AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.2306
Cite this article
Journal Browser
Volume | Year
News and Announcements
View All

Parametric design and performance study of continuous gradient triply periodic minimal surface bone scaffold

Shuangyu Liu1 Jinlong Feng1 Fulong Zhang1* Weibo Jiang2 Tatiana Mikhailovna Vasilieva3 Ping Lu4 Sen Lu1
Show Less
1 College of Mechanical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
2 Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, Jilin, China
3 Joint Institute for High Temperatures of Russian Academy of Sciences, Izhorskaya str., 13, Bd.2, Moscow, Russia
4 College of Automotive Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
Submitted: 24 November 2023 | Accepted: 19 January 2024 | Published: 7 February 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

Continuous gradient triply periodic minimal surface (TPMS) porous structure has been proven to be one of the most suitable structures for bone implants due to their excellent mechanical properties and high porosity. This study establishes a parametric modeling method for continuous gradient TPMS structures and optimizes the TPMS porous structure with a continuous gradient change in porosity. Ti-6Al-4V continuous gradient TPMS porous structures were prepared using powder bed fusion (PBF). The mechanical properties and permeability of the continuous gradient TPMS porous structure were studied. The results indicate that the porosity control parameter C for gradient continuous change follows a linear function, with the porosity increasing linearly within the specified range of values. The influence of the periodic parameter ω on the mechanical properties and permeability of different types of TPMS structures varies. The Gyroid continuous gradient structure aligns more closely with the mechanical properties and permeability of bone scaffolds. Furthermore, a TPMS continuous gradient porous structure that is more suitable for trabecular bone implants was obtained through topology optimization design. A bone implant model and object suitable for human trabecular bone were designed and printed, providing technical support for subsequent performance testing and application research of bone implants.

Triply periodic minimal surface
Additive manufacturing
Bone scaffold
Mechanical properties and permeability
This work was supported by the funding for School- Level Research Projects of the Yancheng Institute of Technology (No. XJR2020033) and the Innovative and Entrepreneurial Talent Foundation of Jiangsu Province (No. JSSCRC2021545).
  1. Camacho-Alonso F, Tudela-Mulero MR, Buendía AJ, Navarro JA, Pérez-Sayáns M, Mercado-Díaz AM. Bone regeneration in critical-sized mandibular symphysis defects using bioceramics with or without bone marrow mesenchymal stem cells in healthy, diabetic, osteoporotic, and diabetic-osteoporotic rats. Dent Mater. 2022;38(8):1283-1300 doi: 10.1016/
  2. Gao C, Sow WT, Wang Y, et al. Hydrogel composite scaffolds with an attenuated immunogenicity component for bone tissue engineering applications. J Mater Chem B. 2021;9(8):2033-2041. doi: 10.1039/d0tb02588g
  3. Cui FZ, Zhang Y, Wen HB, Zhu XD. Microstructural evolution in external callus of human long bone. Mater Sci Eng C. 2000;11(1):27-33. doi: 10.1016/S0928-4931(00)00137-5
  4. Yang Y, Xu T, Zhang Q, Piao Y, Bei HP, Zhao X. Biomimetic, stiff, and adhesive periosteum with osteogenic–angiogenic coupling effect for bone regeneration. Small. 2021;17(14): 2006598. doi: 10.1002/smll.202006598
  5. Shimoda M, Hikasa M, Ali MA. Micropore shape optimization of porous laminated shell structures. Addit Manuf. 2023;69:103530. doi: 10.1016/j.addma.2023.103530
  6. Zheng X, Guo X, Watanabe I. A mathematically defined 3D auxetic metamaterial with tunable mechanical and conduction properties. Mater Des. 2021;198:109313. doi: 10.1016/j.matdes.2020.109313
  7. Ma S, Tang Q, Han X, et al. Manufacturability, mechanical properties, mass-transport properties and biocompatibility of triply periodic minimal surface (TPMS) porous scaffolds fabricated by selective laser melting. Mater Des. 2020;195:109034. doi: 10.1016/j.matdes.2020.109034
  8. Hu C, Lin H. Heterogeneous porous scaffold generation using trivariate B-spline solids and triply periodic minimal surfaces. Graph Models. 2021;115:101105. doi: 10.1016/j.gmod.2021.101105
  9. Li Y, Mao Q, Yin J, Wang Y, Fu J, Huang Y. Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Addit Manuf. 2021;37:101716. doi: 10.1016/j.addma.2020.101716
  10. Zhang Z-y, Zhang H, Zhang J, Qin S-k, Duan M-d. Study on flow field characteristics of TPMS porous materials. J Braz Soc Mech Sci Eng. 2023;45(4):188. doi: 10.1007/s40430-023-04113-0
  11. Qiu N, Wan Y, Shen Y, Fang J. Experimental and numerical studies on mechanical properties of TPMS structures. Int J Mech Sci. 2024;261:108657. doi: 10.1016/j.ijmecsci.2023.108657
  12. Chen H, Han Q, Wang C, Liu Y, Chen B, Wang J. Porous scaffold design for additive manufacturing in orthopedics: a review. Front Bioeng Biotechnol. 2020;8:609. doi: 10.3389/fbioe.2020.00609
  13. Jones A, Leary M, Bateman S, Easton M. Parametric design and evaluation of TPMS-like cellular solids. Mater Des. 2022;221:110908. doi: 10.1016/j.matdes.2022.110908
  14. Yang W, An J, Chua CK, Zhou K. Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography. Virtual Phys Prototyp. 2020;15(2):242-249. doi: 10.1080/17452759.2020.1740747
  15. Hu J, Wang S, Li B, Li F, Luo Z, Liu L. Efficient representation and optimization for TPMS-based porous structures. IEEE Trans Vis Comput Graph. 2022;28(7): 2615-2627. doi: 10.1109/TVCG.2020.3037697
  16. Sychov MM, Lebedev LA, Dyachenko SV, Nefedova LA. Mechanical properties of energy-absorbing structures with triply periodic minimal surface topology. Acta Astronaut. 2018;150:81-84. doi: 10.1016/j.actaastro.2017.12.034
  17. Yan C, Hao L, Hussein A, Bubb SL, Young P, Raymont D. Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J Mater Process Technol. 2014;214(4):856-864. doi: 10.1016/j.jmatprotec.2013.12.004
  18. Yan C, Hao L, Hussein A, Young P. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J Mech Behav Biomed Mater. 2015;51:61-73. doi: 10.1016/j.jmbbm.2015.06.024
  19. Yan C, Hao L, Hussein A, Young P, Huang J, Zhu W. Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering. Mater Sci Eng A. 2015;628:238-246. doi: 10.1016/j.msea.2015.01.063
  20. Nian Y, Wan S, Avcar M, Yue R, Li M. 3D printing functionally graded metamaterial structure: design, fabrication, reinforcement, optimization. Int J Mech Sci. 2023;258:108580. doi: 10.1016/j.ijmecsci.2023.108580
  21. Murshid SA. Bone permeability and mechanotransduction: some current insights into the function of the lacunar-canalicular network. Tissue Cell. 2022;75:101730. doi: 10.1016/j.tice.2022.101730
  22. Akbar I, Prakoso A, Astrada Y, et al. Permeability study of functionally graded scaffold based on morphology of cancellous bone. Malays J Med Health Sci. 2021;17(SUPP13):60-66.
  23. Zhang X, Jiang L, Yan X, Wang Z, Li X, Fang G. Revealing the apparent and local mechanical properties of heterogeneous lattice: a multi-scale study of functionally graded scaffold. Virtual Phys Prototyp. 2023;18(1):e2120406. doi: 10.1080/17452759.2022.2120406
  24. Daish C, Blanchard R, Pirogova E, Harvie DJE, Pivonka P. Numerical calculation of permeability of periodic porous materials: application to periodic arrays of spheres and 3D scaffold microstructures. Int J Numer Methods Eng. 2019;118(13):783-803. doi: 10.1002/nme.6037
  25. Pennella F, Cerino G, Massai D, et al. A survey of methods for the evaluation of tissue engineering scaffold permeability. Ann Biomed Eng. 2013;41(10):2027-2041. doi: 10.1007/s10439-013-0815-5
  26. Montazerian H, Davoodi E, Asadi-Eydivand M, Kadkhodapour J, Solati-Hashjin M. Porous scaffold internal architecture design based on minimal surfaces: a compromise between permeability and elastic properties. Mater Des. 2017;126:98-114. doi: 10.1016/j.matdes.2017.04.009
  27. Ma S, Tang Q, Feng Q, Song J, Han X, Guo F. Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting. J Mech Behav Biomed Mater. 2019;93:158-169 doi: 10.1016/j.jmbbm.2019.01.023
  28. Asbai-Ghoudan R, Ruiz de Galarreta S, Rodriguez-Florez N. Analytical model for the prediction of permeability of triply periodic minimal surfaces. J Mech Behav BiomedMater. 2021;124:104804. doi: 10.1016/j.jmbbm.2021.104804
  29. Montazerian H, Mohamed MGA, Montazeri MM, et al. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Acta Biomater. 2019;96:149-160. doi: 10.1016/j.actbio.2019.06.040
  30. Varley MC, Neelakantan S, Clyne TW, Dean J, Brooks RA, Markaki AE. Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states. Acta Biomater. 2016;33:166-175. doi: 10.1016/j.actbio.2016.01.041
  31. Al-Ketan O, Abu Al-Rub RK. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv Eng Mater. 2019;21(10):1900524. doi: 10.1002/adem.201900524
  32. Rajagopalan S, Robb RA. Schwarz meets Schwann: Design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Med Image Anal. 2006;10(5):693-712. doi: 10.1016/
  33. Yan X, Rao C, Lu L, Sharf A, Zhao H, Chen B. Strong 3D printing by TPMS injection. IEEE Trans Vis Comput Graph. 2020;26(10):3037-3050. doi: 10.1109/TVCG.2019.2914044
  34. Hu B, Wang Z, Du C, et al. Multi-objective Bayesian optimization accelerated design of TPMS structures. Int J Mech Sci. 2023;244:108085. doi: 10.1016/j.ijmecsci.2022.108085
  35. Wang G, Shen L, Zhao J, et al. Design and compressive behavior of controllable irregular porous scaffolds: based on voronoi-tessellation and for additive manufacturing. ACS Biomater Sci Eng. 2018;4(2):719-727. doi: 10.1021/acsbiomaterials.7b00916
  36. Al-Ketan O, Rowshan R, Abu Al-Rub RK. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit Manuf. 2018;19:167-183. doi: 10.1016/j.addma.2017.12.006
  37. Ali D, Ozalp M, Blanquer SBG, Onel S. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: a CFD analysis. Eur J Mech. 2020;79:376-385. doi: 10.1016/j.euromechflu.2019.09.015
  38. Bezsonov E, Kashirskikh D, Glanz V, Orekhov A. Sialidase-induced desialylation of blood plasma low-density lipoproteins in mice. Atherosclerosis. 2023;379:S72. doi: 10.1016/j.atherosclerosis.2023.06.279
  39. Pires T, Santos J, Ruben RB, Gouveia BP, Castro APG, Fernandes PR. Numerical-experimental analysis of the permeability-porosity relationship in triply periodic minimal surfaces scaffolds. J Biomech. 2021;117:110263. doi: 10.1016/j.jbiomech.2021.110263
  40. Ashman RB, Rho JY. Elastic modulus of trabecular bone material. J Biomech. 1988;21(3):177-181. doi: 10.1016/0021-9290(88)90167-4
  41. Pawlikowski M, Skalski K, Bańczerowski J, Makuch A, Jankowski K. Stress–strain characteristic of human trabecular bone based on depth sensing indentation measurements. Biocybern Biomed Eng. 2017;37(2):272-280. doi: 10.1016/j.bbe.2017.01.002
  42. Agnelli J, Colombo M, Morroni M, Bignotti F, Baldi F. Mechanical behaviour of cancellous bone tissues used for the manufacturing of heterologous bone grafts. Biomed Eng Adv. 2023;5:100073. doi: 10.1016/j.bea.2023.100073
  43. Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83: 127-141. doi: 10.1016/j.biomaterials.2016.01.012
Conflict of interest
The authors declare no conflicts of interest.
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing