AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.0146
RESEARCH ARTICLE

3D-bioprinted cell-laden hydrogel with anti-inflammatory and anti-bacterial activities for tracheal cartilage regeneration and restoration

Pengli Wang1 Tao Wang1 Yong Xu1* Nan Song1* Xue Zhang2*
Show Less
1 Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200430, China
2 Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
IJB 2024, 10(1), 0146 https://doi.org/10.36922/ijb.0146
Submitted: 27 April 2023 | Accepted: 28 May 2023 | Published: 13 July 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Despite the notable advances in tissue-engineered tracheal cartilage (TETC), there remain several challenges that need to be addressed, such as uneven cell distribution for cartilage formation, customized C-shaped tracheal morphology, local inflammatory reactions, and infections. To overcome these challenges, this study proposed the addition of icariin (ICA) and chitosan (CS) into a gelatin methacryloyl (GelMA) hydrogel to develop a new ICA/CS/GelMA hydrogel with anti-inflammatory and anti-bacterial properties, and three-dimensional (3D)-bioprinting feasibility. The aim of this study was to construct a TETC, a customized C-shaped cartilage structure, with uniform chondrocyte distribution as well as anti-inflammatory and anti-bacterial functions. Our results confirmed that ICA/CS/GelMA hydrogel provides desirable rheological properties, suitable printability, favorable biocompatibility, and simulated microenvironments for chondrogenesis. Moreover, the addition of ICA stimulated chondrocyte proliferation, extracellular matrix synthesis, and anti-inflammatory ability, while the encapsulation of CS enhanced the hydrogels’ anti-bacterial ability. All these led to the formation of an enhanced TETC after submuscular implantation and an elevated survival rate of experimental rabbits after orthotopic tracheal transplantation. This study provides a reliable cell-laden hydrogel with anti-inflammatory and anti-bacterial activities, suitable printability, and significant advancements in in vivo cartilage regeneration and in situ tracheal cartilage restoration.

Keywords
3D bioprinting
Anti-inflammation
Anti-bacteria
Cartilage regeneration
Tracheal restoration
Funding
The research was supported by the National Natural Science Foundation of China (82102348) and the Natural Science Foundation of Shanghai (22YF1437400).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Xu Y, Li D, Yin ZQ, et al. Tissue-engineered trachea regeneration using decellularized trachea matrix treated with laser micropore technique. Acta Biomater. 2017;58: 113–121. doi: 10.1016/j.actbio.2017.05.010
  2. Xu Y, Duan H, Li YQ, et al. Nanofibrillar decellularized Wharton’s jelly matrix for segmental tracheal repair. Adv Funct Mater. 2020;30(14): 1910067. doi: 10.1002/adfm.201910067
  3. Xu Y, Dai J, Zhu XS, et al. Biomimetic trachea engineering via a modular ring strategy based on bone-marrow stem cells and atelocollagen for use in extensive tracheal reconstruction. Adv Mater. 2022;34(6): 2106755. doi: 10.1002/adma.202106755
  4. Gao E, Li G, Cao RF, et al. Bionic tracheal tissue regeneration using a ring-shaped scaffold comprised of decellularized cartilaginous matrix and silk fibroin. Compos Part B-Eng. 2022;229: 109470. doi: 10.1016/j.compositesb.2021.109470
  5. Xu Y, Guo Y, Li Y, et al. Biomimetic trachea regeneration using a modular ring strategy based on poly(sebacoyl diglyceride)/polycaprolactone for segmental trachea defect repair. Adv Funct Mater. 2020;30(42): 2004276. doi: 10.1002/adfm.202004276
  6. Gao ER, Wang Y, Wang PL, et al. C-shaped cartilage development using Wharton’s jelly-derived hydrogels to assemble a highly biomimetic neotrachea for use in circumferential tracheal reconstruction. Adv Funct Mater. 2023;33(14) 2212830. doi: 10.1002/adfm.202212830
  7. Hong H, Seo YB, Kim DY, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials. 2020;232: 119679. doi: 10.1016/j.biomaterials.2019.119679
  8. Kandi R, Sachdeva K, Choudhury SD, Pandey PM, Mohanty S. A facile 3D bio-fabrication of customized tubular scaffolds using solvent-based extrusion printing for tissue-engineered tracheal grafts. J Biomed Mater Res A. 2023;111(2): 278–293. doi: 10.1002/jbm.a.37458
  9. Yang ML, Sun WY, Wang L, Tang H. Curcumin loaded polycaprolactone scaffold capable of anti-inflammation to enhance tracheal cartilage regeneration. Mater Design. 2022;224: 111299. doi: 10.1016/j.matdes.2022.111299
  10. Bush A, Floto RA. Pathophysiology, causes and genetics of paediatric and adult bronchiectasis. Respirology. 2019;24(11): 1053–1062. doi: 10.1111/resp.13509
  11. Kolwijck E, van de Veerdonk FL. The potential impact of the pulmonary microbiome on immunopathogenesis of Aspergillus-related lung disease. Eur J Immunol. 2014;44(11): 3156–3165. doi: 10.1002/eji.201344404
  12. Dhasmana A, Singh A, Rawal S. Biomedical grafts for tracheal tissue repairing and regeneration “Tracheal tissue engineering: an overview”. J Tissue Eng Regen Med. 2020;14(5): 653–672. doi: 10.1002/term.3019
  13. Reynolds PM, Holzmann Rasmussen C, Hansson M, Dufva M, Riehle MO, Gadegaard N. Controlling fluid flow to improve cell seeding uniformity. PLoS One. 2018;13(11): e0207211. doi: 10.1371/journal.pone.0207211
  14. Xu Y, Wang Z, Hua Y, et al. Photocrosslinked natural hydrogel composed of hyaluronic acid and gelatin enhances cartilage regeneration of decellularized trachea matrix. Mater Sci Eng C Mater Biol Appl. 2021;120: 111628. doi: 10.1016/j.msec.2020.111628
  15. Xu Y, Li Y, Liu Y, et al. Surface modification of decellularized trachea matrix with collagen and laser micropore technique to promote cartilage regeneration. Am J Transl Res. 2019;11(9): 5390–5403.
  16. Lazaridou M, Bikiaris DN, Lamprou DA. 3D bioprinted chitosan-based hydrogel scaffolds in tissue engineering and localised drug delivery. Pharmaceutics. 2022;14(9): 1978. doi: 10.3390/pharmaceutics14091978
  17. Park JH, Ahn M, Park SH, et al. 3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size. Biomaterials. 2021;279: 121246. doi: 10.1016/j.biomaterials.2021.121246
  18. Huo Y, Xu Y, Wu X, et al. Functional trachea reconstruction using 3D-bioprinted native-like tissue architecture based on designable tissue-specific bioinks. Adv Sci (Weinh). 2022;9(29): e2202181. doi: 10.1002/advs.202202181
  19. Liu Y, Li D, Yin Z, et al. Prolonged in vitro precultivation alleviates post-implantation inflammation and promotes stable subcutaneous cartilage formation in a goat model. Biomed Mater. 2016;12(1): 015006. doi: 10.1088/1748-605X/12/1/015006
  20. Luo X, Zhou G, Liu W, et al. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage. Biomed Mater. 2009;4(2): 025006. doi: 10.1088/1748-6041/4/2/025006
  21. Gao E, Wang P, Chen F, et al. Skin-derived epithelial lining facilitates orthotopic tracheal transplantation by protecting the tracheal cartilage and inhibiting granulation hyperplasia. Biomater Adv. 2022;139: 213037. doi: 10.1016/j.bioadv.2022.213037
  22. Jungebluth P, Moll G, Baiguera S, Macchiarini P. Tissue-engineered airway: a regenerative solution. Clin Pharmacol Ther. 2012;91(1): 81–93. doi: 10.1038/clpt.2011.270
  23. Dikina AD, Strobel HA, Lai BP, Rolle MW, Alsberg E. Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell constructs. Biomaterials. 2015;52: 452–462. doi: 10.1016/j.biomaterials.2015.01.073
  24. Lei D, Luo B, Guo YF, et al. 4-Axis printing microfibrous tubular scaffold and tracheal cartilage application. Sci China Mater. 2019;62(12): 1910–1920. doi: 10.1007/s40843-019-9498-5
  25. Cao Y. Icariin alleviates MSU-induced rat GA models through NF-kappaB/NALP3 pathway. Cell Biochem Funct. 2021;39(3): 357–366. doi: 10.1002/cbf.3598
  26. Mi B, Wang J, Liu Y, et al. Icariin activates autophagy via down-regulation of the NF-kappaB signaling-mediated apoptosis in chondrocytes. Front Pharmacol. 2018;9: 605. doi: 10.3389/fphar.2018.00605
  27. Oprita EI, Iosageanu A, Craciunescu O. Progress in composite hydrogels and scaffolds enriched with icariin for osteochondral defect healing. Gels. 2022;8(10): 648. doi: 10.3390/gels8100648
  28. Qi W, Dong N, Wu L, et al. Promoting oral mucosal wound healing using a DCS-RuB(2)A(2) hydrogel based on a photoreactive antibacterial and sustained release of BMSCs. Bioact Mater. 2023;23: 53–68. doi: 10.1016/j.bioactmat.2022.10.027
  29. Xiang L, Cui W. Biomedical application of photo-crosslinked gelatin hydrogels. J Leather Sci Eng. 2021;3(1): 3. doi: 10.1186/s42825-020-00043-y
  30. Zhang M, Zhu JY, Qin X, et al. Cardioprotection of tetrahedral DNA nanostructures in myocardial ischemia-reperfusion injury. Acs Appl Mater Inter. 2019;11(34): 30631–30639. doi: 10.1021/acsami.9b10645
  31. Xu Y, Guo Z, Liu R, et al. Bioengineered carina reconstruction using in-vivo bioreactor technique in human: Proof of concept study. Transl Lung Cancer Res. 2020;9(3): 705–712. doi: 10.21037/tlcr-20-534
  32. Murphy MP, Koepke LS, Lopez MT, et al. Articular cartilage regeneration by activated skeletal stem cells. Nat Med. 2020;26(10): 1583. doi: 10.1038/s41591-020-1013-2
  33. Wu CL, Harasymowicz NS, Klimak MA, Collins KH, Guilak F. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthr Cartilage. 2020;28(5): 544–554. doi: 10.1016/j.joca.2019.12.007
  34. Koh RH, Jin Y, Kim J, Hwang NS. Inflammation-modulating hydrogels for osteoarthritis cartilage tissue engineering. Cells. 2020;9(2): 419. doi: 10.3390/cells9020419
  35. Hamilton N, Bullock AJ, Macneil S, Janes SM, Birchall M. Tissue engineering airway mucosa: A systematic review. Laryngoscope. 2014;124(4): 961–968. doi: 10.1002/lary.24469
  36. Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nat Immunol. 2019;20(10): 1279–1290. doi: 10.1038/s41590-019-0451-9
  37. Mindt BC, DiGiandomenico A. Microbiome modulation as a novel strategy to treat and prevent respiratory infections. Antibiotics (Basel).2022; 11(4): 474. doi: 10.3390/antibiotics11040474
  38. Maurizi E, Adamo D, Magrelli FM, et al. Regenerative medicine of epithelia: Lessons from the past and future goals. Front Bioeng Biotechnol. 2021;9: 652214. doi: 10.3389/fbioe.2021.652214
  39. Rahimnejad M, Adoungotchodo A, Demarquette NR, Lerouge S. FRESH bioprinting of biodegradable chitosan thermosensitive hydrogels. Bioprinting. 2022;27: e00209. doi: 10.1016/j.bprint.2022.e00209
  40. Zhu Y, Ye L, Cai X, Li Z, Fan Y, Yang F. Icariin-loaded hydrogel regulates bone marrow mesenchymal stem cell chondrogenic differentiation and promotes cartilage repair in osteoarthritis. Front Bioeng Biotechnol. 2022;10: 755260. doi: 10.3389/fbioe.2022.755260
  41. Luo X, Liu Y, Zhang Z, et al. Long-term functional reconstruction of segmental tracheal defect by pedicled tissue-engineered trachea in rabbits. Biomaterials. 2013;34(13): 3336–3344. doi: 10.1016/j.biomaterials.2013.01.060
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing