AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.0119
Cite this article
Journal Browser
Volume | Year
News and Announcements
View All

In-plane measurements and computational fluid dynamics prediction of permeability for biocompatible NiTi gyroid scaffolds fabricated via laser powder bed fusion

Stanislav V. Chernyshikhin1* Biltu Mahato1 Aleksei V. Shiverskii1 Ivan A. Pelevin2 Oleg N. Dubinin1,3 Vladimir Yu. Egorov2 Sergey G. Abaimov1 Igor V. Shishkovsky1
Show Less
1 Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
2 Catalysis Lab, National University of Science and Technology MISIS, 119049 Moscow, Russia
3 World-Class Research Center, Saint Petersburg State Marine Technical University, 190121 Saint Petersburg, Russia
IJB 2024, 10(1), 0119
Submitted: 7 April 2023 | Accepted: 30 May 2023 | Published: 18 August 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

Laser powder bed fusion (LPBF) is considered a promising technology for manufacturing porous, biomimetic, and patient-specific scaffolds for bone repair. Scaffold permeability is one of the key factors to be considered for acquiring the required mass-transport properties in bone tissue engineering. This study aims to reveal the relationship between the design parameters of gyroid-based porous structure and scaffold permeability. A set of gyroid samples was manufactured from intermetallic NiTi alloy. Nine configurations of porous structures were obtained by varying the main design parameters, namely wall thickness and unit cell size. The in-plane method was employed to measure the permeability coefficient for the gyroid structures. Computational fluid dynamics simulations of the porous structures were performed to predict the targeted properties in an implant at the design stage before LPBF manufacturing. The results of the simulations were validated with the obtained experimental results. Geometrical accuracy and surface morphology of the as-built samples were investigated with various techniques. Biocompatibility assessment of the gyroid scaffolds was performed with human cell culture experiments. 

Biomimetic implant
Laser powder bed fusion
Gyroid structures
Mass-transport properties
The reported study was funded by Russian Foundation for Basic Research (RFBR), project number 20-51-56011.
  1. Mower TM, Long MJ. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A. 2016;651: 198-213. doi: 10.1016/j.msea.2015.10.068
  2. Yuan L, Ding S, Wen C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioact Mater. 2019;4: 56-70. doi: 10.1016/J.BIOACTMAT.2018.12.003
  3. Qin Y, Wen P, Guo H, et al. Additive manufacturing of biodegradable metals: Current research status and future perspectives. Acta Biomater. 2019;98: 3-22. doi: 10.1016/j.actbio.2019.04.046
  4. Yan C, Hao L, Hussein A, Young P. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J Mech Behav Biomed Mater. 2015;51: 61-73. doi: 10.1016/j.jmbbm.2015.06.024
  5. Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB. Manufacturing and processing of NiTi implants: A review. Prog Mater Sci. 2012;57: 911-946. doi: 10.1016/j.pmatsci.2011.11.001
  6. Shishkovsky IV, Volova LT, Kuznetsov MV, Morozovc YG, Parkin IP. Porous biocompatible implants and tissue scaffolds synthesized by selective laser sintering from Ti and NiTi. J Mater Chem. 2008;18: 1309. doi: 10.1039/b715313a
  7. Hameed P, Liu CF, Ummethala R, Singh N. Biomorphic porous Ti6Al4V gyroid scaffolds for bone implant applications fabricated by selective laser melting. Prog Addit Manuf. 2021;6: 455-469. doi: 10.1007/s40964-021-00210-5
  8. Montazerian H, Davoodi E, Asadi-Eydivand M, Kadkhodapour J, Solati-Hashjin M. Porous scaffold internal architecture design based on minimal surfaces: A compromise between permeability and elastic properties. Mater Des. 2017;126: 98-114. doi: 10.1016/j.matdes.2017.04.009
  9. Ma S, Tang Q, Han X, et al. Manufacturability, mechanical properties, mass-transport properties and biocompatibility of triply periodic minimal surface (TPMS) porous scaffolds fabricated by selective laser melting. Mater Des. 2020;195: 109034. doi: 10.1016/j.matdes.2020.109034
  10. Ali D, Ozalp M, Blanquer SBG, Onel S. Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis. Eur J Mech B/Fluids. 2020;79: 376-385. doi: 10.1016/j.euromechflu.2019.09.015
  11. Pires T, Dunlop JWC, Fernandes PR, Castro APG. Computational fluid dynamics simulation of TPMS scaffolds for bone tissue engineering. Proc R Soc A Math Phys Eng Sci. 2022;478. doi: 10.1098/rspa.2021.0607
  12. Jalali M, Mohammadi K, Movahhedy MR, et al. SLM additive manufacturing of NiTi porous implants: A review of constitutive models, finite element simulations, manufacturing, heat treatment, mechanical, and biomedical studies. Metals Mater Int. 2023;2023: 1-34. doi: 10.1007/s12540-023-01401-1
  13. Schoen AH. Infinite periodic minimal surfaces without self-intersections. NASA TN D-5541. 1970.
  14. Jinnai H, Nishikawa Y, Ito M, Agard DA, Spontak RJ. Topological similarity of sponge-like bicontinuous morphologies differing in length scale. Adv Mater. 2002;14: 1615-1618. doi: 10.1002/1521-4095(20021118)14:22<1615::AID-ADMA1615>3.0.CO;2-S
  15. Beaudoin AJ, Mihalko WM, Krause WR. Finite element modelling of polymethylmethacrylate flow through cancellous bone. J Biomech. 1991;24: 127-136. doi: 10.1016/0021-9290(91)90357-S
  16. Nauman EA, Fong KE, Keaveny TM. Dependence of intertrabecular permeability on flow direction and anatomic site. Ann Biomed Eng. 1999;27: 517-524. doi: 10.1114/1.195
  17. Ali D, Sen S. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures. J Mech Behav Biomed Mater. 2017;75: 262-270. doi: 10.1016/j.jmbbm.2017.07.035
  18. Ma S, Tang Q, Feng Q, Song J, Han X, Guo F. Mechanical behaviours and mass transport properties of bone-mimicking scaffolds consisted of gyroid structures manufactured using selective laser melting. J Mech Behav Biomed Mater. 2019;93: 158-169. doi: 10.1016/j.jmbbm.2019.01.023
  19. Shishkovsky I, Morozov Y, Smurov I. Nanofractal surface structure under laser sintering of titanium and nitinol for bone tissue engineering. Appl Surf Sci. 2007;254: 1145-1149. doi: 10.1016/j.apsusc.2007.09.021
  20. Chernyshikhin SV, Pelevin IA, Karimi F, Shishkovsky IV. The study on resolution factors of LPBF technology for manufacturing superelastic NiTi endodontic files. Materials (Basel). 2022;15: 6556. doi: 10.3390/ma15196556
  21. Bansiddhi A, Sargeant TD, Stupp SI, Dunand DC. Porous NiTi for bone implants: A review. Acta Biomater. 2008;4: 773-782. doi: 10.1016/j.actbio.2008.02.009
  22. Lagoudas DC, Entchev PB, Popov P, Patoor E, Brinson LC, Gao X. Shape memory alloys, part II: Modeling of polycrystals. Mech Mater. 2006;38: 430-462. doi: 10.1016/j.mechmat.2005.08.003
  23. Miyazaki S, Otsuka K. Development of shape memory alloys. ISIJ Int. 1989;29: 353-377. doi: 10.2355/isijinternational.29.353
  24. Hodgson D, Russell S. Nitinol melting, manufacture and fabrication. Minim Invasive Ther Allied Technol. 2000;9: 61-65. doi: 10.3109/13645700009063051
  25. Liu Y, Van Humbeeck J, Stalmans R, Stalmans R, Delaey L. Some aspects of the properties of NiTi shape memory alloy. J Alloys Compd. 1997;247: 115-121. doi: 10.1016/S0925-8388(96)02572-8
  26. Tang W, Sundman B, Sandström R, Qiu C. New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system. Acta Mater. 1999;47: 3457-3468. doi: 10.1016/S1359-6454(99)00193-7
  27. Elahinia M, Koo J, Ahmadian M, Woolsey C. Backstepping control of a shape memory alloy actuated robotic arm. J Vib Control. 2005;11: 407-429. doi: 10.1177/1077546305051201
  28. Williams G. Book reviews. Crit Public Health. 2008;18: 425-427. doi: 10.1080/09581590802223709
  29. Hadi A, Yousefi-Koma A, Moghaddam MM, Elahinia M, Ghazavi A. Developing a novel SMA-actuated robotic module. Sensors Actuators A Phys. 2010;162: 72-81. doi: 10.1016/j.sna.2010.06.014
  30. Piquard R, D’Acunto A, Laheurte P, Dudzinski D. Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation. Precis Eng. 2014;38: 356-364. doi: 10.1016/j.precisioneng.2013.11.006
  31. Lagoudas DC. Shape Memory Alloys. Boston, MA: Springer US. 2008. doi: 10.1007/978-0-387-47685-8
  32. Biermann D, Kahleyss F, Krebs E, Upmeier T. A study on micro-machining technology for the machining of NiTi: Five-axis micro-milling and micro deep-hole drilling. J Mater Eng Perform. 2011;20: 745-751. doi: 10.1007/s11665-010-9796-9
  33. Kanjwal K, Yeasting R, Maloney JD, et al. Retro-cardiac esophageal mobility and deflection to prevent thermal injury during atrial fibrillation ablation: an anatomic feasibility study. J Interv Card Electrophysio. 2011;30: 45-53. doi: 10.1007/s10840-010-9524-2
  34. Tarkesh Esfahani E, Elahinia MH. Developing an adaptive controller for a shape memory alloy walking assistive device. J Vib Control. 2010;16: 1897-1914. doi: 10.1177/1077546309344163
  35. Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017;53: 572-584. doi: 10.1016/j.actbio.2017.02.024
  36. Gómez S, Vlad MD, López J, Fernández E. Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater. 2016;42: 341-350. doi: 10.1016/j.actbio.2016.06.032
  37. Van Bael S, Chai YC, Truscello S, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012;8: 2824-2834. doi: 10.1016/j.actbio.2012.04.001
  38. Chernyshikhin SV, Firsov DG, Shishkovsky IV. Selective laser melting of pre-alloyed NiTi powder: Single-track study and FE modeling with heat source calibration. Materials (Basel). 2021;14: 7486. doi: 10.3390/ma14237486
  39. Adams KL, Rebenfeld L. Permeability characteristics of multilayer fiber reinforcements. Part I: Experimental observations. Polym Compos. 1991;12: 179-185. doi: 10.1002/PC.750120307
  40. Syerko E, Schmidt T, May D, et al. Benchmark exercise on image-based permeability determination of engineering textiles: Microscale predictions. Compos Part A Appl Sci Manuf. 2023;167: 107397. doi: 10.1016/j.compositesa.2022.107397
  41. Silin D, Patzek T. Pore space morphology analysis using maximal inscribed spheres. Phys A Stat Mech Its Appl. 2006;371: 336-360. doi: 10.1016/j.physa.2006.04.048
  42. Ren Z, Wei D, Wang S, Zhang DZ, Mao S. On the role of pre- and postcontour scanning in laser powder bed fusion: Thermal-fluid dynamics and laser reflections. Int J Mech Sci. 2022;226: 107389. doi: 10.1016/J.IJMECSCI.2022.107389
  43. Tan C, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations. Int J Mach Tools Manuf. 2019;141: 19-29. doi: 10.1016/j.ijmachtools.2019.04.002
  44. Li X, Hao S, Du B, et al. High-performance self-expanding NiTi stents manufactured by laser powder bed fusion. Metal Mater Int. 2022;29: 1510-21. doi: 10.1007/s12540-022-01317-2
  45. Lv J, Jia Z, Li J, et al. Electron beam melting fabrication of porous Ti6Al4V scaffolds: Cytocompatibility and osteogenesis. Adv Eng Mater. 2015;17: 1391-1398. doi: 10.1002/ADEM.201400508
  46. Gu YW, Li H, Tay BY, Lim CS, Yong MS, Khor KA. In vitro bioactivity and osteoblast response of porous NiTi synthesized by SHS using nanocrystalline Ni-Ti reaction agent. J Biomed Mater Res Part A. 2006;78: 316-323. doi: 10.1002/JBM.A.30743
Conflict of interest
The authors declare no conflict of interest.
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing