AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.1862
RESEARCH ARTICLE

Achieving personalized nutrition for patients with diabetic complications via 3D food printing

Yuanyuan Chen1 Siwei Bi2 Jun Gu3 Qianli Che4 Ruiqi Liu2 Wei Li3 Tingting Dai5 Dongan Wang6 Xiaosheng Zhang1* Yi Zhang1*
Show Less
1 School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
2 Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
3 Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
4 CSCEC SCIMEE Science & Technology Co. Ltd., Chengdu, Sichuan, China
5 Department of Nutrition, West China Hospital, Sichuan University, Chengdu, Sichuan, China
6 Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
IJB 2024, 10(2), 1862 https://doi.org/10.36922/ijb.1862
Submitted: 17 September 2023 | Accepted: 13 December 2023 | Published: 29 January 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The global prevalence of diabetes mellitus is experiencing a notable increase. Diabetic patients need to consistently monitor their fluctuating glucose levels caused by the changing diet. Meanwhile, patients with diabetes face a higher risk of developing oral ulcer than healthy individuals. Fortunately, three-dimensional (3D)-printed food, which is design- and texture-customizable, presents a potential solution to alleviate the discomfort caused by ulcer while providing personalized nutrition for patients with unique dietary requirements. In this study, 3D-printable food inks were created based on four food ingredients with low glycemic index, namely milk powder, wheat bran powder, Russula alutacea Fr., (russula mushroom), and Agaricus bisporus (button mushroom) content. Rheological testing and texture profile analysis were performed, affirming that the 3D-printed food possesses a soft texture, which minimizes oral mucosal irritation for patients with diabetic ulcers. The effectiveness of 3D-printed food in diabetes management was corroborated by monitoring the blood glucose levels of streptozotocin-induced diabetic rats via gavage. Food with personalized nutritional composition was custom-printed to cater for the protein requirements of patients with diabetic nephropathy. This innovative approach to personalizing nutrition through 3D food printing has the potential to reshape the future of dietary management, ultimately improving the overall health outcomes and quality of life for individuals with diabetes and its complications.

Keywords
3D food printing
Personalized nutrition
Diabetes
Ulcer
Daily protein intake
Funding
This work was supported by the National Natural Science Foundation of China (No. 62271107 and 62074029), the National Key Research and Development Program of China (No. 2022YFB3206100), and Key R&D Program of Sichuan Province (No. 2022JDTD0020).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Supplement_1):S81-S90. doi: 10.2337/dc14-S081
  2. Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10(1):14790. doi: 10.1038/s41598-020-71908-9
  3. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(Suppl 1): S67-S74. doi: 10.2337/dc13-S067
  4. Camelon KM, Hadell K, Jamsen PT, et al. The plate model: a visual method of teaching meal planning. J Am Diet Assoc. 1998;98(10):1155-1158. doi: 10.1016/s0002-8223(98)00267-3
  5. Zhang Y, Han H, Chu L. Effectiveness of restricted diet with a plate in patients with type 2 diabetes: a randomized controlled trial. Prim Care Diabetes. 2022;16(3):368-374. doi: 10.1016/j.pcd.2022.03.007
  6. Forouhi NG, Misra A, Mohan V, Taylor R, Yancy W. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ. 2018;361:k2234. doi: 10.1136/bmj.k2234
  7. Rhee CM, Kalantar-Zadeh K, Moore LW. Medical nutrition therapy for diabetic kidney disease. J Ren Nutr. 2021;31(3):229-232. doi: 10.1053/j.jrn.2021.03.004
  8. Kitada M, Ogura Y, Monno I, Koya D. A low-protein diet for diabetic kidney disease: its effect and molecular mechanism, an approach from animal studies. Nutrients. 2018;10(5):544. doi: 10.3390/nu10050544
  9. Dudding T, Haworth S, Lind PA, et al. Genome wide analysis for mouth ulcers identifies associations at immune regulatory loci. Nat Commun. 2019;10(1):1052. doi: 10.1038/s41467-019-08923-6
  10. Mauri-Obradors E, Estrugo-Devesa A, Jane-Salas E, Viñas M, López-López J. Oral manifestations of diabetes mellitus. A systematic review. Med Oral Patol Oral Cir Bucal. 2017;22(5):e586-e594. doi: 10.4317/medoral.21655
  11. Mohsin SF, Ahmed SA, Fawwad A, Basit A. Prevalence of oral mucosal alterations in type 2 diabetes mellitus patients attending a diabetic center. Pak J Med Sci. 2014;30(4): 716-719. doi 10.12669/pjms.304.5220
  12. Zeng X, Jin X, Zhong L, et al. Difficult and complicated oral ulceration: an expert consensus guideline for diagnosis. Int J Oral Sci. 2022;14(1):28. doi: 10.1038/s41368-022-00178-0
  13. Slebioda Z, Szponar E, Kowalska A. Etiopathogenesis of recurrent aphthous stomatitis and the role of immunologic aspects: literature review. Arch Immunol Ther Exp. 2014;62(3):205-215. doi: 10.1007/s00005-013-0261-y
  14. González-Serrano J, Serrano J, López-Pintor RM, et al. Prevalence of oral mucosal disorders in diabetes mellitus patients compared with a control group. J Diabetes Res. 2016;2016:5048967. doi: 10.1155/2016/5048967
  15. Gu Y, Huang Y, Qiu Z, et al. Vitamin B(2) functionalized iron oxide nanozymes for mouth ulcer healing. Sci China Life Sci. 2020;63(1):68-79. doi: 10.1007/s11427-019-9590-6
  16. Kewuyemi YO, Kesa H, Meijboom R, Alimi OA, Adebo OA. 3D food printing improves color profile and structural properties of the derived novel whole-grain sourdough and malt biscuits. Sci Rep. 2022;12(1):12347. doi: 10.1038/s41598-022-16659-5
  17. Pattarapon P, Zhang M, Mujumdar AS. Application potential of 3D food printing to improve the oral intake for immunocompromised patients: a review. Food Res Int. 2022;160:111616. doi: 10.1016/j.foodres.2022.111616
  18. Pant A, Lee AY, Karyappa R, et al. 3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients. Food Hydrocolloids. 2021;114:106546. doi: 10.1016/j.foodhyd.2020.106546
  19. de Souza Paglarini C, de Figueiredo Furtado G, Biachi JP, et al. Functional emulsion gels with potential application in meat products. J Food Eng. 2018;222:29-37. doi: 10.1016/j.jfoodeng.2017.10.026
  20. Severini C, Azzollini D, Albenzio M, Derossi A. On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Res Int. 2018;106:666-676. doi: 10.1016/j.foodres.2018.01.034
  21. Zhang Y, Lee AY, Pojchanun K, et al. Systematic engineering approach for optimization of multi-component alternative protein-fortified 3D printing food Ink. Food Hydrocolloids. 2022;131:107803. doi: 10.1016/j.foodhyd.2022.107803
  22. Dong L, Li Y, Chen Q, et al. Cereal polyphenols inhibition mechanisms on advanced glycation end products and regulation on type 2 diabetes. Crit Rev Food Sci Nutr. 2023;1-19. doi: 10.1080/10408398.2023.2213768
  23. Katileviciute A, Plakys G, Budreviciute A, Onder K, Damiati S, Kodzius R. A sight to wheat bran: high value-added products. Biomolecules. 2019;9(12):887. doi: 10.3390/biom9120887
  24. Li X-X, Zhang X-X, Zhang R, et al. Gut modulation based anti-diabetic effects of carboxymethylated wheat bran dietary fiber in high-fat diet/streptozotocin-induced diabetic mice and their potential mechanisms. Food Chem Toxicol. 2021;152:112235. doi: 10.1016/j.fct.2021.112235
  25. Stevenson L, Phillips F, O’Sullivan K, Walton J. Wheat bran: its composition and benefits to health, a European perspective. Int J Food Sci Nutr. 2012;63(8):1001-1013. doi: 10.3109/09637486.2012.687366
  26. Clarke J, Butler R, Howarth G, Read L, Regester G. Exposure of oral mucosa to bioactive milk factors reduces severity of chemotherapy-induced mucositis in the hamster. Oral Oncol. 2002;38(5):478-485. doi: 10.1016/s1368-8375(01)00107-5
  27. Sanka K, Munjulury VS, Mohd AB, Diwan PV. Enhancement of solubility, dissolution release profile and reduction in ulcerogenicity of piroxicam by inclusion complex with skimmed milk. Drug Deliv. 2014;21(7):560-570. doi: 10.3109/10717544.2013.856964
  28. Sharifi-Rad J, Butnariu M, Ezzat SM, et al. Mushrooms-rich preparations on wound healing: from nutritional to medicinal attributes. Front Pharmacol. 2020;11:567518. doi: 10.3389/fphar.2020.567518
  29. Mao Y, Mao J, Meng X. Extraction optimization and bioactivity of exopolysaccharides from Agaricus bisporus. Carbohydr Polym. 2013;92(2):1602-1607. doi: 10.1016/j.carbpol.2012.11.017
  30. Khursheed R, Singh SK, Wadhwa S, Gulati M, Awasthi A. Therapeutic potential of mushrooms in diabetes mellitus: role of polysaccharides. Int J Biol Macromol. 2020;164: 1194-1205. doi: 10.1016/j.ijbiomac.2020.07.145
  31. Dragsted LO. Mushrooms and health. Am J Clin Nutr. 2019;110(3):546-547. doi: 10.1093/ajcn/nqz096
  32. Shamim MZ, Mishra AK, Kausar T, et al. Exploring edible mushrooms for diabetes: unveiling their role in prevention and treatment. Molecules. 2023;28(6). doi: 10.3390/molecules28062837
  33. Jiali L, Wu Z, Liu L, et al. The research advance of resistant starch: structural characteristics, modification method, immunomodulatory function, and its delivery systems application. Crit Rev Food Sci Nutr. 2023;1-18. doi: 10.1080/10408398.2023.2230287
  34. Pant A, Lee AY, Karyappa R, et al. 3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients. Food Hydrocolloids. 2021;114:106546. doi: 10.1016/j.foodhyd.2020.106546
  35. Lee AY, Pant A, Pojchanun K, et al. Three-dimensional printing of food foams stabilized by hydrocolloids for hydration in dysphagia. Int J Bioprint. 2021;7(4):393. doi: 10.18063/ijb.v7i4.393
  36. Cichero JA, Lam PT, Chen J, et al. Release of updated international dysphagia diet standardisation initiative framework (IDDSI 2.0). J Texture Stud. 2020;51(1):195-196. doi: 10.1111/jtxs.12481
  37. Wang Z, Yang Y, Xiang X, Zhu Y, Men J, He M. Estimation of the normal range of blood glucose in rats. Wei Sheng Yan Jiu. 2010;39(2):133-137, 142. doi: 10.19813/j.cnki.weishengyanjiu.2010.02.002
  38. Liu Z, Bhandari B, Guo C, et al. 3D printing of shiitake mushroom incorporated with gums as dysphagia diet. Foods. 2021;10(9). doi: 10.3390/foods10092189
  39. Sworn G. Xanthan gum. In: Phillips GO, Williams PA, eds. Handbook of Hydrocolloids. 3rd ed. Cambridge, UK:Woodhead Publishing; 2021:833-853. doi: 10.1533/9781845695873.829
  40. Habibi H, Khosravi-Darani K. Effective variables on production and structure of xanthan gum and its food applications: a review. Biocatal Agric Biotechnol. 2017;10:130-140. doi: 10.1016/j.bcab.2017.02.013
  41. Lee C P, Karyappa R, Hashimoto M. 3D printing of milk-based product. RSC Adv. 2020;10(50):29821-29828. doi: 10.1039/d0ra05035k
  42. Li G, Hu L, Liu J, et al. A review on 3D printable food materials: types and development trends. Int J Food Sci Technol. 2022;57(1):164-172. doi: 10.1111/ijfs.15391
  43. Nadernezhad A, Groll J. Machine learning reveals a general understanding of printability in formulations based on rheology additives. Adv Sci. 2022;9(29):e2202638. doi: 10.1002/advs.202202638
  44. Zeng X, Chen H, Chen L, Zheng B. Insights into the relationship between structure and rheological properties of starch gels in hot-extrusion 3D printing. Food Chem. 2021;342:128362. doi: 10.1016/j.foodchem.2020.128362
  45. Liu Z, Bhandari BR, Prakash S, Mantihal S, Zhang M. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocolloids. 2019;87:413-424. doi: 10.1016/j.foodhyd.2018.08.026.
  46. Wu H, Sang S, Weng P, et al. Structural, rheological, and gelling characteristics of starch-based materials in context to 3D food printing applications in precision nutrition. Compr Rev Food Sci Food Saf. 2023;22(6):4217-4241. doi: 10.1111/1541-4337.13217
  47. Sciarini LS, Rolland-Sabaté A, Guilois S, Decaen P, Leroy E, Le Bail P. Understanding the destructuration of starch in water–ionic liquid mixtures. Green Chem. 2015;17(1): 291-299. doi: 10.1039/C4GC01248H
  48. Chao C, Hwang JS, Kim IW, Choi RY, Kim HW, Park HY. Coaxial 3D printing of chicken surimi incorporated with mealworm protein isolate as texture-modified food for the elderly. J Food Eng. 2022;333:111151. doi: 10.1016/j.jfoodeng.2022.111151
  49. Jeong S, Kim H, Lee S. Rheology-based classification of foods for the elderly by machine learning analysis. Appl Sci. 2021;11(5):2262. doi: 10.3390/app11052262
  50. Kang AJ, Kim DK, Kang SH, Seo KM, Park HS, Park K-H. EMG activity of masseter muscles in the elderly according to rheological properties of solid food. Ann Rehabil Med. 2016;40(3):447-456. doi: 10.5535/arm.2016.40.3.447
  51. List T, Mojir K, Svensson P, Pigg M. A new protocol to evaluate the effect of topical anesthesia. Anesth Prog. 2014;61(4):135-144. doi: 10.2344/0003-3006-61.4.135
  52. Ogawa T, Tanaka M, Ogimoto T, Okushi N, Koyano K, Takeuchi K. Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral mucosa. J Dent. 2004;32(3):219-228. doi: 10.1016/j.jdent.2003.11.001
  53. Steele CM, Molfenter SM, Péladeau-Pigeon M, Polacco RC, Yee C. Variations in tongue-palate swallowing pressures when swallowing xanthan gum-thickened liquids. Dysphagia. 2014;29(6):678-684. doi: 10.1007/s00455-014-9561-6
  54. Hernández-Olivos R, Muñoz M, Núñez E, et al. Salivary proteome of aphthous stomatitis reveals the participation of vitamin metabolism, nutrients, and bacteria. Sci Rep. 2021;11(1):15646. doi: 10.1038/s41598-021-95228-8
  55. Raza N, Kim K-H. Quantification techniques for important environmental contaminants in milk and dairy products. TrAC Trends Anal Chem. 2018;98:79-94. doi: 10.1016/j.trac.2017.11.002
  56. Lichtenstein AH, Schwab US. Relationship of dietary fat to glucose metabolism. Atherosclerosis. 2000;150(2):227-243. doi: 10.1016/s0021-9150(99)00504-3
  57. Pereira T, Barroso S, Gil MM. Food texture design by 3D printing: a review. Foods. 2021;10(2):320. doi: 10.3390/foods10020320.
  58. Dong L, Li Y, Chen Q, et al. Research advances of advanced glycation end products in milk and dairy products: formation, determination, control strategy and immunometabolism via gut microbiota. Food Chem. 2023;417: 135861. doi: 10.1016/j.foodchem.2023.135861
  59. Kitada M, Ogura Y, Monno I, Koya D. A low-protein diet for diabetic kidney disease: its effect and molecular mechanism, an approach from animal studies. Nutrients. 2018; 10(5):544. doi: 10.3390/nu10050544
  60. Pfeiffer AFH, Pedersen E, Schwab U, et al. The effects of different quantities and qualities of protein intake in people with diabetes mellitus. Nutrients. 2020;12(2):365. doi: 10.3390/nu12020365
  61. Zargaraan A, Rastmanesh R, Fadavi G, Zayeri F, Mohammadifar MA. Rheological aspects of dysphagia-oriented food products: a mini review. Food Sci Hum Wellness. 2013;2(3-4):173-178. doi: 10.1016/j.fshw.2013.11.002
  62. Aguilera JM, Park DJ. Texture-modified foods for the elderly: status, technology and opportunities. Trends Food Sci Technol. 2016;57:156-164. doi: 10.1016/j.tifs.2016.10.001
  63. Rajati F, Ahmadi N, Naghibzadeh ZA, Kazeminia M. The global prevalence of oropharyngeal dysphagia in different populations: a systematic review and meta-analysis. J Transl Med. 2022;20(1):175. doi: 10.1186/s12967-022-03380-0
  64. Landová H, Daněk Z, Gajdziok J, Vetchý D, Stembírek J. Oral mucosa and therapy of recurrent aphthous stomatitis. Ceska Slov Farm. 2013;62(1):12-18.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing