AccScience Publishing / IJB / Volume 11 / Issue 1 / DOI: 10.36922/ijb.5851
RESEARCH ARTICLE

3D-printed biomimetic liposomal hydrogels for localized and targeted treatment of drug-resistant Candida albicans vaginitis

Lina Dong1 Wenyan Wang2 Bixing Fang3 Meixuan Liu1 Miao Pan1 Xiaoqi Li1 Aobuliaximu Yakupu1 Chunmao Han1 Qiong Li1* Xingang Wang1*
Show Less
1 Department of Burns and Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
2 School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
3 Department of Otolaryngology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
IJB 2025, 11(1), 485–500; https://doi.org/10.36922/ijb.5851
Submitted: 11 November 2024 | Accepted: 3 January 2025 | Published: 3 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The excessive use of antibiotics has precipitated the emergence of drug-resistant bacterial strains, underscoring the critical need for developing novel, targeted antimicrobial agents. Among the burgeoning class of nanomaterials, silver clusters have attracted considerable attention due to their broad-spectrum and enduring antimicrobial properties, coupled with the crucial advantage of not eliciting resistance. These features render them exceptionally promising in the landscape of antimicrobial therapy. Nevertheless, the constraints associated with the topical application of silver clusters and the adverse effects linked to high-dose shock therapy pose significant challenges that require resolution. To surmount these obstacles, we engineered a sophisticated nanodrug delivery system capable of specific bacterial recognition and synergistic interaction with antimicrobial agents to accomplish precise antibacterial efficacy. Through the interaction between bacterial recognition receptor proteins (TLR2 and TLR4) on macrophage membranes and pathogen-specific molecular patterns on bacteria, we observed that cultivating macrophages in the presence of specific bacteria markedly upregulated the expression of these receptors. We subsequently isolated these specialized membrane proteins, integrated them into liposomes, and loaded silver clusters to formulate composite biomimetic liposomes (Lip@MOMP2@AgNCs). These liposomes can be effectively administered to sites of vaginal infection via intravenous injection, facilitating specific bacterial recognition, and precise targeting. Moreover, we devised a 3D-printed hydrogel mesh scaffold incorporating Lip@MOMP2@AgNCs, which amalgamates the injectable liposomal formulation with the 3D-printed hydrogel scaffold to realize sustained and localized drug release. This investigation not only advances a specific and promising therapeutic strategy for combating drug-resistant Candida albicans vaginitis but also forges new pathways in addressing the formidable challenge of antibiotic resistance.  

Graphical abstract
Keywords
3D printing
Hydrogel
Liposomes
Silver nanoclusters
Vaginitis
Funding
This work was financially supported by the National Key Research and Development Project (2022YFC2403100; 2022YFC2403104), the National Natural Science Foundation of China (81772069, 81801911), and the Medical and Health Science and Technology Project of the Zhejiang Province (2020KY786).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Rodero CF, Fioramonti Calixto GM, Dos Santos KC, et al. Curcumin-loaded liquid crystalline systems for controlled drug release and improved treatment of vulvovaginal candidiasis. Mol Pharm. 2018;15(10):4491-4504. doi: 10.1021/acs.molpharmaceut.8b00507
  2. Sheary B, Dayan L. Recurrent vulvovaginal candidiasis. Austral Fam Phys. 2005;34(3):147-150. doi: 10.1016/j.ajog.2015.06.067
  3. Story K, Sobel R. Fluconazole prophylaxis in prevention of symptomatic candida vaginitis. Curr Infect Dis Rep. 2020;22(1):2. doi: 10.1007/s11908-020-0712-7
  4. Tietz H-J. Fluconazole for recurrent vulvovaginal candidiasis. Medizinische Monatsschrift fur Pharmazeuten 2009;32(6):227. doi: 10.1055/s-0029-155292
  5. Khan Z, Ahmad S, Asadzadeh M. A pilot study showing fluconazole and flucytosine activities against candida glabrata are affected by low ph: implications for the treatment of recurrent vulvovaginal candidiasis. Clin Exp Obstet Gynecol. 2024;51(2):39. doi: 10.31083/j.ceog5102039
  6. Ying Y, Zhang J, Huang SB, et al. Fluconazole susceptibility of 3,056 clinical isolates of candida species from 2005 to 2009 in a tertiary-care hospital. Indian J Med Microbiol. 2015;33(3):413-415. doi: 10.4103/0255-0857.158569
  7. Martins Maciel AA, Cunha FA, Freire TM, et al. Development and evaluation of an anti-candida cream based on silver nanoparticles, 3 Biotech. 2023;13(11):352. doi: 10.1007/s13205-023-03776-9
  8. Zhang C, Yang X, Yu L, et al. Electrospun polyasparthydrazide nanofibrous hydrogel loading with in-situ synthesized silver nanoparticles for full-thickness skin wound healing application. Mater Design. 2024;239:112818. doi: 10.1016/j.matdes.2024.112818
  9. Zhang H, Zhang Y, Li Y, et al. A novel silver nanoparticles-decorated metal-organic framework with rapid and sustained antimicrobial activity against drug-resistant candida albicans through synergistic chemodynamic and sonodynamic therapy. Adv Ther. 2023;6(8):2300074. doi: 10.1002/adtp.202300074
  10. Akter M, Sikder MT, Rahman MM, et al. A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res. 2017;9:1-16. doi: 10.1016/j.jare.2017.10.008
  11. Nasim I, Kumar SR, Vishnupriya V, et al. Cytotoxicity and anti-microbial analysis of silver and graphene oxide bio nanoparticles. Bioinformation. 2020;16(11):831-836. doi: 10.1016/j.jare.2017.10.008
  12. Wolff N, Bialas N, Loza K, et al. Increased cytotoxicity of bimetallic ultrasmall silver-platinum nanoparticles (2 nm) on cells and bacteria in comparison to silver nanoparticles of the same size. Materials (Basel). 2024;17(15):3702. doi: 10.3390/ma17153702
  13. Yuan X, Setyawati MI, Tan AS, et al. Highly luminescent silver nanoclusters with tunable emissions: cyclic reduction-decomposition synthesis and antimicrobial properties, NPG Asia Mater. 2013;5:e39. doi: 1038/am.2013.3
  14. Ai F, Liu T, Liu Y, et al. A 3d printed wound cooling system incorporated with injectable, adsorbable, swellable and broad spectrum antibacterial scaffolds for rapid hematischesis processing. J Mater Chem B. 2018;6(37):5940-5948. doi: 10.1039/c8tb01625a
  15. Wang C, Wang Y, Zhang L, et al. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections. Adv Mater. 2018;30(46):e1804023. doi: 10.1002/adma.201804023
  16. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol. 2005;23:901-944. doi: 10.1146/annurev.immunol.23.021704.115816
  17. Yu L, Pan J, Du L, et al. Novel roles of tlr2and tlr4in innate immunity against virus infections. Chin J Virol. 2018;34(4):570-578. doi: 10.1016/j.bjid.2015.10.011
  18. Gao Q, Lee J-S, Kim BS, et al. Three-dimensional printing of smart constructs using stimuli-responsive biomaterials: a future direction of precision medicine. Int J Bioprint. 2023;9(1):230-257. doi: 10.18063/ijb.v9i1.638
  19. Li Z, Zheng A, Mao Z, et al. Silk fibroin-gelatin photo-crosslinked 3D-bioprinted hydrogel with MOF-methylene blue nanoparticles for infected wound healing. Int J Bioprint. 2023;9(5):459-473. doi: 10.18063/ijb.773
  20. Chen H, Zhang X, Shang L, et al. Programmable anisotropic hydrogels with localized photothermal/magnetic responsive properties. Adv Sci. 2022;9(26): 2202173-2202182. doi: 10.1002/advs.202202173
  21. Chen XB, Anvari-Yazdi AF, Duan X, et al. Biomaterials/bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511-536. doi: 10.1016/j.bioactmat.2023.06.006
  22. Ng WL, Shkolnikov V. Jetting-based bioprinting: process, dispense physics, and applications. Bio-Design Manuf. 2024;7(2):771-799. doi: 10.1007/s42242-024-00285-3
  23. Li Y, Zhang X, Zhang X, et al. Recent progress of the vat photopolymerization technique in tissue engineering: a brief review of mechanisms, methods, materials, and applications. Polymers. 2023;15(19):3940-3975. doi: 10.3390/polym15193940
  24. Guo Z, Mi S, Sun W. A facile strategy for preparing tough, self-healing double-network hyaluronic acid hydrogels inspired by mussel cuticles. Macromol Mater Eng. 2019;304(4):1800715. doi: 10.1002/mame.201800715
  25. Ouyang J, Liu R-Y, Chen W, et al. A black phosphorus based synergistic antibacterial platform against drug resistant bacteria. J Mater Chem B. 2018;6(39):6302-6310. doi: 10.1039/c8tb01669k
  26. Munshi R, Talele G, Shah R. In-vitro evaluation of antimicrobial activities of Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Neisseria gonorrhoeae, and Candida albicans nosodes. Homeopathy. 2022;111(01):42-48. doi: 10.1055/s-0041-1727149
  27. Henkelman S, Rakhorst G, Blanton J, et al. Standardization of incubation conditions for hemolysis testing of biomaterials. Mater Sci Eng C. 2009;29(5):1650-1654. doi: 10.1016/j.msec.2009.01.002
  28. Teng Z, Wang S, Su X, et al. Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels. Adv Mater. 2014;26(22):3741-3747. doi: 10.1002/adma.201400136
  29. Liang G, Jin X, Zhang S, et al. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials. 2017;144:95-104. doi: 10.1016/j.biomaterials.2017.08.017
  30. Qi Y, Xu M, Lu H, et al. Hepatic biotransformation of renal clearable gold nanoparticles for noninvasive detection of liver glutathione level via urinalysis. Angew Chem Int Ed Engl. 2024;63(36):e202409477. doi: 10.1002/anie.202409477
  31. Yin W, Yu J, Lv F, et al. Functionalized nano-mos with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano. 2016;10(12):11000-11011. doi: 10.1021/acsnano.6b05810
  32. Netea MG, Van Der Meer JWM, Kullberg BJ. Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol. 2004;12(11):484-488. doi: 10.1016/j.tim.2004.09.004
  33. Sasai M, Yamamoto M. Pathogen recognition receptors: ligands and signaling pathways by toll-like receptors. Int Rev Immunol. 2013;32(2):116-133. doi: 10.3109/08830185.2013.774391
  34. Quesniaux V, Fremond C, Jacobs M, et al. Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect. 2004;6(10):946-959. doi: 10.1016/j.micinf.2004.04.016
  35. Simpson ME, Petri WA, Jr. TLR2 as a therapeutic target in bacterial infection. Trends Mol Med. 2020;26(8):715-717. doi: 10.1016/j.molmed.2020.05.006
  36. Udgata A, Dolasia K, Ghosh S, Mukhopadhyay S. Dribbling through the host defence: targeting the TLRs by pathogens. Crit Rev Microbiol. 2019;45(3):354-368. doi: 10.1080/1040841X.2019.1608904
  37. Choudhury QJ, Ambati S, Link CD, Lin X, Lewis ZA, Meagher RB. Dectin-3-targeted antifungal liposomes efficiently bind and kill diverse fungal pathogens. Mol Microbiol. 2023;120(5):723-739. doi: 10.1111/mmi.15174
  38. Jani K, Mehta S, Patel R, Prajapati B, Patel G. Focused insights into liposomal nanotherapeutics for antimicrobial treatment. Curr Med Chem. 2024. doi: 10.2174/0109298673322058241003073312
  39. Singh I, Kumar S, Singh S, Wani MY. Overcoming resistance: chitosan-modified liposomes as targeted drug carriers in the fight against multidrug resistant bacteria-a review. Int J Biol Macromol. 2024;278(Pt 4):135022. doi: 10.1016/j.ijbiomac.2024.135022

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing