Parametric design and performance study of continuous gradient triply periodic minimal surface bone scaffold
Continuous gradient triply periodic minimal surface (TPMS) porous structure has been proven to be one of the most suitable structures for bone implants due to their excellent mechanical properties and high porosity. This study establishes a parametric modeling method for continuous gradient TPMS structures and optimizes the TPMS porous structure with a continuous gradient change in porosity. Ti-6Al-4V continuous gradient TPMS porous structures were prepared using powder bed fusion (PBF). The mechanical properties and permeability of the continuous gradient TPMS porous structure were studied. The results indicate that the porosity control parameter C for gradient continuous change follows a linear function, with the porosity increasing linearly within the specified range of values. The influence of the periodic parameter ω on the mechanical properties and permeability of different types of TPMS structures varies. The Gyroid continuous gradient structure aligns more closely with the mechanical properties and permeability of bone scaffolds. Furthermore, a TPMS continuous gradient porous structure that is more suitable for trabecular bone implants was obtained through topology optimization design. A bone implant model and object suitable for human trabecular bone were designed and printed, providing technical support for subsequent performance testing and application research of bone implants.
- Camacho-Alonso F, Tudela-Mulero MR, Buendía AJ, Navarro JA, Pérez-Sayáns M, Mercado-Díaz AM. Bone regeneration in critical-sized mandibular symphysis defects using bioceramics with or without bone marrow mesenchymal stem cells in healthy, diabetic, osteoporotic, and diabetic-osteoporotic rats. Dent Mater. 2022;38(8):1283-1300 doi: 10.1016/j.dental.2022.06.019
- Gao C, Sow WT, Wang Y, et al. Hydrogel composite scaffolds with an attenuated immunogenicity component for bone tissue engineering applications. J Mater Chem B. 2021;9(8):2033-2041. doi: 10.1039/d0tb02588g
- Cui FZ, Zhang Y, Wen HB, Zhu XD. Microstructural evolution in external callus of human long bone. Mater Sci Eng C. 2000;11(1):27-33. doi: 10.1016/S0928-4931(00)00137-5
- Yang Y, Xu T, Zhang Q, Piao Y, Bei HP, Zhao X. Biomimetic, stiff, and adhesive periosteum with osteogenic–angiogenic coupling effect for bone regeneration. Small. 2021;17(14): 2006598. doi: 10.1002/smll.202006598
- Shimoda M, Hikasa M, Ali MA. Micropore shape optimization of porous laminated shell structures. Addit Manuf. 2023;69:103530. doi: 10.1016/j.addma.2023.103530
- Zheng X, Guo X, Watanabe I. A mathematically defined 3D auxetic metamaterial with tunable mechanical and conduction properties. Mater Des. 2021;198:109313. doi: 10.1016/j.matdes.2020.109313
- Ma S, Tang Q, Han X, et al. Manufacturability, mechanical properties, mass-transport properties and biocompatibility of triply periodic minimal surface (TPMS) porous scaffolds fabricated by selective laser melting. Mater Des. 2020;195:109034. doi: 10.1016/j.matdes.2020.109034
- Hu C, Lin H. Heterogeneous porous scaffold generation using trivariate B-spline solids and triply periodic minimal surfaces. Graph Models. 2021;115:101105. doi: 10.1016/j.gmod.2021.101105
- Li Y, Mao Q, Yin J, Wang Y, Fu J, Huang Y. Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Addit Manuf. 2021;37:101716. doi: 10.1016/j.addma.2020.101716
- Zhang Z-y, Zhang H, Zhang J, Qin S-k, Duan M-d. Study on flow field characteristics of TPMS porous materials. J Braz Soc Mech Sci Eng. 2023;45(4):188. doi: 10.1007/s40430-023-04113-0
- Qiu N, Wan Y, Shen Y, Fang J. Experimental and numerical studies on mechanical properties of TPMS structures. Int J Mech Sci. 2024;261:108657. doi: 10.1016/j.ijmecsci.2023.108657
- Chen H, Han Q, Wang C, Liu Y, Chen B, Wang J. Porous scaffold design for additive manufacturing in orthopedics: a review. Front Bioeng Biotechnol. 2020;8:609. doi: 10.3389/fbioe.2020.00609
- Jones A, Leary M, Bateman S, Easton M. Parametric design and evaluation of TPMS-like cellular solids. Mater Des. 2022;221:110908. doi: 10.1016/j.matdes.2022.110908
- Yang W, An J, Chua CK, Zhou K. Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography. Virtual Phys Prototyp. 2020;15(2):242-249. doi: 10.1080/17452759.2020.1740747
- Hu J, Wang S, Li B, Li F, Luo Z, Liu L. Efficient representation and optimization for TPMS-based porous structures. IEEE Trans Vis Comput Graph. 2022;28(7): 2615-2627. doi: 10.1109/TVCG.2020.3037697
- Sychov MM, Lebedev LA, Dyachenko SV, Nefedova LA. Mechanical properties of energy-absorbing structures with triply periodic minimal surface topology. Acta Astronaut. 2018;150:81-84. doi: 10.1016/j.actaastro.2017.12.034
- Yan C, Hao L, Hussein A, Bubb SL, Young P, Raymont D. Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J Mater Process Technol. 2014;214(4):856-864. doi: 10.1016/j.jmatprotec.2013.12.004
- Yan C, Hao L, Hussein A, Young P. Ti–6Al–4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J Mech Behav Biomed Mater. 2015;51:61-73. doi: 10.1016/j.jmbbm.2015.06.024
- Yan C, Hao L, Hussein A, Young P, Huang J, Zhu W. Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering. Mater Sci Eng A. 2015;628:238-246. doi: 10.1016/j.msea.2015.01.063
- Nian Y, Wan S, Avcar M, Yue R, Li M. 3D printing functionally graded metamaterial structure: design, fabrication, reinforcement, optimization. Int J Mech Sci. 2023;258:108580. doi: 10.1016/j.ijmecsci.2023.108580
- Murshid SA. Bone permeability and mechanotransduction: some current insights into the function of the lacunar-canalicular network. Tissue Cell. 2022;75:101730. doi: 10.1016/j.tice.2022.101730
- Akbar I, Prakoso A, Astrada Y, et al. Permeability study of functionally graded scaffold based on morphology of cancellous bone. Malays J Med Health Sci. 2021;17(SUPP13):60-66.
- Zhang X, Jiang L, Yan X, Wang Z, Li X, Fang G. Revealing the apparent and local mechanical properties of heterogeneous lattice: a multi-scale study of functionally graded scaffold. Virtual Phys Prototyp. 2023;18(1):e2120406. doi: 10.1080/17452759.2022.2120406
- Daish C, Blanchard R, Pirogova E, Harvie DJE, Pivonka P. Numerical calculation of permeability of periodic porous materials: application to periodic arrays of spheres and 3D scaffold microstructures. Int J Numer Methods Eng. 2019;118(13):783-803. doi: 10.1002/nme.6037
- Pennella F, Cerino G, Massai D, et al. A survey of methods for the evaluation of tissue engineering scaffold permeability. Ann Biomed Eng. 2013;41(10):2027-2041. doi: 10.1007/s10439-013-0815-5
- Montazerian H, Davoodi E, Asadi-Eydivand M, Kadkhodapour J, Solati-Hashjin M. Porous scaffold internal architecture design based on minimal surfaces: a compromise between permeability and elastic properties. Mater Des. 2017;126:98-114. doi: 10.1016/j.matdes.2017.04.009
- Ma S, Tang Q, Feng Q, Song J, Han X, Guo F. Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting. J Mech Behav Biomed Mater. 2019;93:158-169 doi: 10.1016/j.jmbbm.2019.01.023
- Asbai-Ghoudan R, Ruiz de Galarreta S, Rodriguez-Florez N. Analytical model for the prediction of permeability of triply periodic minimal surfaces. J Mech Behav BiomedMater. 2021;124:104804. doi: 10.1016/j.jmbbm.2021.104804
- Montazerian H, Mohamed MGA, Montazeri MM, et al. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Acta Biomater. 2019;96:149-160. doi: 10.1016/j.actbio.2019.06.040
- Varley MC, Neelakantan S, Clyne TW, Dean J, Brooks RA, Markaki AE. Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states. Acta Biomater. 2016;33:166-175. doi: 10.1016/j.actbio.2016.01.041
- Al-Ketan O, Abu Al-Rub RK. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv Eng Mater. 2019;21(10):1900524. doi: 10.1002/adem.201900524
- Rajagopalan S, Robb RA. Schwarz meets Schwann: Design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Med Image Anal. 2006;10(5):693-712. doi: 10.1016/j.media.2006.06.001
- Yan X, Rao C, Lu L, Sharf A, Zhao H, Chen B. Strong 3D printing by TPMS injection. IEEE Trans Vis Comput Graph. 2020;26(10):3037-3050. doi: 10.1109/TVCG.2019.2914044
- Hu B, Wang Z, Du C, et al. Multi-objective Bayesian optimization accelerated design of TPMS structures. Int J Mech Sci. 2023;244:108085. doi: 10.1016/j.ijmecsci.2022.108085
- Wang G, Shen L, Zhao J, et al. Design and compressive behavior of controllable irregular porous scaffolds: based on voronoi-tessellation and for additive manufacturing. ACS Biomater Sci Eng. 2018;4(2):719-727. doi: 10.1021/acsbiomaterials.7b00916
- Al-Ketan O, Rowshan R, Abu Al-Rub RK. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit Manuf. 2018;19:167-183. doi: 10.1016/j.addma.2017.12.006
- Ali D, Ozalp M, Blanquer SBG, Onel S. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: a CFD analysis. Eur J Mech. 2020;79:376-385. doi: 10.1016/j.euromechflu.2019.09.015
- Bezsonov E, Kashirskikh D, Glanz V, Orekhov A. Sialidase-induced desialylation of blood plasma low-density lipoproteins in mice. Atherosclerosis. 2023;379:S72. doi: 10.1016/j.atherosclerosis.2023.06.279
- Pires T, Santos J, Ruben RB, Gouveia BP, Castro APG, Fernandes PR. Numerical-experimental analysis of the permeability-porosity relationship in triply periodic minimal surfaces scaffolds. J Biomech. 2021;117:110263. doi: 10.1016/j.jbiomech.2021.110263
- Ashman RB, Rho JY. Elastic modulus of trabecular bone material. J Biomech. 1988;21(3):177-181. doi: 10.1016/0021-9290(88)90167-4
- Pawlikowski M, Skalski K, Bańczerowski J, Makuch A, Jankowski K. Stress–strain characteristic of human trabecular bone based on depth sensing indentation measurements. Biocybern Biomed Eng. 2017;37(2):272-280. doi: 10.1016/j.bbe.2017.01.002
- Agnelli J, Colombo M, Morroni M, Bignotti F, Baldi F. Mechanical behaviour of cancellous bone tissues used for the manufacturing of heterologous bone grafts. Biomed Eng Adv. 2023;5:100073. doi: 10.1016/j.bea.2023.100073
- Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83: 127-141. doi: 10.1016/j.biomaterials.2016.01.012