. J Mater Sci Mater Med. 2020;31(4):35. doi: 10.1007/s10856-020-06366-w
- Dykstra JA, Facile T, Patrick RJ, et al. Concise review: fat and furious: harnessing the full potential of adipose-derived stromal vascular fraction. Stem Cells Transl Med. 2017;6(4):1096-1108. doi: 10.1002/sctm.16-0337
- Gimble JM, Guilak F, Bunnell BA. Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther. 2010;1(2):19. doi: 10.1186/scrt19
- Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641-648. doi: 10.1016/j.jcyt.2013.02.006
- Kolan KCR, Semon JA, Bindbeutel AT, Day DE, Leu MC. Bioprinting with bioactive glass loaded polylactic acid composite and human adipose stem cells. Bioprinting. 2020;18:e00075. doi: 10.1016/j.bprint.2020.e00075
- Thyparambil NJ, Gutgesell LC, Hurley CC, Flowers LE, Day DE, Semon JA. Adult stem cell response to doped bioactive borate glass. J Mater Sci Mater Med. 2020;31(2):1-8. doi: 10.1007/s10856-019-6353-4
- Suvarnapathaki S, Nguyen MA, Wu X, Nukavarapu SP, Camci-Unal G. Synthesis and characterization of photocrosslinkable hydrogels from bovine skin gelatin. RSC Adv. 2019;9:13016-13025. doi: 10.1039/c9ra00655a
- Okay O. General Properties of Hydrogels. Berlin, Heidelberg: Springer; 2009:1-14. doi: 10.1007/978-3-540-75645-3_1
- Jung S, Day D. Conversion kinetics of silicate, borosilicate, and borate bioactive glasses to hydroxyapatite. Phys Chem Glas. 2009;50(2):85-88.
- Liu X, Pan H, Fu H, Fu Q, Rahaman MN, Huang W. Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution. Biomed Mater. 2010;5(1):015005. doi: 10.1088/1748-6041/5/1/015005
- George JL, Brow RK. In-situ characterization of borate glass dissolution kinetics by μ-Raman spectroscopy. J Non Cryst Solids. 2015;426:116-124. doi: 10.1016/J.JNONCRYSOL.2015.07.003
- Fu Q, Rahaman MN, Fu H, Liu X. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res Part A. 2010;95A(1):164-171. doi: 10.1002/jbm.a.32824
- Huebsch N, Arany PR, Mao AS, et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater. 2010;9(6):518-526. doi: 10.1038/nmat2732
- Chaudhuri O, Gu L, Klumpers D, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater. 2016;15(3):326-334. doi: 10.1038/nmat4489
- Qazi TH, Hafeez S, Schmidt J, Duda GN, Boccaccini AR, Lippens E. Comparison of the effects of 45S5 and 1393 bioactive glass microparticles on hMSC behavior. J Biomed Mater Res A. 2017;105(10):2772-2782. doi: 10.1002/jbm.a.36131
- Hoppe A, Boccaccini AR. Biological impact of bioactive glasses and their dissolution products. Front Oral Biol. 2015;17:22-32. doi: 10.1159/000381690
- Wang X, Tolba E, Schröder HC, et al. Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting. PLoS One. 2014;9(11):e112497. doi: 10.1371/journal.pone.0112497
- Sarker B, Singh R, Silva R, et al. Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS One. 2014;9(9):e107952. doi: 10.1371/journal.pone.0107952
- Couto DS, Hong Z, Mano JF. Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomater. 2009;5(1): 115-123. doi: 10.1016/j.actbio.2008.08.006
- Nikpour P, Salimi-Kenari H, Fahimipour F, et al. Dextran hydrogels incorporated with bioactive glass-ceramic: nanocomposite scaffolds for bone tissue engineering. Carbohydr Polym. 2018;190:281-294. doi: 10.1016/j.carbpol.2018.02.083
- Killion JA, Kehoe S, Geever LM, et al. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation. Mater Sci Eng C. 2013;33(7):4203-4212. doi: 10.1016/j.msec.2013.06.013
- Moreira CDF, Carvalho SM, Sousa RG, Mansur HS, Pereira MM. Nanostructured chitosan/gelatin/bioactive glass in situ forming hydrogel composites as a potential injectable matrix for bone tissue engineering. Mater Chem Phys. 2018;218:304-316. doi: 10.1016/j.matchemphys.2018.07.039
- Gantar A, Drnovšek N, Casuso P, et al. Injectable and self-healing dynamic hydrogel containing bioactive glass nanoparticles as a potential biomaterial for bone regeneration. RSC Adv. 2016;6(73):69156-69166. doi: 10.1039/C6RA17327F
- Zhu N, Chatzistavrou X, Papagerakis P, Ge L, Qin M, Wang Y. Silver-doped bioactive glass/chitosan hydrogel with potential application in dental pulp repair. ACS Biomater Sci Eng. 2019;5(9):4624-4633. doi: 10.1021/acsbiomaterials.9b00811
- Washio A, Teshima H, Yokota K, Kitamura C, Tabata Y. Preparation of gelatin hydrogel sponges incorporating bioactive glasses capable for the controlled release of fibroblast growth factor-2. J Biomater Sci Polym Ed. 2019;30(1):49-63. doi: 10.1080/09205063.2018.1544474
- Leite ÁJ, Sarker B, Zehnder T, Silva R, Mano JF, Boccaccini AR. Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles. Biofabrication. 2016;8(3):035005. doi: 10.1088/1758-5090/8/3/035005
- Douglas TEL, Dziadek M, Gorodzha S, et al. Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing. J Tissue Eng Regen Med. 2018;12(6): 1313-1326. doi: 10.1002/term.2654
- Sevari SP, Shahnazi F, Chen C, Mitchell JC, Ansari S, Moshaverinia A. Bioactive glass‐containing hydrogel delivery system for osteogenic differentiation of human dental pulp stem cells. J Biomed Mater Res Part A. 2020;108(3):557-564. doi: 10.1002/jbm.a.36836
- Vuornos K, Ojansivu M, Koivisto JT, et al. Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels. Mater Sci Eng C. 2019;99:905-918. doi: 10.1016/j.msec.2019.02.035
- Sun W, Starly B, Daly AC, et al. The bioprinting roadmap. Biofabrication. 2020;12(2):022002. doi: 10.1088/1758-5090/ab5158