AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.0153
Cite this article
265
Download
1827
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Angiogenesis-promoting composite TPMS bone tissue engineering scaffold for mandibular defect regeneration

Hong Zhu1 Ziheng Lin1 Qifei Luan1 Yue Yang1 Meiyi Chen1 Xiaochuan Liu1 Jinsi Wang1 Kenny Man2,3 Jingying Zhang1*
Show Less
1 The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
2 Department of Oral and Maxillofacial Surgery & Special Dental Care University Medical Center Utrecht, PO 85500, Utrecht GA 3508, The Netherlands
3 Regenerative Medicine Center Utrecht, Utrecht CT 3584, The Netherlands
IJB 2024, 10(1), 0153 https://doi.org/10.36922/ijb.0153
Submitted: 3 May 2023 | Accepted: 29 June 2023 | Published: 21 August 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Mandibular defects severely impact the patient’s quality of life and are difficult problems to treat in the clinical setting. Due to the limitations of current gold-standard therapies, there is a tremendous need for tissue engineering approaches to meet this rising clinical demand. Injectable platelet-rich fibrin (I-PRF) containing a variety of pro-regenerative growth factors and stromal cell-derived factor-1 (SDF-1) has been shown to be beneficial in stimulating angiogenesis. In this study, we developed a three-cycle minimally curved biomimetic bone tissue engineering scaffold made of β-tricalcium phosphate, modified with I-PRF and SDF-1. I-PRF was loaded at a concentration of 5% onto a triply periodic minimal surface (TPMS) scaffold with a porosity of 70%. CCK-8 experiments and live-dead staining confirmed the scaffold’s good biocompatibility and its ability to promote cell proliferation. Wound healing assays showed that the TPMS scaffold loaded with I-PRF and SDF-1 (SIT) enhanced cell migration of MC3T3 cells. Moreover, angiogenesis experiments showed that the SIT scaffold promoted angiogenesis. Importantly, alkaline phosphatase and alizarin red staining confirmed that the bone scaffold accelerated MC3T3 cells’ osteogenic differentiation and mineralization. The SIT bone scaffold was then implanted into a rabbit mandible defect model. After a 2-month post-implantation period, micro- CT analysis revealed the growth of new bone tissue around the SIT construct, while histological analysis which included hematoxylin-eosin (H&E) staining and masson’s trichrome staining, alkaline phosphatase (ALP) staining, osteoprotegerin (OPG) staining demonstrated that the SIT scaffold substantially promoted the growth of a highly vascularized fibrous and bone tissue in the defect site. Taken together, these findings demonstrate the considerable potential of TPMS scaffolds loaded with I-PRF and SDF-1 in promoting the repair of mandible defects.

Keywords
Bone tissue engineering scaffold
Triply periodic minimal surface
Osteogenesis
Vascularization
Bone defect
Funding
The study was supported by Guangdong Basic and Applied Basic Research Foundation (2020B1515120001), the Special Funds for Key Areas of Ordinary Universities in Guangdong Province (2020ZDZX2013), Discipline Construction Project of Guangdong Medical University (4SG23012G and 4SG23016G), Guangdong Medical University Undergraduate Innovation Experiment Project (FYDS001, FYDS002, and FYDS003), and Guangdong University Student Innovation Project (S20202170520, S202210571094, and S202210571046).
References
  1. Chanchareonsook N, Junker R, Jongpaiboonkit L, Jansen JA. Tissue-engineered mandibular bone reconstruction for continuity defects: A systematic approach to the literature. Tissue Eng Part B Rev. 2014;20(2): 147–162. doi: 10.1089/ten.TEB.2013.0131
  2. Wong RC, Tideman H, Kin L, Merkx MAW. Biomechanics of mandibular reconstruction: A review. Int J Oral Maxillofac Surg. 2010;39(4): 313–319. doi: 10.1016/j.ijom.2009.11.003
  3. Zhao K, Wang F, Huang W, Wu Y. Clinical outcomes of vertical distraction osteogenesis for dental implantation: A systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2018;33(3): 549–564. doi: 10.11607/jomi.6140
  4. Benic GI, Hämmerle CH. Horizontal bone augmentation by means of guided bone regeneration. Periodontology. 2014;66(1): 13–40. doi: 10.1111/prd.12039
  5. Doonquah L, Holmes PJ, Ranganathan LK, et al. Bone grafting for implant surgery. Oral Maxillofac Surg Clin North Am. 2021;33(2): 211–229. doi: 10.1016/j.coms.2021.01.006
  6. Calori GM, Mazza E, Colombo M, Ripamonti C. The use of bone-graft substitutes in large bone defects: Any specific needs? Injury. 2011;42(Suppl 2): S56–S63. doi: 10.1016/j.injury.2011.06.011
  7. Shegarfi H, Reikeras O. Review article: Bone transplantation and immune response. J Orthop Surg. 2009;17(2): 206–211. doi: 10.1177/230949900901700218
  8. Liu X, Wang J, Xu X, Zhu H, Man K, Zhang J. SDF-1 functionalized hydrogel microcarriers for skin flap repair. Acs Biomater Sci Eng. 2022;8(8): 3576–3588. doi: 10.1021/acsbiomaterials.2c00755
  9. Man K, Barroso IA, Brunet MY, et al. Controlled release of epigenetically-enhanced extracellular vesicles from a GelMA/nanoclay composite hydrogel to promote bone repair. Int J Mol Sci. 2022;23(2). doi: 10.3390/ijms23020832
  10. Man K, Brunet MY, Fernandez-Rhodes M, et al. Epigenetic reprogramming enhances the therapeutic efficacy of osteoblast-derived extracellular vesicles to promote human bone marrow stem cell osteogenic differentiation. J Extracell Vesicles. 2021;10(9): e12118. doi: 10.1002/jev2.12118
  11. Choukroun J, Adda F, Schoeffler C, Vervelle A. Une opportunit?? en paro-implantologie: Le PRF. Implantodontie. 2001;42: 55–62.
  12. Jankovic S, Aleksic Z, Klokkevold P, et al. Use of platelet-rich fibrin membrane following treatment of gingival recession: A randomized clinical trial. Int J Periodontics Restor Dent. 2012;32(2): e41–50.
  13. Dohan DM, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part II: Platelet-related biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3): e45–50. doi: 10.1016/j.tripleo.2005.07.009
  14. Melek L, Taalab M. The use of injectable platelet rich fibrin in conjunction to guided bone regeneration for the management of well contained ridge defect at the time of extraction. Egypt Dent J. 2017;63: 1197–1208. doi: 10.21608/edj.2017.73912
  15. Wang X, Zhang Y, Choukroun J, Ghanaati S, Miron RJ. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets. 2018;29(1): 48–55. doi: 10.1080/09537104.2017.1293807
  16. Miron RJ, Fujioka-Kobayashi M, Hernandez M, et al. Injectable platelet rich fibrin (i-PRF): Opportunities in regenerative dentistry? Clin Oral investig. 2017;21(8): 2619–2627. doi: 10.1007/s00784-017-2063-9
  17. Kobayashi E, Flückiger L, Fujioka-Kobayashi M, et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Investig. 2016;20(9): 2353–2360. doi: 10.1007/s00784-016-1719-1
  18. Arango Duque G, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol. 2014;5: 491. doi: 10.3389/fimmu.2014.00491
  19. Dohan DM, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part I: Technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3): e37–44. doi: 10.1016/j.tripleo.2005.07.008
  20. Mijiritsky E, Assaf HD, Peleg O, Shacham M, Cerroni L, Mangani L. Use of PRP, PRF and CGF in periodontal regeneration and facial rejuvenation-A narrative review. Biology. 2021;10(4). doi: 10.3390/biology10040317
  21. Castro AB, Van Dessel J, Temmerman A, Jacobs R, Quirynen M. Effect of different platelet-rich fibrin matrices for ridge preservation in multiple tooth extractions: A split-mouth randomized controlled clinical trial. J Clin Periodontol. 2021;48(7): 984–995. doi: 10.1111/jcpe.13463
  22. Kosmidis K, Ehsan K, Pitzurra L, Loos B, Jansen I. An in vitro study into three different PRF preparations for osteogenesis potential. J Periodontal Res. 2023;58(3):483–492. doi: 10.1111/jre.13116
  23. Aydinyurt HS, Sancak T, Taskin C, Basbugan Y, Akinci Levent. Effects of ınjectable platelet-rich fibrin in experimental periodontitis in rats. Odontology. 2021;109(2): 422–432. doi: 10.1007/s10266-020-00557-1
  24. Valladao C, Monteiro M, Joly J. Guided bone regeneration in staged vertical and horizontal bone augmentation using platelet-rich fibrin associated with bone grafts: A retrospective clinical study. Int J Implant Dent. 2020;6(1): 72. doi: 10.1186/s40729-020-00266-y
  25. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(6): 638–646. doi: 10.1016/s1079-2104(98)90029-4
  26. Li Q, Pan S, Dangaria SJ, et al. Platelet-rich fibrin promotes periodontal regeneration and enhances alveolar bone augmentation. BioMed Res Int. 2013: 638043. doi: 10.1155/2013/638043
  27. Farshidfar N, Jafarpour D, Firoozi P, et al. The application of injectable platelet-rich fibrin in regenerative dentistry: A systematic scoping review of In vitro and In vivo studies. Jpn Dent Sci Rev. 2022;58: 89–123. doi: 10.1016/j.jdsr.2022.02.003
  28. Del Corso M, Mazor Z, Rutkowski JL, Ehrenfest DMD. The use of leukocyte- and platelet-rich fibrin during immediate postextractive implantation and loading for the esthetic replacement of a fractured maxillary central incisor. J Oral Implantol. 2012;38(2): 181–187. doi: 10.1563/aaid-joi-d-12-cl.3802
  29. Amiri MA, Farshidfar N, Hamedani S. The potential application of platelet-rich fibrin (PRF) in vestibuloplasty. Maxillofac Plast Reconstr Surg. 2021;43(1): 20. doi: 10.1186/s40902-021-00308-4
  30. Amiri MA, Farshidfar N, Hamedani S. The prospective relevance of autologous platelet concentrates for the treatment of oral mucositis. Oral Oncol. 2021;122: 105549. doi: 10.1016/j.oraloncology.2021.105549
  31. Simunovic F, Finkenzeller G. Vascularization strategies in bone tissue engineering. Cells. 2021;10(7): 1749. doi: 10.3390/cells10071749
  32. Shi Y, Riese DJ, 2nd, Shen J. The role of the CXCL12/ CXCR4/CXCR7 chemokine axis in cancer. Front Pharmacol. 2020;11: 574667. doi: 10.3389/fphar.2020.574667
  33. Chen J, Li F, Xu Y, et al. Cholesterol modification of SDF-1- specific siRNA enables therapeutic targeting of angiogenesis through Akt pathway inhibition. Exp Eye Res. 2019;184: 64–71. doi: 10.1016/j.exer.2019.03.006
  34. IUIS/WHO Subcommittee on Chemokine Nomenclature. Chemokine/chemokine receptor nomenclature. Cytokine. 2003;21(1): 48–49. doi: 10.1016/s1043-4666(02)00493-3
  35. Janssens R, Struyf S, Proost P. The unique structural and functional features of CXCL12. Cell Mol Immunol. 2018;15(4): 299–311. doi: 10.1038/cmi.2017.107
  36. van Weel V, Seghers L, de Vries MR, et al. Expression of vascular endothelial growth factor, stromal cell-derived factor-1, and CXCR4 in human limb muscle with acute and chronic ischemia. Arterioscler Thromb Vasc Biol. 2007;27(6): 1426–1432. doi: 10.1161/atvbaha.107.139642
  37. Man KAC, Mekhileri NV, Lim KS, et al. GelMA hydrogel reinforced with 3D printed PEGT/PBT scaffolds for supporting epigenetically-activated human bone marrow stromal cells for bone repair. J Funct Biomater. 2022;13(2). doi: 10.3390/jfb13020041
  38. Man KB, Federici AS, Hoey DA, Hoey DA, Cox SC. An ECM-mimetic hydrogel to promote the therapeutic efficacy of osteoblast-derived extracellular vesicles for bone regeneration. Front Bioeng Biotechnol. 2022;10: 829969. doi: 10.3389/fbioe.2022.829969
  39. Han L, Che S. An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self-assembled systems. Adv Mater. 2018;30(17): e1705708. doi: 10.1002/adma.201705708
  40. Barba D, Alabort E, Reed RC. Synthetic bone: Design by additive manufacturing. Acta Biomater. 2019;97: 637–656. doi: 10.1016/j.actbio.2019.07.049
  41. Mustafa NS, Akhmal NH, Izman S, Talib H. Application of computational method in designing a unit cell of bone tissue engineering scaffold: A review. Polymers. 2021;13(10). doi: 10.3390/polym13101584
  42. Kladovasilakis N, Tsongas K, Karalekas D, Tzetzis D. Architected materials for additive manufacturing: A comprehensive review. Materials. 2022;15(17). doi: 10.3390/ma15175919
  43. Song K, Wang Z, Lan J, Ma S. Porous structure design and mechanical behavior analysis based on TPMS for customized root analogue implant. J Mech Behav Biomed Mater. 2021;115: 104222. doi: 10.1016/j.jmbbm.2020.104222
  44. Shen M, Li Y, Lu F, et al. Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration. Bioact Mater. 2023;25: 374–386. doi: 10.1016/j.bioactmat.2023.02.012
  45. Yan X, Rao C, Lu L, Sharf A, Zhao H, Chen B. Strong 3D printing by TPMS injection. IEEE Trans Vis Comput. 2020;26(10): 3037–3050. doi: 10.1109/tvcg.2019.2914044
  46. Thanasrisuebwong P, Kiattavorncharoen S, Deeb GR, Deeb GR, Bencharit S. Implant site preparation application of injectable platelet-rich fibrin for vertical and horizontal bone regeneration: A clinical report. J Oral Implantol. 2022;48(1): 43–50. doi: 10.1563/aaid-joi-D-20-00031
  47. Gasparro R, Adamo D, Masucci M, Sammartino G, Mignogna MD. Use of injectable platelet-rich fibrin in the treatment of plasma cell mucositis of the oral cavity refractory to corticosteroid therapy: A case report. Dermatol Ther. 2019;32(5): e13062. doi: 10.1111/dth.13062
  48. Suresh N. “The Magic Wand”: A novel treatment option for delayed replantation of an avulsed permanent tooth using injectable platelet-rich fibrin. J Indian Soc Periodontol. 2021;25(3): 262–266. doi: 10.4103/jisp.jisp_533_19
  49. Lu F, Wu R, Shen M, et al. Rational design of bioceramic scaffolds with tuning pore geometry by stereolithography: Microstructure evaluation and mechanical evolution. J Eur Ceram Soc. 2021;41(2): 1672–1682. doi: 10.1016/j.jeurceramsoc.2020.10.002
  50. Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017;53: 572–584. doi: 10.1016/j.actbio.2017.02.024
  51. Park S-Y, Kim KS, Al-Mangour B, Grzesiak D, Lee K-A. Effect of unit cell topology on the tensile loading responses of additive manufactured CoCrMo triply periodic minimal surface sheet lattices. Mater Des. 2021;206: 109778. doi: 10.1016/j.matdes.2021.109778
  52. He D, Li H. Biomaterials affect cell-cell interactions in vitro in tissue engineering. J Mater Sci Technol. 2021;63: 62–72. doi: 10.1016/j.jmst.2020.03.022
  53. Hsieh M-T, Begley MR, Valdevit L. Architected implant designs for long bones: Advantages of minimal surface-based topologies. Mater Des. 2021;207: 109838. doi: 10.1016/j.matdes.2021.109838
  54. Lawrence LM, Salary RR, Miller V, et al. Osteoregenerative potential of 3D-printed poly ε-caprolactone tissue scaffolds in vitro using minimally manipulative expansion of primary human bone marrow stem cells. Int J Mol Sci. 2023; 24(5): 4940. doi: 10.3390/ijms24054940
  55. Castro APG, Pires T, Santos JE, Gouveia BP, Fernandes PR. Permeability versus design in TPMS scaffolds. Materials. 2019;12(8). doi: 10.3390/ma12081313
  56. O’Mahony AM, Williams JL, Katz JO, Spencer P. Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clin Oral Implant Res. 2000;11(5): 415–421. doi: 10.1034/j.1600-0501.2000.011005415.x
  57. van Eijden TM. Biomechanics of the mandible. Crit Rev Oral Biol Med. 2000;11(1): 123–136. doi: 10.1177/10454411000110010101
  58. Wang J, Li W, He X, Li Simei, Pan H, Yin Lihua. Injectable platelet-rich fibrin positively regulates osteogenic differentiation of stem cells from implant hole via the ERK1/2 pathway. Platelets. 2023;34(1): 2159020. doi: 10.1080/09537104.2022.2159020
  59. He L, Lin Y, Hu X, Zhang Y, Wu H. A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(5): 707–713. doi: 10.1016/j.tripleo.2009.06.044
  60. Sánchez AR, Sheridan PJ, Kupp LI. Is platelet-rich plasma the perfect enhancement factor? A current review. Int J Oral Maxillofac Implants. 2003;18(1): 93–103.
  61. Mu Z, He Q, Xin L, et al. Effects of injectable platelet rich fibrin on bone remodeling in combination with DBBM in maxillary sinus elevation: A randomized preclinical study. Am J Transl Res. 2020;12(11); 7312–7325.
  62. Kannan S, Ghosh J, Dhara SK. Osteogenic differentiation potential of porcine bone marrow mesenchymal stem cell subpopulations selected in different basal media. Biol Open. 2020;9(10). doi: 10.1242/bio.053280
  63. Man K, Joukhdar H, Manz XD, et al. Bone tissue engineering using 3D silk scaffolds and human dental pulp stromal cells epigenetic reprogrammed with the selective histone deacetylase inhibitor MI192. Cell Tissue Res. 2022;388(3): 565–581. doi: 10.1007/s00441-022-03613-0
  64. Kyyak S, Blatt S, Pabst A, Thiem D, Al-Nawas B, Kämmerer PW. Combination of an allogenic and a xenogenic bone substitute material with injectable platelet-rich fibrin - A comparative in vitro study. J Biomater Appl. 2020;35(1): 83–96. doi: 10.1177/0885328220914407
  65. 65. Man K, Jiang LH, Foster R, Yang XB. Immunological responses to total hip arthroplasty. J Funct Biomater. 2017;8(3). doi: 10.3390/jfb8030033
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing