AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.2135
Cite this article
247
Download
3532
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Optimizing cell deposition for inkjet-based bioprinting

Wei Long Ng1* Viktor Shkolnikov2*
Show Less
1 Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
2 HP Inc., 1501 Page Mill Road, Palo Alto, California, United States of America
IJB 2024, 10(2), 2135 https://doi.org/10.36922/ijb.2135
Submitted: 29 October 2023 | Accepted: 2 January 2024 | Published: 5 February 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Although inkjet-based bioprinting enables precise drop-on-demand cell deposition within three-dimensional (3D) tissue constructs and facilitates critical cell–cell and cell–matrix interactions, it faces challenges such as poor cell homogeneity and low cell viability. To date, there is a lack of comprehensive review papers addressing the optimization of cell deposition in inkjet-based bioprinting. This review aims to fill that gap by providing an overview of various critical aspects in bioprinting, ranging from bio-ink properties to the impact of printed droplets. The bio-ink section begins by exploring how cells influence the physical properties of bio-inks and emphasizes the significance of achieving cell homogeneity within bio-inks to ensure consistent and reliable printing. The discussion then delves into inkjet-based printing chambers (thermal and piezoelectric), the effect of shear stress on printed cells, droplet formation dynamics, the influence of polymer-based and cell-laden droplets on the underlying substrate surface, and the dynamics of droplet impact. Beyond droplet formation and impact, the review highlights the importance of biophysical and biological cues within 3D hydrogel matrices for cell proliferation and differentiation. Finally, the paper highlights current and potential applications, with a specific focus on skin and lung tissue engineering using inkjet-based bioprinting techniques, and provides insights into the emerging role of machine learning in optimizing the cell deposition process for inkjet-based bioprinting.

Keywords
3D bioprinting
Biofabrication
Inkjet bioprinting
Cells
Bio-inks
Machine learning
Funding
This work is supported and funded by NTU Presidential Postdoctoral Fellowship and HP Inc.
Conflict of interest
Viktor Shkolnikov is an employee of HP Inc. and may own stock as part of the standard compensation package.
References
  1. Ng WL, Chua CK, Shen Y-F. Print me an organ! Why we are not there yet. Prog Polym. Sci. 2019;97:101145. doi: 10.1016/j.progpolymsci.2019.101145
  2. Sun W, Starly B, Daly AC, et al. The bioprinting roadmap. Biofabrication. 2020;12(2):022002. doi: 10.1088/1758-5090/ab5158
  3. Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J, et al. From shape to function: The next step in bioprinting. Adv Mater. 2020;32(12):1906423. doi: 10.1002/adma.201906423
  4. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. Biomaterials. 2016;102:20-42. doi: 10.1016/j.biomaterials.2016.06.012
  5. Ng WL, Yeong WY, Naing MW. Microvalve bioprinting of cellular droplets with high resolution and consistency. Proc Int Conf Prog Addit Manuf. 2016;397-402. doi: 10.3850/2424-8967_V02-236
  6. Ng WL, Lee JM, Yeong WY, Naing MW. Microvalve-based bioprinting – process, bio-inks and applications. Biomaterials. Sci. 2017;5(4):632-647. doi: 10.1039/C6BM00861E
  7. Koch L, Deiwick A, Franke A, et al. Laser bioprinting of human induced pluripotent stem cells—the effect of printing and biomaterials on cell survival, pluripotency, and differentiation. Biofabrication. 2018;10(3):035005, 1-21. doi: 10.1088/1758-5090/aab981
  8. Kotlarz M, Ferreira AM, Gentile P, Russell SJ, Dalgarno K. Droplet-based bioprinting enables the fabrication of cell– hydrogel–microfibre composite tissue precursors. Bio-Des Manuf. 2022;5(3):512-528. doi: 10.1007/s42242-022-00192-5
  9. Ng WL, Yeong WY, Naing MW. Potential of bioprinted films for skin tissue engineering. Proceedings of the 1st International Conference on Progress in Additive Manufacturing. 2014;441- 446. doi: 10.3850/978-981-09-0446-3_065
  10. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
  11. Ng WL, Yeong WY, Naing MW. Development of polyelectrolyte chitosan-gelatin hydrogels for skin bioprinting. Procedia CIRP. 2016; 49:105-112. doi: 10.1016/j.procir.2015.09.002
  12. Zhuang P, Ng WL, An J, Kai Chua C, Tan LP. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. PLoS One. 2019;14(6):e0216776. doi: 10.1371/journal.pone.0216776
  13. Liu S, Zhang H, Ahlfeld T, et al. Evaluation of different crosslinking methods in altering the properties of extrusion-printed chitosan-based multi-material hydrogel composites. Bio-Des Manuf. 2023;6(2):150-173. doi: 10.1007/s42242-022-00194-3
  14. WL Ng, Yeong WY, Naing MW. Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering. Int J Bioprint. 2016;2(1):53-62. doi: 10.18063/IJB.2016.01.009
  15. Ng WL, Lee JM, Zhou M, et al. Vat polymerization-based bioprinting–process, materials, applications and regulatory challenges. Biofabrication. 2020;12(2):022001. doi: 10.1088/1758-5090/ab6034
  16. Li W, Mille LS, Robledo JA, Uribe T, Huerta V, Zhang YS. Recent advances in formulating and processing biomaterial inks for vat polymerization‐vased 3D printing. Adv Healthc Mater. 2020;9(15):2000156. doi: 10.1002/adhm.202000156
  17. Klebe RJ. Cytoscribing: A method for micropositioning cells and the construction of two-and three-dimensional synthetic tissues. Exp Cell Res. 1988;179(2):362-373. doi: 10.1016/0014-4827(88)90275-3
  18. Roth EA, Xu T, Das M, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials. 2004;25(17):3707-3715. doi: 10.1016/j.biomaterials.2003.10.052
  19. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26(1):93-99. doi: 10.1016/j.biomaterials.2004.04.011
  20. Nakamura M, Kobayashi A, Takagi F, et al. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 2005;11(11-12):1658-1666. doi: 10.1089/ten.2005.11.1658
  21. Xu T, Rohozinski J, Zhao W, Moorefield EC, Atala A, Yoo JJ. Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng Part A. 2009;15(1):95-101. doi: 10.1089/ten.tea.2008.0095
  22. Parsa S, Gupta M, Loizeau F, Cheung KC. Effects of surfactant and gentle agitation on inkjet dispensing of living cells, Biofabrication. 2010;2(2):025003.
  23. Xu C, Zhang M, Huang Y, Ogale A, Fu J, Markwald RR. Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink. Langmuir. 2014;30(30):9130-9138. doi: 10.1021/la501430x
  24. Schoendube J, Wright D, Zengerle R, Koltay P. Single-cell printing based on impedance detection. Biomicrofluidics. 2015;9(1).
  25. Ng WL, Huang X, Shkolnikov V, et al. Controlling droplet impact velocity and droplet volume: Key factors to achieving high cell viability in sub-nanoliter droplet-based bioprinting. Int J Bioprint. 2022;8(1):424. doi: 10.18063/ijb.v8i1.424
  26. Huang X, Ng WL, Yeong WY. Predicting the number of printed cells during inkjet-based bioprinting process based on droplet velocity profile using machine learning approaches. J Intell Manuf. 2023;1-16. doi: 10.1007/s10845-023-02167-4
  27. Rutgers IR. Relative viscosity of suspensions of rigid spheres in newtonian liquids. Rheol Acta. 1962;2(3):202-210. doi: 10.1007/BF01983952
  28. Hsueh C, Wei W. Analyses of effective viscosity of suspensions with deformable polydispersed spheres. J Phys D: Appl Phys. 2009;42(7):075503. doi: 10.1088/0022-3727/42/7/075503
  29. A. Einstein. Eine neue bestimmung der Moleküldimensionen. Annalen der Physik. 1906;324(2):289-306. doi: 10.1002/andp.19063240204
  30. Taylor GI. The viscosity of a fluid containing small drops of another fluid, proceedings of the royal society of london. Series A. Containing Pap of a Math & Phys Character. 1932;138(834):41-48. doi: 10.1098/rspa.1932.0169
  31. Wang K, Sun X, Zhang Y, et al. Characterization of cytoplasmic viscosity of hundreds of single tumour cells based on micropipette aspiration. R Soc Open Sci. 2019;6(3):181707. doi: 10.1098/rsos.181707
  32. Phan-Thien N, Pham D. Differential multiphase models for polydispersed suspensions and particulate solids. J Nonnewton Fluid Mech. 1997;72(2-3):305-318. doi: 10.1016/S0377-0257(97)90002-1
  33. Shi Y, Ryu DD, Ballica R. Rheological properties of mammalian cell culture suspensions: Hybridoma and HeLa cell lines. Biotechnol Bioeng. 1993;41(7):745-754. doi: 10.1002/bit.260410709
  34. Pepper ME, Seshadri V, Burg TC, Burg KJL, Groff RE. Characterizing the effects of cell settling on bioprinter output. Biofabrication. 2012;4(1):011001. doi: 10.1088/1758-5082/4/1/011001
  35. Wang Z, Belovich JM. A simple apparatus for measuring cell settling velocity. Biotechnol Progr. 2010;26(5):1361-1366. doi: 10.1002/btpr.432
  36. Sendekie ZB, Bacchin P. Colloidal jamming dynamics in microchannel bottlenecks. Langmuir. 2016;32(6):1478-1488. doi: 10.1021/acs.langmuir.5b04218
  37. Dersoir B, de Saint Vincent MR, Abkarian M, Tabuteau H. Clogging of a single pore by colloidal particles. Microfluid Nanofluid. 2015;19(4):953-961. doi: 10.1007/s10404-015-1624-y
  38. Ng WL, Yeong WY, Naing MW. Polyvinylpyrrolidone-based bio-ink improves cell viability and homogeneity during drop-on-demand printing. Materials. 2017;10(2):190, 1-12. doi: 10.3390/ma10020190
  39. Xu H, Liu J, Zhang Z, et al. Cell sedimentation during 3D bioprinting: a mini review. Bio-Des Manuf. 2022;5(3): 617-626. doi: 10.1007/s42242-022-00183-6
  40. Liu J, Shahriar M, Xu H, Xu C. Cell-laden bioink circulation-assisted inkjet-based bioprinting to mitigate cell sedimentation and aggregation. Biofabrication. 2022;14(4):045020. doi: 10.1088/1758-5090/ac8fb7
  41. Allen RR, Meyer JD, Knight WR. Thermodynamics and hydrodynamics of thermal ink jets. Hewlett-Packard J. 1985;36(5):21-27 doi: hparchive.com/Journals/HPJ-1985-05.pdf
  42. Morita N, Hiratsuka M, Hamazaki T, et al. Pulse and temperature control of thermal ink jet printheads without a heater passivation layer. J Imaging Sci Technol. 2008;52(2):20503-1-20503-5. doi: 10.2352/J.ImagingSci.Technol.(2008)52:2(020503)
  43. Skripov VP. Metastable Liquids. New York: Wiley;1974.
  44. Okuyama K, Tsukahara S, Morita N, Iida Y. Transient behavior of boiling bubbles generated on the small heater of a thermal ink jet printhead. Exp Therm Fluid Sci. 2004;28(8):825-834. doi: 10.1016/j.expthermflusci.2003.12.018
  45. Meyer J. Bubble Growth and Nucleation Properties in Thermal Ink-jet Printing Technology. Digest of Technical Papers - SID International Symposium. 1986; (17) 101-104.
  46. Chang L. Effects of kogation on the operation and lifetime of bubble jet thin-film devices. Denshi Shashin Gakkaishi(Electrophotography). 1989;28(1):2-8. doi: 10.11370/isjepj.28.2
  47. Wijshoff H. The dynamics of the piezo inkjet printhead operation. Phys Rep. 2010;491(4-5):77-177. doi: 10.1016/j.physrep.2010.03.003
  48. Sharp MK, Mohammad SF. Scaling of hemolysis in needles and catheters, Ann Biomed Eng. 1998;26:788-797. doi: 10.1114/1.65
  49. Grigioni M, Daniele C, Morbiducci U, D’Avenio Giuseppe, Di Benedetto G, Barbaro V. The power‐law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif Organs. 2004;28(5):467-475. doi: 10.1111/j.1525-1594.2004.00015.x
  50. Grigioni M, Morbiducci U, D’Avenio G, Di Benedetto G, Del Gaudio C. A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech Model Mechanobio. 2005;4:249-260. doi: 10.1007/s10237-005-0005-y
  51. Faghih MM, Sharp MK. Modeling and prediction of flow-induced hemolysis: A review. Biomech Model Mechanobio. 2019;18:845-881. doi: 10.1007/s10237-019-01137-1
  52. Stolberg S, McCloskey KE. Can shear stress direct stem cell fate? Biotechnol Progr. 2009;25(1):10-19. doi: 10.1002/btpr.124
  53. Smith C, Greenfield P, Randerson D. Shear sensitivity of three hybridoma cell lines in suspension culture. Mod Apr Anim cell tech. 1987;316-327. doi: 10.1016/B978-0-408-02732-8.50027-4
  54. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. Jama. 1999;282(21): 2035-2042. doi: 10.1001/jama.282.21.2035
  55. Reneman RS, Hoeks AP. Wall shear stress as measured in vivo: consequences for the design of the arterial system. Med Biol Eng Comput. 2008;46:499-507. doi: 10.1007/s11517-008-0330-2
  56. Williams A, Hughes D, Nyborg W. Hemolysis near a transversely oscillating wire. Sci. 1970;169(3948):871-873. doi: 10.1126/science.169.3948.871
  57. Rooney JA. Hemolysis near an ultrasonically pulsating gas bubble. Sci. 1970;169(3948):869-871. doi: 10.1126/science.169.3948.869
  58. Forstrom RJ. A New Measure of Erythrocyte Membrane Strength: The Jet Fragility Test. [PhD thesis]. Minnesota: University of Minnesota; 1969
  59. Blackshear PL. Hemolysis at prosthetic surfaces. In: Hair ML, ed. Chemistry of Biosurfaces. New York: Marcel Dekker; 1972: 523-561.
  60. Kretzmer G, Schügerl K. Response of mammalian cells to shear stress. Appl Microbiol Biotechnol. 1991;34:613-616. doi: 10.1007/BF00167909
  61. Barnes JM, Nauseef JT, Henry MD. Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PloS one. 2012;7(12):e50973. doi: 10.1371/journal.pone.0050973
  62. Lohse D. Fundamental fluid dynamics challenges in inkjet printing. Annu Rev Fluid Mech. 2022;54:349-382. doi: 10.1146/annurev-fluid-022321-114001
  63. Xu T, Gregory CA, Molnar P, Cui X. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials. 2006;27(19):3580- 3588. doi: 10.1016/j.biomaterials.2006.01.048
  64. Yumoto M, Hemmi N, Sato N, et al. Evaluation of the effects of cell-dispensing using an inkjet-based bioprinter on cell integrity by RNA-seq analysis. Sci Rep. 2020;10(1):7158. doi: 10.1038/s41598-020-64193-z
  65. Furbank RJ, Morris JF. An experimental study of particle effects on drop formation. Phys Fluids. 2004;16(5): 1777-1790. doi: 10.1063/1.1691034
  66. Furbank RJ, Morris JF. Pendant drop thread dynamics of particle-laden liquids. Int J Multiphase Flow. 2007;33(4): 448-468. doi: 10.1016/j.ijmultiphaseflow.2006.02.021
  67. Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces. Atomization Sprays. 2001;11(2). doi: 10.1615/AtomizSpr.v11.i2.40
  68. Liu Y, Yan X, Wang Z. Droplet dynamics on slippery surfaces: small droplet, big impact. Biosurface and Biotribology. 2019;5(2):35-45. doi: 10.1049/bsbt.2019.0004
  69. Rein M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res. 1993;12(2):61-93. doi: 10.1016/0169-5983(93)90106-K
  70. Fedorchenko AI, Wang A-B. On some common features of drop impact on liquid surfaces. Phys Fluids. 2004;16(5): 1349-1365. doi: 10.1063/1.1652061
  71. Zou J, Wang PF, Zhang TR, Fu Xin, Ruan X. Experimental study of a drop bouncing on a liquid surface. Phys Fluids. 2011;23(4). doi: 10.1063/1.3575298
  72. Leng LJ. Splash formation by spherical drops, J Fluid Mech. 2001;427:73-105. doi: 10.1017/S0022112000002500
  73. Bach GA, Koch DL, Gopinath A. Coalescence and bouncing of small aerosol droplets. J Fluid Mech. 2004;518:157-185. doi: 10.1017/S0022112004000928
  74. Frith WJ, d’Haene P, Buscall R, Mewis J. Shear thickening in model suspensions of sterically stabilized particles. J Rheol. 1996;40(4):531-548. doi: 10.1122/1.550791
  75. German G, Bertola V. Impact of shear-thinning and yield-stress drops on solid substrates. J Phys Condens Matter 2009;21(37):375111. doi: 10.1088/0953-8984/21/37/375111
  76. Bertola V, Marengo M. Single drop impacts of complex fluids: a review. In: Ferrari M, Liggieri L, Miller R, eds. Drops and Bubbles in Contact with Solid Surfaces. Florida, United States: Taylor & Francis(CRC Press); 2012: 267-298.
  77. Bergeron V, Bonn D, Martin JY, Vovelle L. Controlling droplet deposition with polymer additives. Nature. 2000;405(6788):772-775. doi: 10.1038/35015525
  78. Bergeron V. Designing intelligent fluids for controlling spray applications. C R Phys. 2003;4(2):211-219. doi: 10.1016/S1631-0705(03)00043-4
  79. Vega E, Castrejón-Pita A. Suppressing prompt splash with polymer additives. Exp Fluids. 2017;58(5):57. doi: 10.1007/s00348-017-2341-y
  80. Ng WL, Huang X, Shkolnikov V, Suntornnond R. Polyvinylpyrrolidone-based bioink: Influence of bioink properties on printing performance and cell proliferation during inkjet-based bioprinting. Bio-Des Manuf. 2023;6: 676-690. doi: 10.1007/s42242-023-00245-3
  81. Guémas M, Marín ÁG, Lohse D. Drop impact experiments of non-Newtonian liquids on micro-structured surfaces. Soft Matter. 2012;8(41):10725-10731. doi: 10.1039/C2SM26230D
  82. An SM, Lee SY. Maximum spreading of a shear-thinning liquid drop impacting on dry solid surfaces. Exp Therm Fluid Sci. 2012;38:140-148. doi: 10.1016/j.expthermflusci.2011.12.003
  83. Nicolas M. Spreading of a drop of neutrally buoyant suspension. J Fluid Mech. 2005;545:271-280. doi: 10.1017/S0022112005006944
  84. Chen X, O’Mahony AP, Barber T. Spreading behavior of cell-laden droplets in 3D bioprinting process. J Appl Phys 2023;133(1). doi: 10.1063/5.0130063
  85. He P, Liu Y, Qiao R. Fluid dynamics of the droplet impact processes in cell printing. Microfluid Nanofluid. 2015;18: 569-585. doi: 10.1007/s10404-014-1470-3
  86. Suntornnond R, Ng WL, Huang X, Ethan Yeowa CH, Yee Yeong Wai. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications via saponification and heat treatment process. J Mater Chem B. 2022;10(31):5989-6000. doi: 10.1039/D2TB00442A
  87. Ng WL, Lee JM, Zhou M, Yeong WY. Hydrogels for 3-D bioprinting-based tissue engineering. In: Narayan R, ed. Rapid Prototyping of Biomaterials. Chapel Hill, NC: Elsevier; 2020: 183-204.
  88. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009;103(4):655-663. doi: 10.1002/bit.22361
  89. Blache U, Ford EM, Ha B, et al. Engineered hydrogels for mechanobiology. Nat Rev Methods Primers. 2022;2(1):98. doi: 10.1038/s43586-022-00179-7
  90. Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size, Tissue Eng Part B: Reviews. 2013;19(6):485-502. doi: 10.1089/ten.teb.2012.0437
  91. Ng WL, Goh MH, Yeong WY, Naing MW. Applying Macromolecular Crowding to 3D Bioprinting: Fabrication of 3D Hierarchical Porous Collagen-based Hydrogel Constructs. Biomater Sci. 2018;6(3):562-574. doi: 10.1039/C7BM01015J
  92. Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials. 2008;29(30): 4100-4107. doi: 10.1016/j.biomaterials.2008.06.028
  93. Lien S-M, Ko L-Y, Huang T-J. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009;5(2): 670-679. doi: 10.1016/j.actbio.2008.09.020
  94. Ben Messaoud G, Aveic S, Wachendoerfer M, et al. 3D printable gelatin methacryloyl (GelMA)‐dextran aqueous two‐phase system with tunable pores atructure and aize enables physiological behavior of embedded cells In Vitro. Small. 2023;2208089. doi: 10.1002/smll.202208089
  95. Duarte Campos DF, Blaeser A, Buellesbach K, et al. Bioprinting organotypic hydrogels with improved mesenchymal stem cell remodeling and mineralization properties for bone tissue engineering. Adv Healthc Mater. 2016;5(11):1336-1345. doi: 10.1002/adhm.201501033
  96. Cooper GM, Miller ED, DeCesare GE, et al. Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng Part A. 2010;16(5):1749-1759. doi: 10.1089/ten.tea.2009.0650
  97. Sun Z, Yue X, Liu L, et al. Bioprinted Notch ligand to function as stem cell niche improves muscle regeneration in dystrophic muscle. Int J Bioprint. 2023;9(3):711. doi: 10.18063/ijb.711
  98. Zimmermann R, Hentschel C, Schrön F, et al. High resolution bioprinting of multi-component hydrogels. Biofabrication. 2019;11(4):045008. doi: 10.1088/1758-5090/ab2aa1
  99. Ng WL, Wang S, Yeong WY, Naing MW. Skin bioprinting: Impending reality or fantasy? Trends Biotechnol. 2016;34 (9):689 - 699. doi: 10.1016/j.tibtech.2016.04.006
  100. Lee W, Debasitis JC, Lee VK, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009;30(8):1587-1595. doi: 10.1016/j.biomaterials.2008.12.009
  101. Lee V, Singh G, Trasatti JP, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C: Methods. 2013;20(6):473-484. doi: 10.1089/ten.tec.2013.0335
  102. Yanez M, Rincon J, Dones A, De Maria C, Gonzales R, Boland T. In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. Tissue Eng Part A. 2015;21(1-2):224-233. doi: 10.1089/ten.tea.2013.0561
  103. Ng WL, Tan ZQ, Yeong WY, Win Naing M. Proof-of-concept: 3D bioprinting of pigmented human skin constructs. Biofabrication. 2018;10(2):025005, 1-13. doi: 10.1088/1758-5090/aa9e1e
  104. Min D, Lee W, Bae IH, Lee TR, Croce P, Yoo S-S. Bioprinting of biomimetic skin containing melanocytes. Exp Dermatol. 2018;27(5):453-459. doi: 10.1111/exd.13376
  105. Nanmo A, Yan L, Asaba T, Wan L, Kageyama T, Fukuda J. Bioprinting of hair follicle germs for hair regenerative medicine. Acta Biomater. 2023;165:50-59. doi: 10.1016/j.actbio.2022.06.021
  106. Horváth L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen- Rutishauser B. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep. 2015;5:7974, 1-8. doi: 10.1038/srep07974
  107. Ng WL, Ayi TC, Liu Y-C, Sing SL, Yeong WY, Tan B-H. Fabrication and characterization of 3D bioprinted triple-layered human alveolar lung models. Int J Bioprint. 2021;7(2):332. doi: 10.18063/ijb.v7i2.332
  108. Kang D, Park JA, Kim W, et al. All‐inkjet‐printed 3D alveolar barrier model with physiologically relevant microarchitecture. Adv Sci. 2021;8(10):2004990. doi: 10.1002/advs.202004990
  109. Ng WL, Yeong WY. The Future of Skin Toxicology Testing - 3D bioprinting meets microfluidics. Int J Bioprint. 2019;5(2.1):237. doi: 10.18063/ijb.v5i2.1.237
  110. El‐Ghalbzouri A, Gibbs S, Lamme E, Van Blitterswijk CA, Ponec M. Effect of fibroblasts on epidermal regeneration. Br J Dermatol. 2002;147(2):230-243. doi: j.1365-2133.2002.04871.x
  111. Hoet PHM, Brüske-Hohlfeld Irene, Salata OV Nanoparticles–known and unknown health risks. J Nanobiotechnol. 2004;2(1):12, 1-15. doi: 10.1186/1477-3155-2-12
  112. Habib RH, Chalker RB, Suki B, Jackson AC. Airway geometry and wall mechanical properties estimated from subglottal input impedance in humans. J Appl Physiol. 1994;77(1):441-451. doi: 10.1152/jappl.1994.77.1.441
  113. Crandall ED, Matthay MA. Alveolar epithelial transport: basic science to clinical medicine. Am J Respir Crit Care Med. 2001;163(4):1021-1029. doi: 10.1164/ajrccm.163.4.2006116
  114. Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res. 2001;2(1):33-46. doi: 10.1186/rr36
  115. Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14(2):81-93. doi: 10.1038/nri3600
  116. Comhair SA, Xu W, Mavrakis L, Aldred MA, Asosingh K, Erzurum SC. Human primary lung endothelial cells in culture. Am J Respir Cell Mol Biol. 2012;46(6):723-730. doi: 10.1165/rcmb.2011-0416TE
  117. White ES. Lung extracellular matrix and fibroblast function. Ann Am Thorac Soc. 2015;12(Suppl 1):S30-S33. doi: 10.1513/AnnalsATS.201406-240MG
  118. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-444. doi: 10.1038/nature14539
  119. Ng WL, Chan A, Ong YS, Chua CK. Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. Virtual Phys Prototyp. 2020;15(3):340-358. doi: 10.1080/17452759.2020.1771741
  120. Shi J, Song J, Song B, Lu WF. Multi-objective optimization design through machine learning for drop-on-demand bioprinting. Engr. 2019;5(3):586-593. doi: 10.1016/j.eng.2018.12.009
  121. Wu D, Xu C. Predictive modeling of droplet formation processes in inkjet-based bioprinting. J Manuf Sci Eng. 2018;140(10):101007. doi: 10.1115/1.4040619
  122. Ogunsanya M, Isichei J, Parupelli SK, Desai SS, Cai Yi. In-situ droplet monitoring of inkjet 3D printing process using image analysis and machine learning models. Procedia Manuf. 2021;53:427-434. doi: 10.1016/j.promfg.2021.06.045
  123. Xu T, Binder KW, Albanna MZ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 2012;5(1):015001, 1-10. doi: 10.1088/1758-5082/5/1/015001
  124. Daly AC, Kelly DJ. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials. 2019;197:194-206. doi: 10.1016/j.biomaterials.2018.12.028
  125. Dufour A, Gallostra XB, O’keeffe C, et al. Integrating melt electrowriting and inkjet bioprinting for engineering structurally organized articular cartilage. Biomaterials. 2022;283:121405. doi: 10.1016/j.biomaterials.2022.121405
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing