AccScience Publishing / IJB / Volume 11 / Issue 1 / DOI: 10.36922/ijb.6548
RESEARCH ARTICLE

Collagen-sodium alginate-silk fibroin 3D-printed scaffold loaded with polydatin promotes cartilage regeneration by improving lipid metabolism and cell apoptosis

Weibin Du1,2* Wenxiang Zeng1,2 Zhenwei Wang1,2 Huahui Hu1,2 Yanghua Tang1,2 Wei Zhuang1,2 Guoping Cao1,2 Gang Qu1,2*
Show Less
1 Research Institute of Orthopedics, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
2 Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
IJB 2025, 11(1), 453–469; https://doi.org/10.36922/ijb.6548
Submitted: 23 November 2024 | Accepted: 24 December 2024 | Published: 24 December 2024
(This article belongs to the Special Issue Bioprinting of Nanomaterials for Biomedical Applications)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cartilage defects negatively impact the quality of life of over 500 million people worldwide. 3D-printed scaffolds loaded with polydatin (PD) have shown significant potential in cartilage defect repair. This study aims to investigate their reparative effects and analyze the associated metabolic changes using lipidomics techniques, providing new strategies for treating cartilage defects. Biocompatible 3D-printed scaffolds containing PD were prepared and 30 New Zealand rabbits were divided into three groups (10 rabbits per group) that underwent either sham surgery (Normal group) or surgical creation of a cartilage defect without scaffold filling (Model group) or with the developed scaffold filling (Scaffold group). After three months of intervention, the repair of cartilage defects was evaluated through macroscopic observation, micro-CT, hematoxylin and eosin (H&E) staining, and Safranin O/fast green (SFO/FG) staining. The expression of vascular endothelial growth factor A vascular endothelial growth factor A (VEGFA), Col2a1, and biglycan was detected by immunofluorescence while lipid metabolic profiling analysis was conducted on newly formed cartilage tissue to comprehensively evaluate the scaffold’s mechanism of action. Macroscopic observation, micro-CT, H&E staining, and SFO/FG staining indicated that the repair of cartilage defects in the Scaffold group was significantly better than in the Model group, closely resembling the Normal group. Lipidomics revealed that the Scaffold group modulated 36 metabolites, with a recovery rate of 69.23%, including ceramides (Cers), glycerophospholipids (GPs), and sphingomyelins (SMs). Immunofluorescence analysis showed increased expression of cartilage cell markers Sox9, Col2a1, biglycan, and VEGFA, along with a reduction in cell apoptosis (all p <0.05) after scaffold implantation. These findings collectively suggest that the PD-loaded 3D-printed scaffold promotes cartilage repair by restoring lipid metabolites in cartilage tissue, inhibiting chondrocyte apoptosis, enhancing vascular-related protein expression, and accelerating cartilage collagen matrix remodeling.

Graphical abstract
Keywords
3D printing
Cartilage regeneration
Lipid metabolism
Cell apoptosis
Polydatin
Funding
This research was supported by multiple funds from the following: the National Natural Science Foundation of China (No. 81904053); Zhejiang Provincial Natural Science Foundation of China (No. LTGY24H290006); Zhejiang Province Medical and Health Science and Technology Project (No. 2025KY191); Special Research Project of the Affiliated Hospital of Zhejiang Chinese Medical University (No. 2021FSYYZY43); Hangzhou Science and Technology Planning Project (No. 20220919Y084); Zhejiang Province Traditional Chinese Medicine Science and Technology Project (No. 2023ZR046); and Hangzhou Bio-Medicine and Health Industry Development Support Science and Technology Project (Nos. 2023WJC243 and 2023WJC249).
Conflict of interest
All the authors declare that they have no conflicts of interest.
References
  1. Paul S, Schrobback K, Tran PA, et al. GelMA-glycol chitosan hydrogels for cartilage regeneration: the role of uniaxial mechanical stimulation in enhancing mechanical, adhesive, and biochemical properties. APL Bioeng. 2023;7(3):036114. doi: 10.1063/5.0160472
  2. Wei W, Ma Y, Yao X, et al. Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater. 2020;6(4):998-1011. doi: 10.1016/j.bioactmat.2020.09.030
  3. Liu YY, Intini C, Dobricic M, O’Brien FJ, LLorca J, Echeverry-Rendon M. Collagen-based 3D printed poly (glycerol sebacate) composite scaffold with biomimicking mechanical properties for enhanced cartilage defect repair. Int J Biol Macromol. 2024;280(Pt 2):135827. doi: 10.1016/j.ijbiomac.2024.135827
  4. Peng L, Li H, Deng H, et al. Combination of a human articular cartilage-derived extracellular matrix scaffold and microfracture techniques for cartilage regeneration: a proof of concept in a sheep model. J Orthop Translat. 2023;44: 72-87. doi: 10.1016/j.jot.2023.09.004
  5. Li H, He Z, Li W, et al. Exploring the mechanism of microfracture in the treatment of porcine full-thickness cartilage defect. Am J Sports Med. 2023;51(4):1033-1046. doi: 10.1177/03635465231153630
  6. Huang Z, Liu C, Zheng G, et al. Articular cartilage regeneration via induced chondrocyte autophagy by sustained release of leptin inhibitor from thermo-sensitive hydrogel through STAT3/REDD1/mTORC1 cascade. Adv Healthc Mater. 2023;12(30):e2302181. doi: 10.1002/adhm.202302181
  7. Lee KW, Chung K, Nam DH, Jung M, Kim SH, Kim HG. Decellularized allogeneic cartilage paste with human costal cartilage and crosslinked hyaluronic acid-carboxymethyl cellulose carrier augments microfracture for improved articular cartilage repair. Acta Biomater. 2023;172: 297-308. doi: 10.1016/j.actbio.2023.10.008
  8. Migliorini F, Maffulli N, Baroncini A, et al. Allograft versus autograft osteochondral transplant for chondral defects of the talus: systematic review and meta-analysis. Am J Sports Med. 2022;50(12):3447-3455. doi: 10.1177/03635465211037349
  9. Wang AS, Nagelli CV, Lamba A, Saris DBF, Krych AJ, Hevesi M. Minimum 10-year outcomes of matrix-induced autologous chondrocyte implantation in the knee: a systematic review. Am J Sports Med. 2024;52(9):2407-2414. doi: 10.1177/03635465231205309
  10. Chen R, Pye JS, Li J, Little CB, Li JJ. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact Mater. 2023;27:505-545. doi: 10.1016/j.bioactmat.2023.04.016
  11. Shaygani H, Mofrad YM, Demneh SMR, Hafezi S, Almasi- Jaf A, Shamloo A. Cartilage and bone injectable hydrogels: a review of injectability methods and treatment strategies for repair in tissue engineering. Int J Biol Macromol. 2024; 282(Pt 2):136689. doi: 10.1016/j.ijbiomac.2024.136689
  12. Cheah CM, Chua CK, Leong KF, Chua SW. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: investigation and classification. Int J Adv Manuf Technol. 2003;21:291-301. doi: 10.1007/s001700300034
  13. Cheah CM, Chua CK, Leong KF, Chua SW. Development of a tissue engineering scaffold structure library for rapid prototyping. Part 2: parametric library and assembly program. Int J Adv Manuf Technol. 2003;21: 302-312. doi: 10.1007/s001700300035
  14. Du J, Zhu Z, Liu J, et al. 3D-printed gradient scaffolds for osteochondral defects: current status and perspectives. Int J Bioprint. 2023;9(4):724. doi: 10.18063/ijb.724
  15. O’Shea DG, Hodgkinson T, Curtin CM, O’Brien FJ. An injectable and 3D printable pro-chondrogenic hyaluronic acid and collagen type II composite hydrogel for the repair of articular cartilage defects. Biofabrication. 2023;16(1): 015007. doi: 10.1088/1758-5090/ad047a
  16. Du W, Wang Z, Han M, et al. Astragalus polysaccharide-containing 3D-printed scaffold for traumatized skin repair and proteomic study. J Cell Mol Med. 2024;28(16):e70023. doi: 10.1111/jcmm.70023
  17. Du W, Hu J, Huang X, et al. Feasibility of repairing skin defects by VEGF(165) gene-modified iPS-HFSCs seeded on a 3D printed scaffold containing astragalus polysaccharide. J Cell Mol Med. 2023;27(15):2136-2149. doi: 10.1111/jcmm.17800
  18. Gong W, Zhang N, Sun X, et al. Cardioprotective effects of polydatin against myocardial injury in HFD/stz and high glucose-induced diabetes via a Caveolin 1-dependent mechanism. Phytomedicine. 2024;135:156055. doi: 10.1016/j.phymed.2024.156055
  19. Zhang Z, Sun Z, Jia R, et al. Protective effects of polydatin against bone and joint disorders: the in vitro and in vivo evidence so far. Nutr Res Rev. 2024;37(1):96-107. doi: 10.1017/S0954422423000082.
  20. Bagheri Bavandpouri FS, Azizi A, Abbaszadeh F, et al. Polydatin attenuated neuropathic pain and motor dysfunction following spinal cord injury in rats by employing its anti-inflammatory and antioxidant effects. Front Pharmacol. 2024;15:1452989. doi: 10.3389/fphar.2024.1452989
  21. Ye Z, Lin J, He C, et al. Polydatin protects against articular cartilage degeneration by regulating autophagy mediated by the AMPK/mTOR signaling pathway. Histol Histopathol. 2024;39(11):1505-1515. doi: 10.14670/HH-18-739
  22. Tang S, Tang Q, Jin J, et al. Polydatin inhibits the IL-1beta-induced inflammatory response in human osteoarthritic chondrocytes by activating the Nrf2 signaling pathway and ameliorates murine osteoarthritis. Food Funct. 2018;9(3):1701-1712. doi: 10.1039/c7fo01555k
  23. Zhao Z, Wang Y, Yin B, et al. Defect-adaptive stem-cell-microcarrier construct promotes tissue repair in rabbits with knee cartilage defects. Stem Cell Rev Rep. 2023;19(1):201-212. doi: 10.1007/s12015-022-10421-0
  24. Ye C, Chen J, Qu Y, et al. Naringin in the repair of knee cartilage injury via the TGF-beta/ALK5/Smad2/3 signal transduction pathway combined with an acellular dermal matrix. J Orthop Translat. 2021;32:1-11. doi: 10.1016/j.jot.2021.06.004
  25. Liu H, Liu H, Yang Q, Fan Z. LncRNA SNHG1 enhances cartilage regeneration by modulating chondrogenic differentiation and angiogenesis potentials of JBMMSCs via mitochondrial function regulation. Stem Cell Res Ther. 2024;15(1):177. doi: 10.1186/s13287-024-03793-2
  26. Yang Z, Li H, Tian Y, et al. Biofunctionalized structure and ingredient mimicking scaffolds achieving recruitment and chondrogenesis for staged cartilage regeneration. Front Cell Dev Biol. 2021;9:655440. doi: 10.3389/fcell.2021.655440
  27. Hu G, Liang Z, Fan Z, et al. Construction of 3D-bioprinted cartilage-mimicking substitute based on photo-crosslinkable Wharton’s jelly bioinks for full-thickness articular cartilage defect repair. Mater Today Bio. 2023;21:100695. doi: 10.1016/j.mtbio.2023.100695
  28. Kim YB, Lee H, Kim GH. Strategy to achieve highly porous/ biocompatible macroscale cell blocks, using a collagen/ genipin-bioink and an optimal 3D printing process. ACS Appl Mater Interfaces. 2016;8(47):32230-32240. doi: 10.1021/acsami.6b11669
  29. Zhou Z, Cui J, Wu S, Geng Z, Su J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics. 2022;12(11):5103-5124. doi: 10.7150/thno.74548
  30. Fang Z, Liu G, Wang B, et al. An injectable self-healing alginate hydrogel with desirable mechanical and degradation properties for enhancing osteochondral regeneration. Carbohydr Polym. 2024;343:122424. doi: 10.1016/j.carbpol.2024.122424
  31. Fang K, Li P, Zhang B, et al. Insights on updates in sodium alginate/MXenes composites as the designer matrix for various applications: a review. Int J Biol Macromol. 2024;269:132032. doi: 10.1016/j.ijbiomac.2024.132032
  32. Sanchez-Ballester NM, Bataille B, Soulairol I. Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: structure-function relationship. Carbohydr Polym. 2021;270:118399. doi: 10.1016/j.carbpol.2021.118399
  33. Chaurasia B, Summers SA. Ceramides in metabolism: key lipotoxic players. Annu Rev Physiol. 2021;83:303-330. doi: 10.1146/annurev-physiol-031620-093815
  34. Hu L, Luo D, Zhang H, He L. Polydatin inhibits IL-1β- mediated chondrocyte inflammation and ameliorates cartilage degradation: involvement of the NF-κB and Wnt/ β-catenin pathways. Tissue Cell. 2022;78:101865. doi: 10.1016/j.tice.2022.101865
  35. Alizadeh J, da Silva Rosa SC, Weng X, et al. Ceramides and ceramide synthases in cancer: focus on apoptosis and autophagy. Eur J Cell Biol. 2023;102(3):151337. doi: 10.1016/j.ejcb.2023.151337
  36. Armistead J, Höpfl S, Goldhausen P, et al. A sphingolipid rheostat controls apoptosis versus apical cell extrusion as alternative tumour-suppressive mechanisms. Cell Death Dis. 2024;15(10):746. doi: 10.1038/s41419-024-07134-2
  37. Peche VS, Pietka TA, Jacome-Sosa M, et al. Endothelial cell CD36 regulates membrane ceramide formation, exosome fatty acid transfer and circulating fatty acid levels. Nat Commun. 2023;14(1):4029. doi: 10.1038/s41467-023-39752-3
  38. Bao HN, Yin J, Wang LY, et al. Aberrant accumulation of ceramides in mitochondria triggers cell death by inducing autophagy in Arabidopsis. J Exp Bot. 2024;75(5): 1314-1330. doi: 10.1093/jxb/erad456
  39. Tu H, YL Li. Inflammation balance in skeletal muscle damage and repair. Front Immunol. 2023;14:1133355. doi: 10.3389/fimmu.2023.1133355
  40. Adada M, Luberto C, Canals D. Inhibitors of the sphingomyelin cycle: sphingomyelin synthases and sphingomyelinases. Chem Phys Lipids. 2016;197:45-59. doi: 10.1016/j.chemphyslip.2015.07.008
  41. Haseeb A, Kc R, Angelozzi M, et al. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation. Proc Natl Acad Sci USA. 2021;118(8):e2019152118. doi: 10.1073/pnas.2019152118
  42. Lefebvre V, Angelozzi M, Haseeb A. SOX9 in cartilage development and disease. Curr Opin Cell Biol. 2019; 61:39-47. doi: 10.1016/j.ceb.2019.07.008
  43. Song H, Park K. Regulation and function of SOX9 during cartilage development and regeneration. Semin Cancer Biol. 2020;67(Pt 1):12-23. doi: 10.1016/j.semcancer.2020.04.008
  44. Gilbert SJ, Blain EJ, Duance VC, Mason DJ. Sphingomyelinase decreases type II collagen expression in bovine articular cartilage chondrocytes via the ERK signaling pathway. Arthritis Rheum. 2008;58(1):209-220. doi: 10.1002/art.23172
  45. Piacentino ML, Fasse AJ, Camacho-Avila A, Grabylnikov I, Bronner ME. SMPD3 expression is spatially regulated in the developing embryo by SOXE factors. Dev Biol. 2024; 506:31-41. doi: 10.1016/j.ydbio.2023.11.011
  46. Lucki NC and MB Sewer. Nuclear sphingolipid metabolism. Annu Rev Physiol. 2012;74:131-51. doi: 10.1146/annurev-physiol-020911-153321
  47. Xu Z, Xu B, Lundström SL, et al. A subset of type-II collagen-binding antibodies prevents experimental arthritis by inhibiting FCGR3 signaling in neutrophils. Nat Commun. 2023;14(1):5949. doi: 10.1038/s41467-023-41561-7
  48. Zeltz C, Gullberg D. The integrin-collagen connection – a glue for tissue repair? J Cell Sci. 2016;129(4):653-664. doi: 10.1242/jcs.180992
  49. Lauer JC, Selig M, Hart ML, Kurz B, Rolauffs B. Articular chondrocyte phenotype regulation through the cytoskeleton and the signaling processes that originate from or converge on the cytoskeleton: towards a novel understanding of the intersection between actin dynamics and chondrogenic function. Int J Mol Sci. 2021;22(6):3279. doi: 10.3390/ijms22063279
  50. Renard E, Porée B, Chadjichristos C, et al. Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated upregulation of human type II collagen gene expression in articular chondrocytes. J Mol Med (Berl). 2012;90(6):649-666. doi: 10.1007/s00109-011-0842-3
  51. Simental-Mendía M, Lara-Arias J, Álvarez-Lozano E, et al. Cotransfected human chondrocytes: over-expression of IGF-I and SOX9 enhances the synthesis of cartilage matrix components collagen-II and glycosaminoglycans. Braz J Med Biol Res. 2015;48(12):1063-1070. doi: 10.1590/1414-431X20154732

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing