AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.0226
Cite this article
289
Download
3224
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

A 3D-printed micro-perfused culture device with embedded 3D fibrous scaffold for enhanced biomimicry 

Feng Lin Ng1 Zhanhong Cen1 Yi-Chin Toh2,3 Lay Poh Tan4*
Show Less
1 Singapore Institute of Manufacturing Technology, 636732
2 School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
3 Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
4 School of Materials Science & Engineering, Nanyang Technological University 639798, Singapore
IJB 2024, 10(1), 0226 https://doi.org/10.36922/ijb.0226
Submitted: 23 October 2022 | Accepted: 21 December 2022 | Published: 11 July 2023
(This article belongs to the Special Issue 3D Printing of Advanced Biomedical Devices)
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Additive manufacturing has rapidly revolutionized the medical sectors since it is a versatile, cost-effective, assembly free technique with the ability to replicate geometrically complicated features. Some of the widely reported applications include the printing of scaffolds, implants, or microfluidic devices. In this study, a 3D-printed micro-perfused culture (MPC) device embedded with a nanofibrous scaffold was designed to create an integrated micro-perfused 3D cell culture environment for living cells. The addition of 3D fibrous scaffold onto the microfluidic chip was to provide a more physiologically relevant microenvironment for cell culture studies. Stereolithography was adopted in this study as this technique obviates excessive preassembly and bonding steps, which would otherwise be needed in conventional microfluidic fabrication. Huh7.5 hepatocellular carcinoma cells were used as model cells for this platform since liver cells experience similar perfused microenvironment. Preliminary cell studies revealed that gene expressions of albumin (ALB) and cytochrome P450 isoform (CYP3A7) were found to be significantly upregulated on the 3D-printed MPC device as compared to the static counterpart. Taken together, the 3D-printed MPC device is shown to be a physiologically relevant platform for the maintenance of liver cells. The device and printing technique developed in this study is highly versatile and tailorable to mimic local in vivo microenvironment needs of various tissues, which could be studied in future.

Keywords
Stereolithography
Microfluidics
Porous scaffold
Perfused culture
Human hepatocarcinoma cell
Funding
This work is supported in part by the Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A*STAR) Singapore; MOE Tier 1 RG130/15 and HealthTech NTU.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Kang L, Chung BG, Langer R, Khademhosseini A. Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discov Today, 2008;13(1-2):1-13. doi: 10.1016/j.drudis.2007.10.003
  2. Toh YC, Lim TC, Tai D, Xiao G, van Noort D, Yu H. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip. 2009;9(14):2026-2035. doi: 10.1039/b900912d
  3. Becker H, Locascio LE. Polymer microfluidic devices. Talanta. 2002;56(2):267-287. doi: 10.1016/s0039-9140(01)00594-x
  4. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T. Microfluidic 3D cell culture: From tools to tissue models. Curr Opin Biotechnol. 2015;35:118-126. doi: 10.1016/j.copbio.2015.05.002
  5. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B Eng. 2018;143:172-196. doi: 10.1016/j.compositesb.2018.02.012
  6. Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming 3D-printing revolution in microfluidics. Lab Chip. 2016;16(10):1720-1742. doi: 10.1039/C6LC00163G
  7. Yazdi AA, Popma A, Wong W, Nguyen T, Pan Y, Xu J. 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid. 2016;20(3):50. doi: 10.1007/s10404-016-1715-4
  8. Arshavsky-Graham S, Enders A, Ackerman S, Bahnemann J, Segal E. 3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection. Microchim Acta. 2021;188(3):67. doi: 10.1088/1361-6439/aa7117
  9. Li F, Macdonald NP, Guijt RM, Breadmore MC. Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing. Lab Chip. 2019;19(1):35-49. doi: 10.1039/C8LC00826D
  10. Razavi Bazaz S, Rouhi O, Raoufi MA, et al. 3D printing of inertial microfluidic devices. Sci Rep. 2020;10(1):5929. doi: 10.1038/s41598-020-62569-9
  11. Carnero B, Bao-Varela C, Gómez-Varela AI, Álvarez E, Flores-Arias MT. Microfluidic devices manufacturing with a stereolithographic printer for biological applications. Mater Sci Eng C. 2021;129:112388. doi: 10.1016/j.msec.2021.112388
  12. Bhargava KC, Thompson B, Malmstadt N. Discrete elements for 3D microfluidics. Proc Natl Acad Sci U S A. 2014;111(42):15013-15018. doi: 10.1073/pnas.1414764111
  13. Au AK, Bhattacharjee N, Horowitz LF, Changa TC, Folch A. 3D-printed microfluidic automation. Lab Chip. 2015;15(8):1934-1941. doi: 10.1039/C5LC00126A
  14. Weisgrab G, Ovsianikov A, Costa PF. Functional 3D printing for microfluidic chips. Adv Mater Technol. 2019;4(10):1900275. doi: 10.1002/admt.201900275
  15. Parthiban P, Vijayan S, Doyle PS, Hashimoto M. Evaluation of 3D-printed molds for fabrication of non-planar microchannels. Biomicrofluidics. 2021;15(2):024111. doi: 10.1063/5.0047497
  16. Yang L, Shridhar SV, Gerwitz M, Soman P. An in vitro vascular chip using 3D printing-enabled hydrogel casting. Biofabrication. 2016;8(3):035015. doi: 10.1088/1758-5090/8/3/035015
  17. Urrios A, Parra-Cabrera C, Bhattacharjee N, et al. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip. 2016;16(12):2287-2294. doi: 10.1039/C6LC00153J
  18. Yang C, Luo J, Polunas M, et al. 4D-printed transformable tube array for high-throughput 3D cell culture and histology. Adv Mater. 2020;32(40):2004285. doi: 10.1002/adma.202004285
  19. Ong LJY, Islam A, DasGupta R, et al. A 3D printed microfluidic perfusion device for multicellular spheroid cultures. Biofabrication. 2017;9(4):045005. doi: 10.1002/adma.202004285
  20. Sweet E, Yang B, Chen J, et al. 3D microfluidic gradient generator for combination antimicrobial susceptibility testing. Microsyst Nanoeng. 2020;6(1):92. doi: 10.1038/s41378-020-00200-7
  21. Cabaleiro JM. Flowrate independent 3D printed microfluidic concentration gradient generator. Chem Eng J. 2020;382:122742. doi: 10.1016/j.cej.2019.122742
  22. Kitson PJ, Glatzel S, Chen W, Chen W, Lin C-G, Song Y-F, Cronin L. 3D printing of versatile reactionware for chemical synthesis. Nat Protoc. 2016;11(5):920-936. doi: 10.1038/nprot.2016.041
  23. Ota H, Kodama T, Miki N. Rapid formation of size-controlled three dimensional hetero-cell aggregates using micro-rotation flow for spheroid study. Biomicrofluidics. 2011;5(3):34105-3410515. doi: 10.1063%2F1.3609969
  24. Martinez Galvez JM, Garcia-Hernando M, Benito-Lopez F, Basabe-Desmonts L, Shnyrova AV. Microfluidic chip with pillar arrays for controlled production and observation of lipid membrane nanotubes. Lab Chip. 2020;20(15): 2748-2755. doi: 10.1039/D0LC00451K
  25. Bischel LL, Young EW, Mader BR, Beebe DJ. Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials. 2013;34(5): 1471-1477. doi: 10.1016/j.biomaterials.2012.11.005
  26. Bersini S, Jeon JS, Dubini G, et al. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials. 2014;35(8):2454-2461. doi: 10.1016/j.biomaterials.2013.11.050
  27. Knowlton S, Yu CH, Ersoy F, Emadi S, Khademhosseini A, Tasoglu S. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs. Biofabrication. 2016;8(2): 025019. doi: 10.1088/1758-5090/8/2/025019
  28. Yang Q, Ju D, Liu Y, et al. Design of organ-on-a-chip to improve cell capture efficiency. Int J Mech Sci. 2021;209:106705. doi: 10.1016/j.ijmecsci.2021.106705
  29. Ma Y, Han T, Yang Q, et al. Viscoelastic cell microenvironment: Hydrogel-based strategy for recapitulating dynamic ECM mechanics. Adv Funct Mater. 2021;31(24):2100848. doi: 10.1002/adfm.202100848
  30. Kim YT, Bohjanen S, Bhattacharjee N, Folch A. Partitioning of hydrogels in 3D-printed microchannels. Lab Chip. 2019;19(18):3086-3093. doi: 10.1039/C9LC00535H
  31. Wang X, Yang C, Yu Y, Zhao Y. In situ 3D bioprinting living photosynthetic scaffolds for autotrophic wound healing. Research. 2022;2022:9794745. doi: 10.34133/2022/9794745
  32. Wang X, Yu Y, Yang C, et al. Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration. Adv Funct Mater. 2021;31(40):2105190. doi: 10.1002/adfm.202105190
  33. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59(14): 1413-1433. doi: 10.1016/j.addr.2007.04.022
  34. D’Arcangelo E, McGuigan AP. Micropatterning strategies to engineer controlled cell and tissue architecture in vitro. Biotechniques. 2015;58(1):13-23. doi: 10.2144/000114245
  35. Isomursu A, Park K-Y, Hou J, et al. Directed cell migration towards softer environments. Nat Mater. 2022;21(9):1081-1090. doi: 10.1038/s41563-022-01294-2
  36. Liu H, Wu M, Jia Y, Niu L, Huang G, Xu F. Control of fibroblast shape in sequentially formed 3D hybrid hydrogels regulates cellular responses to microenvironmental cues. NPG Asia Mater. 2020;12(1):45. doi: 10.1038/s41427-020-0226-7
  37. Zhang W, Huang G, Xu F. Engineering biomaterials and approaches for mechanical stretching of cells in three dimensions. Front Bioeng Biotechnol. 2020;8:589590. doi: 10.3389/fbioe.2020.589590
  38. Yu F, Deng R, Hao Tong W, et al. A perfusion incubator liver chip for 3D cell culture with application on chronic hepatotoxicity testing. Sci Rep. 2017;7(1):14528. doi: 10.1038/s41598-017-13848-5
  39. Mogosanu D-E, Verplancke R, Dubruel P, Vanfleteren J. Fabrication of 3-dimensional biodegradable microfluidic environments for tissue engineering applications. Mater Design. 2016;89:1315-1324. https://www.researchgate.net/publication/283910649_ mogosanu_2015_MADE_published
  40. Justice BA, Badr NA, Felder RA. 3D cell culture opens new dimensions in cell-based assays. Drug Discov Today. 2009;14(1-2):102-107. doi: 10.1016/j.drudis.2008.11.006
  41. Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc. 2016;11(10):1775-1781. doi: 10.1038/nprot.2016.123
  42. Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6(1):13-22. doi: 10.1038/nnano.2010.246
  43. Toh YC, Zhang C, Zhang J, et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip. 2007;7(3):302-309. doi: 10.1039/b614872g
  44. Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet. 2022;23(8):467-491. doi: 10.1038/s41576-022-00466-9
  45. Chen H, Peng Y, Wu S, Tan LP. Electrospun 3D fibrous scaffolds for chronic wound repair. Materials (Basel, Switzerland). 2016;9(4):272. doi: 10.3390/ma9040272
  46. Ng FL, Ong YO, Chen HZ, et al. A facile method for fabricating a three-dimensional aligned fibrous scaffold for vascular application. RSC Adv. 2019;9(23):13054-13064. doi: 10.1039/C9RA00661C
  47. Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485-502. doi: 10.1089/ten.TEB.2012.0437
  48. Brown JH, Das P, DiVito MD, Ivancic D, Tan LP, Wertheim JA. Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater. 2018;73:217-227. doi: 10.1016/j.actbio.2018.02.009
  49. Das P, DiVito MD, Wertheim JA, Tan LP. Bioengineered 3D electrospun nanofibrous scaffold with human liver cells to study alcoholic liver disease in vitro. Integr Biol (Camb). 2021;13(7):184-195. doi: 10.1093/intbio/zyab011
  50. Das P, DiVito MD, Wertheim JA, Tan LP. Collagen-I and fibronectin modified three-dimensional electrospun PLGA scaffolds for long-term in vitro maintenance of functional hepatocytes. Mater Sci Eng C. 2020;111:110723. doi: 10.1016/j.msec.2020.110723
  51. Chor A, Gonçalves RP, Costa AM, et al. In vitro degradation of electrospun poly(lactic-co-glycolic acid) (PLGA) for oral mucosa regeneration. Polymers (Basel). 2020;12(8):1853. doi: 10.3390/polym12081853
  52. Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC. Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem. 2014;86(6):3124-3130. doi: 10.1021/ac4041857
  53. Kim L, Toh YC, Voldman J, Yu H. A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip. 2007;7(6):681-694. doi: 10.1039/b704602b
  54. Chen ZZ, Gao ZM, Zeng DP, Liu B, Luan Y, Qin K-R. A Y-shaped microfluidic device to study the combined effect of wall shear stress and ATP signals on intracellular calcium dynamics in vascular endothelial cells. Micromachines (Basel). 2016;7(11):213. doi: 10.3390/mi7110213
  55. Tang K, Li S, Li P, et al. Shear stress stimulates integrin β1 trafficking and increases directional migration of cancer cells via promoting deacetylation of microtubules. Biochim Biophys Acta (BBA) Mol Cell Res. 2020;1867(5):118676. doi: 10.1016/j.bbamcr.2020.118676
  56. Bhumiratana S, Bernhard J, Cimetta E, Vunjak-Novakovic G. Chapter 14—Principles of bioreactor design for tissue engineering, in Principles of Tissue Engineering. 7th ed. R Lanza, R Langer, and J Vacanti, Eds, Academic Press, Boston. 2014;261-278. doi: 10.1016/B978-0-12-398358-9.00014-8
  57. Tay CY, Irvine SA, Boey FY, Tan LP, Venkatraman S. Micro-/ nano-engineered cellular responses for soft tissue engineering and biomedical applications. Small. 2011;7(10):1361-1378. doi: 10.1002/smll.201100046ç
  58. Ho CM, Ng SH, Li KH, Yoon Y-J. 3D printed microfluidics for biological applications. Lab Chip. 2015;15(18): 3627-3637. doi: 10.1039/c5lc00685f
  59. Kreß S, Schaller-Ammann R, Feiel J, Priedl J, Kasper C, Egger Dominik. 3D printing of cell culture devices: Assessment and prevention of the cytotoxicity of photopolymers for stereolithography. Materials (Basel). 2020;13(13):3011. doi: 10.3390/ma13133011
  60. Bean AC, Tuan RS. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Biomed Mater. 2015;10(1):015018. doi: 10.1088/1748-6041/10/1/015018
  61. Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: Engineering the superficial zone of articular cartilage. Tissue Eng Part A. 2009;15(4):913-921. doi: 10.1089/ten.tea.2008.0109
  62. Shanmugasundaram S, Chaudhry H, Arinzeh TL. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng Part A. 2011;17(5-6):831-840. doi: 10.1089/ten.TEA.2010.0409
  63. Powers MJ, Domansky K, Kaazempur-Mofrad MR, et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng. 2002;78(3):257-269.
  64. Mainardi VL, Arrigoni C, Bianchi E, et al. Improving cell seeding efficiency through modification of fiber geometry in 3D printed scaffolds. Biofabrication. 2021;13(3):035025. doi: 10.1088/1758-5090/abe5b4
  65. Ayala R, Zhang C, Yang D, et al. Engineering the cell-material interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials. 2011;32(15): 3700-3711. doi: 10.1016/j.biomaterials.2011.02.004
  66. Leferink AM, Hendrikson WJ, Rouwkema J, Karperien M, van Blitterswijk CA, Moroni L. Increased cell seeding efficiency in bioplotted three-dimensional PEOT/PBT scaffolds. J Tissue Eng Regen Med. 2016;10(8):679-689. doi: 10.1002/term.1842
  67. Ali D, Effect of scaffold architecture on cell seeding efficiency: A discrete phase model CFD analysis. Comput Biol Med. 2019;109:62-69. doi: 10.1016/j.compbiomed.2019.04.025
  68. Pilarek M, Grabowska I, Ciemerych MA, Dąbkowska K, Szewczyk KW. Morphology and growth of mammalian cells in a liquid/liquid culture system supported with oxygenated perfluorodecalin. Biotechnol Lett. 2013;35(9):1387-1394. doi: 10.1007/s10529-013-1218-2
  69. Natarajan V, Berglund EJ, Chen DX, Kidambi S. Substrate stiffness regulates primary hepatocyte functions. RSC Adv. 2015;5(99):80956-80966. doi: 10.1039/C5RA15208A
  70. Ogu CC, Maxa JL, Drug interactions due to cytochrome P450. Proc (Bayl Univ Med Cent). 2000;13(4):421-423. doi: 10.1080/08998280.2000.11927719
  71. Williams JA, Ring BJ, Cantrell VE, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883-891. doi: 10.1124/dmd.30.8.883
  72. Bara JJ, Guilak F. Chapter 10—Engineering functional tissues: In vitro culture parameters, in Principles of Tissue Engineering (Fifth Edition), R Lanza, R Langer, J P Vacanti, et al. Eds, Mary Ann Liebert, Inc. Academic Press. 2020; 157-177.
  73. 73. Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: Engineering the superficial zone of articular cartilage. Tissue Eng Part A. 2008;15(4):913-921. doi: 10.1089/ten.tea.2008.0109
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing