AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.2460
Cite this article
Journal Browser
Volume | Year
News and Announcements
View All

Techniques, mechanisms, and application of 3D-printed biodegradable metals for bone regeneration

Lingxiao Wang1,2† Yang Liu1† Zhipeng Fan1,3,4*
Show Less
1 Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
2 Department of Dental Implant Center, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
3 Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
4 Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
IJB 2024, 10(1), 2460
Submitted: 17 December 2023 | Accepted: 19 January 2024 | Published: 12 February 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

Repairing severe bone defects and restoring complete bone tissue morphology are major challenges in clinical practice. Biodegradable metals (BMs) are bioactive materials with active degradation properties. The gradual improvement of three-dimensional (3D) printing technology holds tremendous potential for development and has spurred on the growing utilization of 3D-printed BM materials in the clinical applications of bone regeneration. In this paper, we review the application of three BM (magnesium, iron, and zinc) materials for use in 3D-printed bone regeneration; define the principle of 3D-printed bone regeneration, including the method and selection of materials; and summarize the characteristics and uses of various printing technologies and the properties, advantages, and disadvantages of BMs. Compared to traditional nondegradable implants, 3D-printed degradable metal implants have the advantages of not leaving residue, avoiding stress shielding, promoting osteogenesis and vascularization, and exhibiting antimicrobial ability. In addition, we summarize the clinical applications of 3D-printed BMs. 3D-printed BMs can be used not only for fracture fixation and bone defect repair but also for osteoporotic fracture repair, cartilage repair, maxillofacial surgery, and other processes. In this article, we discuss the advantages and limitations of the current 3D printing degradable metallic materials and describe future development prospects.

Three-dimensional printing
Biodegradable metals
Bone regeneration
Bone tissue engineering
This work was supported by the Young Scientist Program of Beijing Stomatological Hospital, Capital Medical University (No. YSP202208); the National Key Research and Development Program (No. 2022YFA1104401); the CAMS Innovation Fund for Medical Sciences (No. 2019- I2M-5-031); and grants from the Innovation Research Team Project of Beijing Stomatological Hospital, Capital Medical University (No. CXTD202204).
  1. Wildemann B, Ignatius A, Leung F, et al. Non-union bone fractures. Nat Rev Dis Primers. 2021;7(1):57. doi: 10.1038/s41572-021-00289-8
  2. Megas P. Classification of non-union. Injury. 2005;36 (Suppl 4):S30-37. doi: 10.1016/j.injury.2005.10.008
  3. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66. doi: 10.1186/1741-7015-9-66
  4. Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ. 3D bioprinting for cartilage and osteochondral tissue engineering. Adv Healthc Mater. 2017;6(22):1700298. doi: 10.1002/adhm.201700298
  5. Liao J, Wu S, Li K, Fan Y, Dunne N, Li X. Peptide-modified bone repair materials: factors influencing osteogenic activity. J Biomed Mater Res A. 2019;107(7):1491-1512. doi: 10.1002/jbm.a.36663
  6. Sanz-Sanchez I, Sanz-Martin I, Ortiz-Vigon A, Molina A, Sanz M. Complications in bone-grafting procedures: classification and management. Periodontology 2000. 2022;88(1):86-102. doi: 10.1111/prd.12413
  7. Graham SM, Leonidou A, Aslam-Pervez N, et al. Biological therapy of bone defects: the immunology of bone allo-transplantation. Expert Opin Biol Ther. 2010;10(6):885-901. doi: 10.1517/14712598.2010.481669
  8. Bavya Devi K, Lalzawmliana V, Saidivya M, Kumar V, Roy M, Nandi SK. Magnesium phosphate bioceramics for bone tissue engineering. Chem Rec. 2022;22(11):e202200136. doi: 10.1002/tcr.202200136
  9. Sordi MB, Cruz A, Fredel MC, Magini R, Sharpe PT. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. Mater Sci Eng C Mater Biol Appl. 2021;124:112055. doi: 10.1016/j.msec.2021.112055
  10. Funda G, Taschieri S, Bruno GA, et al. Nanotechnology scaffolds for alveolar bone regeneration. Materials (Basel). 2020;13(1). doi: 10.3390/ma13010201
  11. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  12. Wang S, Zhao S, Yu J, Gu Z, Zhang Y. Advances in translational 3D printing for cartilage, bone, and osteochondral tissue engineering. Small. 2022;18(36):e2201869. doi: 10.1002/smll.202201869
  13. Qu M, Wang C, Zhou X, et al. Multi-dimensional printing for bone tissue engineering. Adv Healthc Mater. 2021;10(11):e2001986. doi: 10.1002/adhm.202001986
  14. Ashammakhi N, Hasan A, Kaarela O, et al. Advancing frontiers in bone bioprinting. Adv Healthc Mater. 2019;8(7):e1801048. doi: 10.1002/adhm.201801048
  15. rivikraman G, Athirasala A, Twohig C, Boda SK, Bertassoni LE. Biomaterials for craniofacial bone regeneration. Dent Clin North Am. 2017;61(4):835-856. doi: 10.1016/j.cden.2017.06.003
  16. Liu Y, Zheng Y, Chen XH, et al. Fundamental theory of biodegradable metals—definition, criteria, and design. Adv Funct Mater. 2019;29(18). doi: 10.1002/adfm.201805402
  17. Bose S, Koski C, Vu AA. Additive manufacturing of natural biopolymers and composites for bone tissue engineering. Mater Horizons. 2020;7(8):2011-2027. doi: 10.1039/d0mh00277a
  18. Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016;27(7):118. doi: 10.1007/s10856-016-5731-4
  19. Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-based composite scaffold matrices for tissue engineering applications. Mol Biotechnol. 2018;60(7):506-532. doi: 10.1007/s12033-018-0084-5
  20. Pina S, Rebelo R, Correlo VM, Oliveira JM, Reis RL. Bioceramics for osteochondral tissue engineering and regeneration. Adv Exp Med Biol. 2018;1058:53-75. doi: 10.1007/978-3-319-76711-6_3
  21. Rahmanian R, Moghaddam NS, Haberland C, Dean D, Miller M, Elahinia M. Load bearing and stiffness tailored NiTi implants produced by additive manufacturing: a simulation study. In: Proceedings of the SPIE 9058, Behavior and Mechanics of Multifunctional Materials and Composites 2014; 2014: 905814. doi: 10.1117/12.2048948
  22. Jing Z, Zhang T, Xiu P, et al. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review. Biomed Mater. 2020;15(5):052003. doi: 10.1088/1748-605X/ab9078
  23. Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160-1169. doi: 10.1038/nm.4162
  24. Qin Y, Wen P, Guo H, et al. Additive manufacturing of biodegradable metals: current research status and future perspectives. Acta Biomater. 2019;98:3-22. doi: 10.1016/j.actbio.2019.04.046
  25. Xia D, Yang F, Zheng Y, Liu Y, Zhou Y. Research status of biodegradable metals designed for oral and maxillofacial applications: a review. Bioact Mater. 2021;6(11):4186-4208. doi: 10.1016/j.bioactmat.2021.01.011
  26. Feng Y, Zhu S, Mei D, et al. Application of 3D printing technology in bone tissue engineering: a review. Curr Drug Deliv. 2021;18(7):847-861. doi: 10.2174/1567201817999201113100322
  27. Putra NE, Leeflang MA, Taheri P, et al. Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds. Acta Biomater. 2021;134:774-790. doi: 10.1016/j.actbio.2021.07.042
  28. Belluci MM, de Molon RS, Rossa Jr C, et al. Severe magnesium deficiency compromises systemic bone mineral density and aggravates inflammatory bone resorption. J Nutr Biochem. 2020;77:108301. doi: 10.1016/j.jnutbio.2019.108301
  29. Erem S, Atfi A, Razzaque MS. Anabolic effects of vitamin D and magnesium in aging bone. J Steroid Biochem Mol Biol. 2019;193:105400. doi: 10.1016/j.jsbmb.2019.105400
  30. Ye L, Xu J, Mi J, et al. Biodegradable magnesium combined with distraction osteogenesis synergistically stimulates bone tissue regeneration via CGRP-FAK-VEGF signaling axis. Biomaterials. 2021;275:120984. doi: 10.1016/j.biomaterials.2021.120984
  31. Liu W, Guo S, Tang Z, et al. Magnesium promotes bone formation and angiogenesis by enhancing MC3T3-E1 secretion of PDGF-BB. Biochem Biophys Res Commun. 2020;528(4):664-670. doi: 10.1016/j.bbrc.2020.05.113
  32. Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;130:112466. doi: 10.1016/j.msec.2021.112466
  33. Lin S, Yin S, Shi J, et al. Orchestration of energy metabolism and osteogenesis by Mg(2+) facilitates low-dose BMP-2- driven regeneration. Bioact Mater. 2022;18:116-127. doi: 10.1016/j.bioactmat.2022.03.024
  34. Qiao W, Wong KHM, Shen J, et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nat Commun. 2021;12(1):2885. doi: 10.1038/s41467-021-23005-2
  35. Jeng SS, Chen YH. Association of zinc with anemia. Nutrients. 2022;14(22). doi: 10.3390/nu14224918
  36. Skalny AV, Aschner M, Silina EV, et al. The role of trace elements and minerals in osteoporosis: a review of epidemiological and laboratory findings. Biomolecules. 2023;13(6). doi: 10.3390/biom13061006
  37. Kraus VB. Osteoarthritis: the zinc link. Nature. 2014;507(7493):441-442. doi: 10.1038/507441a
  38. Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95(3):749-784. doi: 10.1152/physrev.00035.2014
  39. Liu Q, Li M, Wang S, et al. Recent advances of osterix transcription factor in osteoblast differentiation and bone formation. Front Cell Dev Biol. 2020;8:601224. doi: 10.3389/fcell.2020.601224
  40. Fu X, Li Y, Huang T, et al. Runx2/osterix and zinc uptake synergize to orchestrate osteogenic differentiation and citrate containing bone apatite formation. Adv Sci (Weinh). 2018;5(4):1700755. doi: 10.1002/advs.201700755
  41. Rył A, Miazgowski T, Szylińska A, et al. Bone health in aging men: does zinc and cuprum level matter? Biomolecules. 2021;11(2). doi: 10.3390/biom11020237
  42. Park KH, Park B, Yoon DS, et al. Zinc inhibits osteoclast differentiation by suppression of Ca2+-Calcineurin-NFATc1 signaling pathway. Cell Commun Signal. 2013;11:74. doi: 10.1186/1478-811x-11-74
  43. Wang S, Gu R, Wang F, et al. 3D-printed PCL/Zn scaffolds for bone regeneration with a dose-dependent effect on osteogenesis and osteoclastogenesis. Mater Today Bio. 2022;13:100202. doi: 10.1016/j.mtbio.2021.100202
  44. Wang S, Li R, Xia D, et al. The impact of Zn-doped synthetic polymer materials on bone regeneration: a systematic review. Stem Cell Res Ther. 2021;12(1):123. doi: 10.1186/s13287-021-02195-y
  45. Li C, Sun F, Tian J, et al. Continuously released Zn(2+) in 3D-printed PLGA/β-TCP/Zn scaffolds for bone defect repair by improving osteoinductive and anti-inflammatory properties. Bioact Mater. 2023;24:361-375. doi: 10.1016/j.bioactmat.2022.12.015
  46. Pierson D, Edick J, Tauscher A, et al. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J Biomed Mater Res B Appl Biomater. 2012;100(1):58-67. doi: 10.1002/jbm.b.31922
  47. Sikora-Jasinska M, Paternoster C, Mostaed E, et al. Synthesis, mechanical properties and corrosion behavior of powder metallurgy processed Fe/Mg(2)Si composites for biodegradable implant applications. Mater Sci Eng C Mater Biol Appl. 2017;81:511-521. doi: 10.1016/j.msec.2017.07.049
  48. Ru Q, Li Y, Xie W, et al. Fighting age-related orthopedic diseases: focusing on ferroptosis. Bone Res. 2023;11(1):12. doi: 10.1038/s41413-023-00247-y
  49. Adeyemi A, Akinlabi ET, Mahamood RM. Powder bed based laser additive manufacturing process of stainless steel: a review. Mate Today Proc. 2018;5(9):18510-18517. doi: 10.1016/j.matpr.2018.06.193
  50. Sotoudehbagha P, Sheibani S, Khakbiz M, Ebrahimi- Barough S, Hermawan H. Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying. Mater Sci Eng C Mater Biol Appl. 2018;88:88-94. doi: 10.1016/j.msec.2018.03.005
  51. Rewak-Soroczynska J, Dorotkiewicz-Jach A, Drulis-Kawa Z, Wiglusz RJ. Culture media composition influences the antibacterial effect of silver, cupric, and zinc ions against Pseudomonas aeruginosa. Biomolecules. 2022;12(7). doi: 10.3390/biom12070963
  52. Chen K, Zhou G, Li Q, et al. In vitro degradation, biocompatibility and antibacterial properties of pure zinc: assessing the potential of Zn as a guided bone regeneration membrane. J Mater Chem B. 2021;9(25): 5114-5127. doi: 10.1039/D1TB00596K
  53. Jia B, Zhang Z, Zhuang Y, et al. High-strength biodegradable zinc alloy implants with antibacterial and osteogenic properties for the treatment of MRSA-induced rat osteomyelitis. Biomaterials. 2022;287:121663. doi: 10.1016/j.biomaterials.2022.121663
  54. Zhang Y, Wu H, Yuan B, et al. Enhanced osteogenic activity and antibacterial performance in vitro of polyetheretherketone by plasma-induced graft polymerization of acrylic acid and incorporation of zinc ions. J Mater Chem B. 2021;9(36): 7506-7515. doi: 10.1039/D1TB01349A
  55. Mutlu N, Liverani L, Kurtuldu F, Galusek D, Boccaccini AR. Zinc improves antibacterial, anti-inflammatory and cell motility activity of chitosan for wound healing applications. Int J Biol Macromol. 2022;213:845-857. doi: 10.1016/j.ijbiomac.2022.05.199
  56. Rodwihok C, Suwannakeaw M, Charoensri K, et al. Alkali/zinc-activated fly ash nanocomposites for dye removal and antibacterial applications. Bioresour Technol. 2021;331:125060. doi: 10.1016/j.biortech.2021.125060
  57. Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomed. 2017;12:3941-3965. doi: 10.2147/ijn.S134526
  58. He Y, Ingudam S, Reed S, et al. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnol. 2016;14(1):54. doi: 10.1186/s12951-016-0202-0
  59. Coelho CC, Padrão T, Costa L, et al. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Sci Rep. 2020;10(1):19098. doi: 10.1038/s41598-020-76063-9
  60. Ye Q, Chen W, Huang H, et al. Iron and zinc ions, potent weapons against multidrug-resistant bacteria. Appl Microbiol Biotechnol. 2020;104(12):5213-5227. doi: 10.1007/s00253-020-10600-4
  61. Zheng LZ, Wang JL, Xu JK, et al. Magnesium and vitamin C supplementation attenuates steroid-associated osteonecrosis in a rat model. Biomaterials. 2020;238:119828. doi: 10.1016/j.biomaterials.2020.119828
  62. Zhu WY, Guo J, Yang WF, et al. Biodegradable magnesium implant enhances angiogenesis and alleviates medication-related osteonecrosis of the jaw in rats. J Orthop Translat. 2022;33:153-161. doi: 10.1016/
  63. Gao P, Fan B, Yu X, et al. Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact Mater. 2020;5(3):680-693. doi: 10.1016/j.bioactmat.2020.04.019
  64. Zhang X, Huang P, Jiang G, et al. A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis. Mater Sci Eng C. 2021;121:111868. doi: 10.1016/j.msec.2021.111868
  65. Gu Y, Zhang J, Zhang X, et al. Three-dimensional printed Mg-doped β-TCP bone tissue engineering scaffolds: effects of magnesium ion concentration on osteogenesis and angiogenesis in vitro. Tissue Eng Regen Med. 2019;16(4): 415-429. doi: 10.1007/s13770-019-00192-0
  66. Li Y, Ma T, Zhu X, et al. Zinc improves neurological recovery by promoting angiogenesis via the astrocyte-mediated HIF- 1α/VEGF signaling pathway in experimental stroke. CNS Neurosci Ther. 2022;28(11):1790-1799. doi: 10.1111/cns.13918
  67. Yu L, Yin Y, Guo Z, et al. A functional study of zinc–titanium coatings and exploration of the intrinsic correlation between angiogenesis and osteogenesis. J Mater Chem B. 2023;11(14):3236-3251. doi: 10.1039/D3TB00119A
  68. Hassan A, Elebeedy D, Matar ER, Fahmy Mohamed Elsayed A, Abd El Maksoud AI. Investigation of angiogenesis and wound healing potential mechanisms of zinc oxide nanorods. Front Pharmacol. 2021;12:661217. doi: 10.3389/fphar.2021.661217
  69. Chen Y, Sheng W, Lin J, et al. Magnesium oxide nanoparticle coordinated phosphate-functionalized chitosan injectable hydrogel for osteogenesis and angiogenesis in bone regeneration. ACS Appl Mater Interfaces. 2022;14(6): 7592-7608. doi: 10.1021/acsami.1c21260
  70. Wang T, Zhao H, Jing S, et al. Magnetofection of miR- 21 promoted by electromagnetic field and iron oxide nanoparticles via the p38 MAPK pathway contributes to osteogenesis and angiogenesis for intervertebral fusion. J Nanobiotechnol. 2023;21(1):27. doi: 10.1186/s12951-023-01789-3
  71. Salmi M. Additive manufacturing processes in medical applications. Materials. 2021;14(1). doi: 10.3390/ma14010191
  72. Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys - a review. Acta Biomater. 2012;8(7):2442-2455. doi: 10.1016/j.actbio.2012.04.012
  73. Liu J, Wei B, Chang H, Li J, Yang G. Review of visual measurement methods for metal vaporization processes in laser powder bed fusion. Micromachines. 2023;14(7). doi: 10.3390/mi14071351
  74. Ng CC, Savalani MM, Lau ML, Man HC. Microstructure and mechanical properties of selective laser melted magnesium. Appl Surf Sci. 2011;257(17):7447-7454. doi: 10.1016/j.apsusc.2011.03.004
  75. Hossain N, Chowdhury MA, Shuvho MBA, Kashem MA, Kchaou M. 3D-printed objects for multipurpose applications. J Mater Eng Perform. 2021;30(7): 4756-4767. doi: 10.1007/s11665-021-05664-w
  76. Milewski JO. Additive Manufacturing of Metals. Springer; 2017: 258.doi: 10.1007/978-3-319-58205-4
  77. Li Y, Zhou J, Pavanram P, et al. Additively manufactured biodegradable porous magnesium. Acta Biomater. 2018;67:378-392. doi: 10.1016/j.actbio.2017.12.008
  78. Ma P, Ji P, Jia Y, et al. Effect of substrate plate heating on the microstructure and properties of selective laser melted Al- 20Si-5Fe-3Cu-1Mg alloy. Materials. 2021;14(2). doi: 10.3390/ma14020330
  79. Kirkland NT, Kolbeinsson I, Woodfield T, Dias GJ, Staiger MP. Synthesis and properties of topologically ordered porous magnesium. Mater Sci Eng B. 2011;176(20): 1666-1672. doi: 10.1016/j.mseb.2011.04.006
  80. Zhang X, Li XW, Li JG, Sun XD. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2014;42:362-367. doi: 10.1016/j.msec.2014.05.044
  81. Murphy CM, Duffy GP, Schindeler A, O’Brien FJ. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. J Biomed Mater Res A. 2016;104(1):291-304. doi: 10.1002/jbm.a.35567
  82. Rustom LE, Boudou T, Lou S, et al. Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds. Acta Biomater. 2016;44:144-154. doi: 10.1016/j.actbio.2016.08.025
  83. Zhang J, Wehrle E, Rubert M, Müller R. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors. Int J Mol Sci. 2021;22(8). doi: 10.3390/ijms22083971
  84. Takagi H, Sasahara H, Abe T, et al. Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing. Addit Manuf. 2018;24:498-507. doi: 10.1016/j.addma.2018.10.026
  85. Bar-Cohen Y. Advances in Manufacturing and Processing of Materials and Structures. Boca Raton: CRC Press; 2018. doi: 10.1201/b22020
  86. Gao C, Wang C, Jin H, et al. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Adv. 2018;8(44):25210-25227. doi: 10.1039/c8ra04815k
  87. Ni J, Ling H, Zhang S, et al. Three-dimensional printing of metals for biomedical applications. Mater Today Bio. 2019;3:100024. doi: 10.1016/j.mtbio.2019.100024
  88. Elshazli AM, Elshaer RN, Hussein AHA, Al-Sayed SR. Laser surface modification of TC21 (α/β) titanium alloy using a direct energy deposition (DED) process. Micromachines. 2021;12(7). doi: 10.3390/mi12070739
  89. Liu Y, Liu Z, Zhou G, He C, Zhang J. Microstructures and properties of Al-Mg alloys manufactured by WAAM-CMT. Materials. 2022;15(15). doi: 10.3390/ma15155460
  90. Ron T, Dolev O, Leon A, Shirizly A, Aghion E. Effect of phase transformation on stress corrosion behavior of additively manufactured austenitic stainless steel produced by directed energy deposition. Materials. 2020;14(1). doi: 10.3390/ma14010055
  91. Rodrigues TA, Duarte V, Miranda RM, Santos TG, Oliveira JP. Current status and perspectives on wire and arc additive manufacturing (WAAM). Materials. 2019;12(7). doi: 10.3390/ma12071121
  92. Soni R, Jhavar S, Tyeb S, et al. Wire arc additive manufacturing of zinc as a degradable metallic biomaterial. J Funct Biomater. 2022;13(4). doi: 10.3390/jfb13040212
  93. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater. 2007;23(7):844-854. doi: 10.1016/
  94. Lukaszewska-Kuska M, Wirstlein P, Majchrowski R, Dorocka-Bobkowska B. Osteoblastic cell behaviour on modified titanium surfaces. Micron. 2018;105:55-63. doi: 10.1016/j.micron.2017.11.010
  95. Souza JCM, Sordi MB, Kanazawa M, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019;94:112-131. doi: 10.1016/j.actbio.2019.05.045
  96. Majhy B, Priyadarshini P, Sen AK. Effect of surface energy and roughness on cell adhesion and growth - facile surface modification for enhanced cell culture. RSC Adv. 2021;11(25):15467-15476. doi: 10.1039/d1ra02402g
  97. Bouzaglou O, Golan O, Lachman N. Process design and parameters interaction in material extrusion 3D printing: a review. Polymers. 2023;15(10). doi: 10.3390/polym15102280
  98. Dong J, Li Y, Lin P, et al. Solvent-cast 3D printing of magnesium scaffolds. Acta Biomater. 2020;114:497-514. doi: 10.1016/j.actbio.2020.08.002
  99. Zhang Y, Lin T, Meng H, et al. 3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo. J Orthop Transl. 2022;33: 13-23. doi: 10.1016/
  100. Dong J, Tümer N, Putra NE, et al. Extrusion-based 3D printed magnesium scaffolds with multifunctional MgF(2) and MgF(2)-CaP coatings. Biomater Sci. 2021;9(21):7159-7182. doi: 10.1039/d1bm01238j
  101. Mirzababaei S, Pasebani S. A review on binder jet additive manufacturing of 316L stainless steel. J Manuf Mater Process. 2019;3(3). doi: 10.3390/jmmp3030082
  102. Salehi M, Maleksaeedi S, Sapari MAB, et al. Additive manufacturing of magnesium–zinc–zirconium (ZK) alloys via capillary-mediated binderless three-dimensional printing. Mater Des. 2019;169. doi: 10.1016/j.matdes.2019.107683
  103. Meininger S, Mandal S, Kumar A, et al. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Acta Biomater. 2016;31:401-411. doi: 10.1016/j.actbio.2015.11.050
  104. Meininger S, Moseke C, Spatz K, et al. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds. Mater Sci Eng C Mater Biol Appl. 2019;98: 1145-1158. doi: 10.1016/j.msec.2019.01.053
  105. Verlee B, Dormal T, Lecomte-Beckers J. Density and porosity control of sintered 316L stainless steel parts produced by additive manufacturing. Powder Metall. 2013;55(4):260-267. doi: 10.1179/0032589912z.00000000082
  106. Dutta S, Roy M. Recent developments in engineered magnesium scaffolds for bone tissue engineering. ACS Biomater Sci Eng. 2023;9(6):3010-3031. doi: 10.1021/acsbiomaterials.2c01510
  107. Hériveaux Y, Le Cann S, Fraulob M, et al. Mechanical micromodeling of stress-shielding at the bone-implant interphase under shear loading. Med Biol Eng Comput. 2022;60(11):3281-3293. doi: 10.1007/s11517-022-02657-2
  108. Raffa ML, Nguyen VH, Hernigou P, Flouzat-Lachaniette CH, Haiat G. Stress shielding at the bone-implant interface: Influence of surface roughness and of the bone-implant contact ratio. J Orthop Res. 2021;39(6):1174-1183. doi: 10.1002/jor.24840
  109. Xue J, Singh S, Zhou Y, et al. A biodegradable 3D woven magnesium-based scaffold for orthopedic implants. Biofabrication. 2022;14(3). doi: 10.1088/1758-5090/ac73b8
  110. Persson M, Lehenkari PP, Berglin L, et al. Osteogenic differentiation of human mesenchymal stem cells in a 3D woven scaffold. Sci Rep. 2018;8(1):10457. doi: 10.1038/s41598-018-28699-x
  111. Karunakaran R, Ortgies S, Tamayol A, Bobaru F, Sealy MP. Additive manufacturing of magnesium alloys. Bioact Mater. 2020;5(1):44-54. doi: 10.1016/j.bioactmat.2019.12.004
  112. Lavery NP, Cherry J, Mehmood S, et al. Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion. Mater Sci Eng A. 2017;693:186-213. doi: 10.1016/j.msea.2017.03.100
  113. de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev. 2015;95(1):1-46. doi: 10.1152/physrev.00012.2014
  114. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920-926. doi: 10.1126/science.8493529
  115. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518-524. doi: 10.1038/nmat1421
  116. Agarwal S, Curtin J, Duffy B, Jaiswal S. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater Sci Eng C. 2016;68:948-963. doi: 10.1016/j.msec.2016.06.020
  117. Martinez Sanchez AH, Luthringer BJ, Feyerabend F, Willumeit R. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater. 2015;13:16-31. doi: 10.1016/j.actbio.2014.11.048
  118. Xu L, Zhang E, Yin D, Zeng S, Yang K. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. J Mater Sci Mater Med. 2008;19(3):1017-1025. doi: 10.1007/s10856-007-3219-y
  119. Ansari MAA, Golebiowska AA, Dash M, et al. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Biomater Sci. 2022;10(11):2789-2816. doi: 10.1039/d2bm00035k
  120. Yang Y, Guo X, He C, Gao C, Shuai C. Regulating degradation behavior by incorporating mesoporous silica for Mg bone implants. ACS Biomater Sci Eng. 2018;4(3):1046-1054. doi: 10.1021/acsbiomaterials.8b00020
  121. Sarian MN, Iqbal N, Sotoudehbagha P, et al. Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioact Mater. 2022;12:42-63. doi: 10.1016/j.bioactmat.2021.10.034
  122. Hanzi AC, Gunde P, Schinhammer M, Uggowitzer PJ. On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid. Acta Biomater. 2009;5(1):162-171. doi: 10.1016/j.actbio.2008.07.034
  123. Bîrcă AC, Neacşu IA, Vasile OR, et al. Mg-Zn alloys, most suitable for biomedical applications. Rom J Morphol Embryol. 2018;59(1):49-54.
  124. Han P, Cheng P, Zhang S, et al. In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model. Biomaterials. 2015;64:57-69. doi: 10.1016/j.biomaterials.2015.06.031
  125. Cheng MQ, Wahafu T, Jiang GF, et al. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci Rep. 2016;6:24134. doi: 10.1038/srep24134
  126. Seyedraoufi ZS, Mirdamadi S. Synthesis, microstructure and mechanical properties of porous Mg--Zn scaffolds. J Mech Behav Biomed Mater. 2013;21:1-8. doi: 10.1016/j.jmbbm.2013.01.023
  127. Jung O, Porchetta D, Schroeder ML, et al. In vivo simulation of magnesium degradability using a new fluid dynamic bench testing approach. Int J Mol Sci. 2019;20(19). doi: 10.3390/ijms20194859
  128. Tan Q, Atrens A, Mo N, Zhang M-X. Oxidation of magnesium alloys at elevated temperatures in air: a review. Corros Sci. 2016;112:734-759. doi: 10.1016/j.corsci.2016.06.018
  129. Cao F, Song G-L, Atrens A. Corrosion and passivation of magnesium alloys. Corros Sci. 2016;111:835-845. doi: 10.1016/j.corsci.2016.05.041
  130. Ghali E, Dietzel W, Kainer K-U. General and localized corrosion of magnesium alloys: a critical review. J Mater Eng Perform. 2013;22(10):2875-2891. doi: 10.1007/s11665-013-0730-9
  131. Draxler J, Martinelli E, Weinberg AM, et al. The potential of isotopically enriched magnesium to study bone implant degradation in vivo. Acta Biomater. 2017;51: 526-536. doi: 10.1016/j.actbio.2017.01.054
  132. Golafshan N, Willemsen K, Kadumudi FB, et al. 3D-printed regenerative magnesium phosphate implant ensures stability and restoration of hip dysplasia. Adv Healthc Mater. 2021;10(21):e2101051. doi: 10.1002/adhm.202101051
  133. Zhao S, Xie K, Guo Y, et al. Fabrication and biological activity of 3D-printed polycaprolactone/magnesium porous scaffolds for critical size bone defect repair. ACS Biomater Sci Eng. 2020;6(9):5120-5131. doi: 10.1021/acsbiomaterials.9b01911
  134. Xie K, Wang N, Guo Y, et al. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: an in vitro and in vivo study. Bioact Mater. 2022;8:140-152. doi: 10.1016/j.bioactmat.2021.06.032
  135. Qin Y, Yang H, Liu A, et al. Processing optimization, mechanical properties, corrosion behavior and cytocompatibility of additively manufactured Zn-0.7Li biodegradable metals. Acta Biomater. 2022;142:388-401. doi: 10.1016/j.actbio.2022.01.049
  136. Mostaed E, Sikora-Jasinska M, Drelich JW, Vedani M. Zinc-based alloys for degradable vascular stent applications. Acta Biomater. 2018;71:1-23. doi: 10.1016/j.actbio.2018.03.005
  137. Toledano M, Vallecillo-Rivas M, Osorio MT, et al. Zn-containing membranes for guided bone regeneration in dentistry. Polymers. 2021;13(11). doi: 10.3390/polym13111797
  138. Levaot N, Hershfinkel M. How cellular Zn(2+) signaling drives physiological functions. Cell Calcium. 2018;75: 53-63. doi: 10.1016/j.ceca.2018.08.004
  139. Molenda M, Kolmas J. The role of zinc in bone tissue health and regeneration-a review. Biol Trace Elem Res. 2023;201(12):5640-5651. doi: 10.1007/s12011-023-03631-1
  140. Zhao C, Wu H, Hou P, et al. Enhanced corrosion resistance and antibacterial property of Zn doped DCPD coating on biodegradable Mg. Mater Lett. 2016;180:42-46. doi: 10.1016/j.matlet.2016.04.035
  141. Yang H, Qu X, Lin W, et al. In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. Acta Biomater. 2018;71:200-214. doi: 10.1016/j.actbio.2018.03.007
  142. Yuan W, Li B, Chen D, et al. Formation mechanism, corrosion behavior, and cytocompatibility of microarc oxidation coating on absorbable high-purity zinc. ACS Biomater Sci Eng. 2019;5(2):487-497. doi: 10.1021/acsbiomaterials.8b01131
  143. Ma J, Zhao N, Zhu D. Endothelial cellular responses to biodegradable metal zinc. ACS Biomater Sci Eng. 2015;1(11):1174-1182. doi: 10.1021/acsbiomaterials.5b00319
  144. Ma J, Zhao N, Zhu D. Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells. Sci Rep. 2016;6:26661. doi: 10.1038/srep26661
  145. Katarivas Levy G, Goldman J, Aghion E. The prospects of zinc as a structural material for biodegradable implants—a review paper. Metals. 2017;7(10). doi: 10.3390/met7100402
  146. Kim J, Oh S, Ki H. Effect of keyhole geometry and dynamics in zero-gap laser welding of zinc-coated steel sheets. J Mater Process Technol. 2016;232:131-141. doi: 10.1016/j.jmatprotec.2016.01.028
  147. Jablonská E, Vojtěch D, Fousová M, et al. Influence of surface pre-treatment on the cytocompatibility of a novel biodegradable ZnMg alloy. Mater Sci Eng C Mater Biol Appl. 2016;68:198-204. doi: 10.1016/j.msec.2016.05.114
  148. Yuan W, Xia D, Wu S, et al. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioact Mater. 2022;7:192-216. doi: 10.1016/j.bioactmat.2021.05.018
  149. Yuan W, Xia D, Zheng Y, et al. Controllable biodegradation and enhanced osseointegration of ZrO2-nanofilm coated Zn-Li alloy: In vitro and in vivo studies. Acta Biomater. 2020;105:290-303. doi: 10.1016/j.actbio.2020.01.022
  150. Bakhsheshi-Rad HR, Hamzah E, Low HT, et al. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities. Mater Sci Eng C Mater Biol Appl. 2017;73:215-219.doi: 10.1016/j.msec.2016.11.138
  151. Bowen PK, Seitz JM, Guillory RJ, 2nd, et al. Evaluation of wrought Zn-Al alloys (1, 3, and 5 wt % Al) through mechanical and in vivo testing for stent applications. J Biomed Mater Res B Appl Biomater. 2018;106(1):245-258. doi: 10.1002/jbm.b.33850
  152. Lin J, Tong X, Shi Z, et al. A biodegradable Zn-1Cu- 0.1Ti alloy with antibacterial properties for orthopedic applications. Acta Biomater. 2020;106:410-427. doi: 10.1016/j.actbio.2020.02.017
  153. Prakash C, Singh S, Verma K, Sidhu SS, Singh S. Synthesis and characterization of Mg-Zn-Mn-HA composite by spark plasma sintering process for orthopedic applications. Vacuum. 2018;155:578-584. doi: 10.1016/j.vacuum.2018.06.063
  154. Wen P, Voshage M, Jauer L, et al. Laser additive manufacturing of Zn metal parts for biodegradable applications: processing, formation quality and mechanical properties. Mater Des. 2018;155:36-45. doi: 10.1016/j.matdes.2018.05.057
  155. Zhao D, Han C, Peng B, et al. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold. Acta Biomater. 2022;153:614-629. doi: 10.1016/j.actbio.2022.09.047
  156. Campos Becerra LH, Hernandez Rodriguez MAL, Esquivel Solis H, Lesso Arroyo R, Torres Castro A. Bio-inspired biomaterial Mg-Zn-Ca: a review of the main mechanical and biological properties of Mg-based alloys. Biomed Phys Eng Express. 2020;6(4):042001. doi: 10.1088/2057-1976/ab9426
  157. Zhang S, Tang C, Feng J, et al. The in vivo and in vitro corrosion behavior of MgO/Mg-Zn-Ca composite with different Zn/ Ca ratio. Front Bioeng Biotechnol. 2023;11:1222722. doi: 10.3389/fbioe.2023.1222722
  158. Mostaed E, Sikora-Jasinska M, Mostaed A, et al. Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation. J Mech Behav Biomed Mater. 2016;60:581-602. doi: 10.1016/j.jmbbm.2016.03.018
  159. Gong H, Wang K, Strich R, Zhou JG. In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy. J Biomed Mater Res B Appl Biomater. 2015;103(8):1632-1640. doi: 10.1002/jbm.b.33341
  160. Vojtěch D, Kubásek J, Serák J, Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7(9): 3515-3522. doi: 10.1016/j.actbio.2011.05.008
  161. Katarivas Levy G, Leon A, Kafri A, et al. Evaluation of biodegradable Zn-1%Mg and Zn-1%Mg-0.5%Ca alloys for biomedical applications. J Mater Sci Mater Med. 2017;28(11):174. doi: 10.1007/s10856-017-5973-9
  162. Guleryuz LF, Ipek R, Arıtman I, Karaoglu S. Microstructure and mechanical properties of Zn-Mg alloys as implant materials manufactured by powder metallurgy method. AIP Conf. Proc. 2017;1809:020020. doi: 10.1063/1.4975435
  163. Livingstone C. Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract. 2015;30(3):371-382. doi: 10.1177/0884533615570376
  164. Manzoor F, Golbang A, Dixon D, et al. 3D printed strontium and zinc doped hydroxyapatite loaded PEEK for craniomaxillofacial implants. Polymers. 2022;14(7). doi: 10.3390/polym14071376
  165. Milivojevic M, Chen K, Radovanovic Z, et al. Enhanced antimicrobial properties and bioactivity of 3D-printed titanium scaffolds by multilayer bioceramic coating for large bone defects. Biomed Mater. 2023;18(6). doi: 10.1088/1748-605X/ad02d2
  166. Pound BG. The use of electrochemical techniques to evaluate the corrosion performance of metallic biomedical materials and devices. J Biomed Mater Res B Appl Biomater. 2019;107(4):1189-1198. doi: 10.1002/jbm.b.34212
  167. Gotman I. Characteristics of metals used in implants. J Endourol. 1997;11(6):383-389. doi: 10.1089/end.1997.11.383
  168. Seitz JM, Durisin M, Goldman J, Drelich JW. Recent advances in biodegradable metals for medical sutures: a critical review. Adv Healthc Mater. 2015;4(13):1915-1936. doi: 10.1002/adhm.201500189
  169. Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Rep. 2015;87:1-57. doi: 10.1016/j.mser.2014.10.001
  170. Kraus T, Moszner F, Fischerauer S, et al. Biodegradable Fe-based alloys for use in osteosynthesis: outcome of an in vivo study after 52 weeks. Acta Biomater. 2014;10(7):3346-3353. doi: 10.1016/j.actbio.2014.04.007
  171. Hermawan H, Dubé D, Mantovani D. Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. J Biomed Mater Res A. 2010;93(1):1-11. doi: 10.1002/jbm.a.32224
  172. Schinhammer M, Hanzi AC, Loffler JF, Uggowitzer PJ. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 2010;6(5):1705-1713. doi: 10.1016/j.actbio.2009.07.039
  173. Hermawan H, Dubé D, Mantovani D. Development of degradable Fe-35Mn alloy for biomedical application. Adv Mater Res. 2006;15-17:107-112. doi: 10.4028/
  174. Guo Y, Zhao M-C, Xie B, et al. In vitro corrosion resistance and antibacterial performance of novel Fe–xCu biomedical alloys prepared by selective laser melting. Adv Eng Mater. 2021;23(4). doi: 10.1002/adem.202001000
  175. Schinhammer M, Hänzi AC, Löffler JF, Uggowitzer PJ. Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 2010;6(5):1705-1713. doi: 10.1016/j.actbio.2009.07.039
  176. Mandal S, Kishore V, Bose M, Nandi SK, Roy M. In vitro and in vivo degradability, biocompatibility and antimicrobial characteristics of Cu added iron-manganese alloy. J Mater Sci Technol. 2021;84:159-172. doi: 10.1016/j.jmst.2020.12.029
  177. Huang T, Cheng J, Bian D, Zheng Y. Fe-Au and Fe-Ag composites as candidates for biodegradable stent materials. J Biomed Mater Res B Appl Biomater. 2016;104(2):225-240. doi: 10.1002/jbm.b.33389
  178. Schinhammer M, Gerber I, Hänzi AC, Uggowitzer PJ. On the cytocompatibility of biodegradable Fe-based alloys. Mater Sci Eng C Mater Biol Appl. 2013;33(2):782-789. doi: 10.1016/j.msec.2012.11.002
  179. Kupková M, Kupka M, Morovská Turoňová A, Oriňaková R. Microstructural, mechanical and corrosion characteristics of degradable PM biomaterials made from copper-coated iron powders. Materials. 2022;15(5). doi: 10.3390/ma15051913
  180. Scarcello E, Lison D. Are Fe-based stenting materials biocompatible? a critical review of in vitro and in vivo studies. J Funct Biomater. 2019;11(1). doi: 10.3390/jfb11010002
  181. Bondareva JV, Dubinin ON, Kuzminova YO, et al. Biodegradable iron-silicone implants produced by additive manufacturing. Biomed Mater. 2022;17(3). doi: 10.1088/1748-605X/ac6124
  182. Hong D, Chou DT, Velikokhatnyi OI, et al. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater. 2016;45:375-386. doi: 10.1016/j.actbio.2016.08.032
  183. Nie Y, Chen G, Peng H, et al. In vitro and 48 weeks in vivo performances of 3D printed porous Fe-30Mn biodegradable scaffolds. Acta Biomater. 2021;121:724-740. doi: 10.1016/j.actbio.2020.12.028
  184. Shuai C, Zan J, Qi F, et al. nMgO-incorporated PLLA bone scaffolds: enhanced crystallinity and neutralized acidic products. Mater Des. 2019;174. doi: 10.1016/j.matdes.2019.107801
  185. Anita Lett J, Sagadevan S, Léonard E, et al. Bone tissue engineering potentials of 3D printed magnesium-hydroxyapatite in polylactic acid composite scaffolds. Artif Organs. 2021;45(12):1501-1512. doi: 10.1111/aor.14045
  186. Wei X, Zhou W, Tang Z, et al. Magnesium surface-activated 3D printed porous PEEK scaffolds for in vivo osseointegration by promoting angiogenesis and osteogenesis. Bioact Mater. 2023;20:16-28. doi: 10.1016/j.bioactmat.2022.05.011
  187. Liu X, Li X, Huo S, et al. Magnesium bioactive glass hybrid functionalized polyetheretherketone with immunomodulatory function to guide cell fate and bone regeneration. Colloids Surf B. 2023;230:113523. doi: 10.1016/j.colsurfb.2023.113523
  188. Xu D, Xu Z, Cheng L, et al. Improvement of the mechanical properties and osteogenic activity of 3D-printed polylactic acid porous scaffolds by nano-hydroxyapatite and nano-magnesium oxide. Heliyon. 2022;8(6):e09748. doi: 10.1016/j.heliyon.2022.e09748
  189. Lai Y, Li Y, Cao H, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials. 2019;197:207-219. doi: 10.1016/j.biomaterials.2019.01.013
  190. Eugen G, Claus M, Anna-Maria S, et al. Degradation of 3D-printed magnesium phosphate ceramics in vitro and a prognosis on their bone regeneration potential. Bioact Mater. 2023;19:376-391. doi: 10.1016/j.bioactmat.2022.04.015
  191. Wang D, Liu L, Deng G, et al. Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion. Virtual Phys Prototyp. 2022;17(2): 329-365. doi: 10.1080/17452759.2022.2028343
  192. Huang S, Wang B, Zhang X, et al. High-purity weight-bearing magnesium screw: translational application in the healing of femoral neck fracture. Biomaterials. 2020;238: 119829. doi: 10.1016/j.biomaterials.2020.119829
  193. Rossig C, Angrisani N, Helmecke P, et al. In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model. Acta Biomater. 2015;25:369-383. doi: 10.1016/j.actbio.2015.07.025
  194. Jahn K, Saito H, Taipaleenmaki H, et al. Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice. Acta Biomater. 2016;36:350-360. doi: 10.1016/j.actbio.2016.03.041
  195. Ali W, Mehboob A, Han M-G, Chang S-H. Experimental study on degradation of mechanical properties of biodegradable magnesium alloy (AZ31) wires/poly(lactic acid) composite for bone fracture healing applications. Compos Struct. 2019;210:914-921. doi: 10.1016/j.compstruct.2018.12.011
  196. Ran Z, Wang Y, Li J, et al. 3D-printed biodegradable magnesium alloy scaffolds with zoledronic acid-loaded ceramic composite coating promote osteoporotic bone defect repair. Int J Bioprint. 2023;9(5):769. doi: 10.18063/ijb.769
  197. Acar B, Kose O, Turan A, et al. Comparison of bioabsorbable magnesium versus titanium screw fixation for modified distal chevron osteotomy in hallux valgus. BioMed Res Int. 2018;2018:5242806. doi: 10.1155/2018/5242806
  198. Chen L, Lin Z, Wang M, et al. Treatment of trauma-induced femoral head necrosis with biodegradable pure Mg screw-fixed pedicle iliac bone flap. J Orthop Transl. 2019;17:133-137. doi: 10.1016/
  199. Lee J-W, Han H-S, Han K-J, et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci. 2016;113(3): 716-721. doi: doi:10.1073/pnas.1518238113
  200. Zhao D, Huang S, Lu F, et al. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials. 2016;81:84-92. doi: 10.1016/j.biomaterials.2015.11.038
  201. Zhao D, Witte F, Lu F, et al. Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials. 2017;112:287-302. doi: 10.1016/j.biomaterials.2016.10.017
  202. Mou H, Qu H, Li B, et al. Can “domino” therapy effectively treat the infection around the prosth esis after the limb salvage surgery of bone tumor? - A study of sequential therapy. Int J Surg. 2022;101:106630. doi: 10.1016/j.ijsu.2022.106630
  203. Hill D, Williamson T, Lai CY, et al. Automated elaborate resection planning for bone tumor surgery. Int J Comput Assist Radiol Surg. 2023;18(3):553-564. doi: 10.1007/s11548-022-02763-4
  204. Park JW, Kang HG, Lim KM, et al. Bone tumor resection guide using three-dimensional printing for limb salvage surgery. J Surg Oncol. 2018;118(6):898-905. doi: 10.1002/jso.25236
  205. Amukarimi S, Mozafari M. Biodegradable magnesium-based biomaterials: an overview of challenges and opportunities. MedComm. 2020;2(2):123-144. doi: 10.1002/mco2.59
  206. Zhang X, Li X-W, Li J-G, Sun X-D. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering. Mater Sci Eng C. 2014;42:362-367. doi: 10.1016/j.msec.2014.05.044
  207. Disegi JA, Eschbach L. Stainless steel in bone surgery. Injury. 2000;31(Suppl 4):2-6. doi: 10.1016/s0020-1383(00)80015-7
  208. Sing SL, An J, Yeong WY, Wiria FE. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res. 2016;34(3):369-385. doi: 10.1002/jor.23075
  209. Witte F, Reifenrath J, Müller PP, et al. Cartilage repair on magnesium scaffolds used as a subchondral bone replacement. Materwiss Werksttech. 2006;37(6):504-508. doi: 10.1002/mawe.200600027
  210. Newman AP. Articular cartilage repair. Am J Sports Med. 1998;26(2):309-324. doi: 10.1177/03635465980260022701
  211. Coutts RD, Healey RM, Ostrander R, et al. Matrices for cartilage repair. Clin Orthop Relat Res. 2001;391:S271-279. doi: 10.1097/00003086-200110001-00025
  212. Zhang Y, Pizzute T, Pei M. Anti-inflammatory strategies in cartilage repair. Tissue Eng Part B Rev. 2014;20(6): 655-668. doi: 10.1089/ten.TEB.2014.0014
  213. Xu HH, Wang P, Wang L, et al. Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 2017;5:17056. doi: 10.1038/boneres.2017.56
  214. Gelli R, Ridi F. An overview of magnesium-phosphate-based cements as bone repair materials. J Funct Biomater. 2023;14(8). doi: 10.3390/jfb14080424
  215. Wong HM, Wu S, Chu PK, et al. Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation. Biomaterials. 2013;34(29):7016-7032. doi: 10.1016/j.biomaterials.2013.05.062
  216. Zhang X, Mao J, Zhou Y, Ji F, Chen X. Mechanical properties and osteoblast proliferation of complex porous dental implants filled with magnesium alloy based on 3D printing. J Biomater Appl. 2021;35(10):1275-1283. doi: 10.1177/0885328220957902
  217. Salah M, Tayebi L, Moharamzadeh K, Naini FB. Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg. 2020;42(1):18. doi: 10.1186/s40902-020-00263-6
  218. Zafar S, Siddiqi A. Biological responses to pediatric stainless steel crowns. J Oral Sci. 2020;62(3):245-249. doi: 10.2334/josnusd.20-0083
  219. Leal SC, Takeshita EM. Pediatric restorative dentistry. Pediatr Dent. 2017;39(6):312-324.
Conflict of interest
The authors declare no conflicts of interest.
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing