AccScience Publishing / IJB / Volume 11 / Issue 1 / DOI: 10.36922/ijb.5104
RESEARCH ARTICLE

Biomimetically hierarchical scaffolds drive critical-sized osteochondral tissue regeneration

Farnaz Ghorbani1,2,3* Joaquim Miguel Oliveira4,5* Zhi Qian1,6 Chongjing Zhang2 Yi Zhang7 Behafarid Ghalandari8 Dejian Li2 Zeyuan Zhong2,9 Zichen Liu2,10 Yuanyuan Liu7,11,12 Baoqing Yu1*
Show Less
1 Department of Orthopaedics, Seventh People’s Hospital of Shanghai, University of Traditional Chinese Medicine, Shanghai, China
2 Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
3 Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
4 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, Portugal
5 ICVS/3B’s–PT Government Associate Laboratory, Braga, Guimarães, Portugal
6 Department of Orthopaedics, Institute of Bone and Joint Disease, Zhangye People’s Hospital affiliated to Hexi University, Gansu, China
7 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
8 Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
9 Department of Orthopedics, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
10 Department of Materials Science and Engineering, School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
11 National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
12 Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
IJB 2025, 11(1), 573–597; https://doi.org/10.36922/ijb.5104
Submitted: 9 October 2024 | Accepted: 7 January 2025 | Published: 7 January 2025
(This article belongs to the Special Issue Bioprinting of in Vitro Tissue and Disease Models)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This study presents a pioneering approach utilizing hierarchically functionalized scaffolds to foster anisotropic osteochondral tissue regeneration, leveraging the integration of distinct yet interconnected layers. We developed 3D-printed polydopamine-modified polycaprolactone (PCL) scaffolds, which were subsequently covered with a layer of electrospun PCL-gelatin fibers, and then functionalized with gelatin-bone morphogenetic protein-2 (BMP-2) following oxygen plasma surface treatments, creating a hierarchically organized multi-phasic architecture. This interconnected porous microstructure enabled controllable degradation while maintaining mechanical integrity and hydroxyapatite mineralization. In vitro assessments demonstrated that the scaffolds provided superior support for rat bone marrow mesenchymal stem cells, marked by their enhanced adhesion, viability, and proliferation. Increased alkaline phosphatase activity and osteocalcin expression over 14 days indicated that the scaffolds enhanced osteogenic performance, likely due to BMP-2 interaction with serum proteins, as supported by simulation studies, augmenting growth factor bioavailability. In vivo investigations in rabbit critical- sized osteochondral defects at 4- and 12-week post-implantation demonstrated that the multi-phasic scaffolds notably promoted secretion of type I and II collagen, neo-tissue formation, and integration with surrounding tissue, with significant results observed at 12 weeks. These findings indicate the potential of multi-phasic scaffolds for osteochondral tissue regeneration.

Graphical abstract
Keywords
3D printing
Biomimetic scaffolds
Electrospinning
Hierarchical scaffolds
Osteochondral tissue
Tissue engineering
Funding
This work was supported by the new quality specialty program of peak plateau clinical medicine of Pudong new area health commission (2024-PWXZ-21); the Program of key medicine of Shanghai Municipal Health Commission (2024ZDXK0038); the Demonstration pilot project of central financial support for the inheritance and innovation of traditional Chinese medicine (YC-2023-0202).
Conflict of interest
Joaquim Miguel Oliveira serves as the Editorial Board Member of the journal and the guest editor of the special issue: Bioprinting of In Vitro Tissue and Disease Models, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly. The authors have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript. The authors declare they have no competing interests.
References
  1. Yue S, Zhai G, Zhao S, et al. The biphasic role of the infrapatellar fat pad in osteoarthritis. Biomed Pharmacother. 2024;179:117364. doi: 10.1016/j.biopha.2024.117364
  2. Fang J, Liao J, Zhong C, Lu X, Ren F. High-strength, biomimetic functional chitosan-based hydrogels for full-thickness osteochondral defect repair. ACS Biomater Sci Eng. 2022;8(10):4449-4461. doi: 10.1021/acsbiomaterials.2c00187
  3. Liu J, Li L, Suo H, Yan M, Yin J, Fu J. 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Mater Des. 2019;171:107708.doi: 10.1016/j.matdes.2019.107708
  4. Pagan E, Stefanek E, Seyfoori A, et al. A handheld bioprinter for multi-material printing of complex constructs. Biofabrication. 2023;15(3):035012. doi: 10.1088/1758-5090/acc42c
  5. He M, Li L, Liu Y, et al. Decellularized extracellular matrix coupled with polycaprolactone/laponite to construct a biomimetic barrier membrane for bone defect repair. Int J Biol Macromol. 2024;276:133775. doi: 10.1016/j.ijbiomac.2024.133775
  6. Ghalandari B, Yu Y, Ghorbani F, et al. Polydopamine nanospheres coated with bovine serum albumin permit enhanced cell differentiation: fundamental mechanism and practical application for protein coating formation. Nanoscale. 2021;13(47):20098-20110. doi: 10.1039/D1NR07469E
  7. Ghorbani F, Ghalandari B, Khajehmohammadi M, et al. Photo-cross-linkable hyaluronic acid bioinks for bone and cartilage tissue engineering applications. Int Mater Rev. 2023;68(7):901-942. doi: 10.1080/09506608.2023.2167559
  8. Yakufu M, Wang Z, Li C, et al. Carbene-mediated gelatin and hyaluronic acid hydrogel paints with ultra adhesive ability for arthroscopic cartilage repair. Int J Biol Macromol. 2024;273:133122. doi: 10.1016/j.ijbiomac.2024.133122
  9. Gu Z, Wang J, Fu Y, et al. Smart biomaterials for articular cartilage repair and regeneration. Adv Funct Mater. 2023;33(10):2212561. doi: 10.1002/adfm.202212561
  10. Lee SJ, Nowicki M, Harris B, Zhang LG. Fabrication of a highly aligned neural scaffold via a table top stereolithography 3D printing and electrospinning. Tissue Eng Part A. 2017;23(11-12):491-502. doi: 10.1089/ten.tea.2016.0353
  11. Zarei M, Shabani Dargah M, Hasanzadeh Azar M, et al. Enhanced bone tissue regeneration using a 3D-printed poly(lactic acid)/Ti6Al4V composite scaffold with plasma treatment modification. Sci Rep. 2023;13(1):3139. doi: 10.1038/s41598-023-30300-z
  12. Teimouri R, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Surface modifications of scaffolds for bone regeneration. J Mater Res Technol. 2023;24:7938-7973. doi: 10.1016/j.jmrt.2023.05.076
  13. Ghorbani F, Kim M, Ghalandari B, et al. Architecture of β-lactoglobulin coating modulates bioinspired alginate dialdehyde-gelatine/polydopamine scaffolds for subchondral bone regeneration. Acta Biomater. 2024;181:188-201. doi: 10.1016/j.actbio.2024.04.028
  14. Lin S, Maekawa H, Moeinzadeh S, et al. An osteoinductive and biodegradable intramedullary implant accelerates bone healing and mitigates complications of bone transport in male rats. Nat Commun. 2023;14(1):4455. doi: 10.1038/s41467-023-40149-5
  15. Kim P, Park J, Lee DJ, et al. Mast4 determines the cell fate of MSCs for bone and cartilage development. Nat Commun. 2022;13(1):3960. doi: 10.1038/s41467-022-31697-3
  16. Yang X, Tian S, Fan L, et al. Integrated regulation of chondrogenic differentiation in mesenchymal stem cells and differentiation of cancer cells. Cancer Cell Int. 2022;22(1):169. doi: 10.1186/s12935-022-02598-8
  17. Nokoorani YD, Shamloo A, Bahadoran M, Moravvej H. Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering. Sci Rep. 2021;11(1):16164. doi: 10.1038/s41598-021-95763-4
  18. Montes A, Valor D, Delgado L, Pereyra C, Martínez de la Ossa E. An attempt to optimize supercritical CO2 polyaniline-polycaprolactone foaming processes to produce tissue engineering scaffolds. Polymers (Basel). 2022;14(3):488. doi: 10.3390/polym14030488
  19. Cai Q. Enzymatic degradation behavior and mechanism of Poly(lactide-co-glycolide) foams by trypsin. Biomaterials. 2003;24(4):629-638. doi: 10.1016/S0142-9612(02)00377-0
  20. Yan Y, Tao H, He J, Huang SY. The HDOCK server for integrated protein–protein docking. Nat Protoc. 2020;15(5):1829-1852. doi: 10.1038/s41596-020-0312-x
  21. Yan Y, Zhang D, Zhou P, Li B, Huang SY. HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017;45(W1):W365-W373. doi: 10.1093/nar/gkx407
  22. Protein data bank, www.rcsb.org. www.rcsb.org
  23. Naghshineh A, Dadras A, Ghalandari B, et al. Safranal as a novel anti-tubulin binding agent with potential use in cancer therapy: an in vitro study. Chem Biol Interact. 2015;238:151-160. doi: 10.1016/j.cbi.2015.06.023
  24. Micalizzi S, Russo L, Giacomelli C, et al. Multimaterial and multiscale scaffold for engineering enthesis organ. Int J Bioprinting. 2023;9(5):763. doi: 10.18063/ijb.763
  25. Criscenti G, Longoni A, Di Luca A, et al. Triphasic scaffolds for the regeneration of the bone–ligament interface. Biofabrication. 2016;8(1):015009. doi: 10.1088/1758-5090/8/1/015009
  26. Song Y, Zhang Y, Qu Q, et al. Biomaterials based on hyaluronic acid, collagen and peptides for three-dimensional cell culture and their application in stem cell differentiation. Int J Biol Macromol. 2023;226:14-36. doi: 10.1016/j.ijbiomac.2022.11.213
  27. Harati J, Tao X, Shahsavarani H, et al. Polydopamine-mediated protein adsorption alters the epigenetic status and differentiation of primary human adipose-derived stem cells (hASCs). Front Bioeng Biotechnol. 2022;10:934179. doi: 10.3389/fbioe.2022.934179
  28. Zhang Y, Sun N, Zhu M, et al. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis. Biomater Adv. 2022;133:112651. doi: 10.1016/j.msec.2022.112651
  29. Maji K, Pramanik K. Electrospun scaffold for bone regeneration. Int J Polym Mater Polym Biomater. 2022;71(11):842-857. doi: 10.1080/00914037.2021.1915784
  30. Escobar Jaramillo M, Covarrubias C, Patiño González E, Ossa Orozco CP. Optimization by mixture design of chitosan/multi-phase calcium phosphate/BMP-2 biomimetic scaffolds for bone tissue engineering. J Mech Behav Biomed Mater. 2024;152:106423. doi: 10.1016/j.jmbbm.2024.106423
  31. Alfieri ML, Weil T, Ng DYW, Ball V. Polydopamine at biological interfaces. Adv Colloid Interface Sci. 2022;305:102689. doi: 10.1016/j.cis.2022.102689
  32. Kim YJ, Kang IK, Huh MW, Yoon SC. Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge. Biomaterials. 2000;21(2):121-130. doi: 10.1016/S0142-9612(99)00137-4
  33. Yoshinyari M, Hakawa T, Matsuzaka K, et al. Oxygen plasma surface modification enhances immobilization of simvastatin acid. Biomed Res. 2006;27(1):29-36. doi: 10.2220/biomedres.27.29
  34. Adipurnama I, Yang MC, Ciach T, Butruk-Raszeja B. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomater Sci. 2017;5(1):22-37. doi: 10.1039/C6BM00618C
  35. Pohl TLM, Schwab EH, Cavalcanti-Adam EA. Covalent binding of BMP-2 on surfaces using a self-assembled monolayer approach. J Vis Exp. 2013;(78):e50842. doi: 10.3791/50842
  36. Oliveira JM, Ribeiro VP, Reis RL. Advances on gradient scaffolds for osteochondral tissue engineering. Prog Biomed Eng. 2021;3(3):033001. doi: 10.1088/2516-1091/abfc2c
  37. Ginebra MP. Cements as bone repair materials. In: Bone Repair Biomaterials. Elsevier; 2009:271-308. doi: 10.1533/9781845696610.2.271
  38. Auyson K, Koomsap P, Chanthakulchan A, Supaphol P. Investigation of applying electrospinning in fused deposition modeling for scaffold fabrication. In: High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping. CRC Press; 2013:149-154. doi: 10.1201/b15961-28
  39. Kim G, Son J, Park S, Kim W. Hybrid process for fabricating 3D hierarchical scaffolds combining rapid prototyping and electrospinning. Macromol Rapid Commun. 2008;29(19):1577-1581. doi: 10.1002/marc.200800277
  40. Khatiwala CB, Peyton SR, Metzke M, Putnam AJ. The regulation of osteogenesis by ECM rigidity in MC3T3-E1 cells requires MAPK activation. J Cell Physiol. 2007;211(3):661-672. doi: 10.1002/jcp.20974
  41. Kim K, Yeatts A, Dean D, Fisher JP. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev. 2010;16(5):523-539. doi: 10.1089/ten.teb.2010.0171
  42. Lee SJ, Heo DN, Park JS, et al. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system. Phys Chem Chem Phys. 2015;17(5):2996-2999. doi: 10.1039/C4CP04801F
  43. Alfieri ML, Panzella L, Napolitano A. Multifunctional coatings hinging on the catechol/amine interplay. Eur J Org Chem. 2024;27(1):e202301002. doi: 10.1002/ejoc.202301002
  44. Ebrahimi Z, Irani S, Ardeshirylajimi A, Seyedjafari E. Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite. Sci Rep. 2022;12(1):12359. doi: 10.1038/s41598-022-15602-y
  45. Yang Z, Xi Y, Bai J, et al. Covalent grafting of hyperbranched poly-L-lysine on Ti-based implants achieves dual functions of antibacteria and promoted osteointegration in vivo. Biomaterials. 2021;269:120534. doi: 10.1016/j.biomaterials.2020.120534
  46. Buck E, Lee S, Stone LS, Cerruti M. Protein adsorption on surfaces functionalized with COOH groups promotes anti-inflammatory macrophage responses. ACS Appl Mater Interfaces. 2021;13(6):7021-7036. doi: 10.1021/acsami.0c16509
  47. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42(6):551-555. doi: 10.1016/j.injury.2011.03.031
  48. Behrens P. Matrixgekoppelte Mikrofrakturierung. Arthroskopie. 2005;18(3):193-197. doi: 10.1007/s00142-005-0316-0
  49. Hettiaratchi MH, Krishnan L, Rouse T, Chou C, McDevitt TC, Guldberg RE. Heparin-mediated delivery of bone morphogenetic protein-2 improves spatial localization of bone regeneration. Sci Adv. 2020;6(1):aay1240. doi: 10.1126/sciadv.aay1240
  50. Franco RAG, McKenna E, Shajib MS, et al. Microtissue culture provides clarity on the relative chondrogenic and hypertrophic response of bone-marrow-derived stromal cells to TGF-β1, BMP-2, and GDF-5. Cells. 2023;13(1):37. doi: 10.3390/cells13010037
  51. Tonda-Turo C, Gentile P, Saracino S, et al. Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent. Int J Biol Macromol. 2011;49(4):700-706. doi: 10.1016/j.ijbiomac.2011.07.002
  52. Kim BR, Nguyen TBL, Min YK, Lee BT. In vitro and in vivo studies of BMP-2-loaded PCL–gelatin–BCP electrospun scaffolds. Tissue Eng Part A. 2014;20(23-24):3279-3289. doi: 10.1089/ten.tea.2014.0081
  53. Sy KHS, Ho LWC, Lau WCY, Ko H, Choi CHJ. Morphological diversity, protein adsorption, and cellular uptake of polydopamine-coated gold nanoparticles. Langmuir. 2018;34(46):14033-14045. doi: 10.1021/acs.langmuir.8b02572
  54. Firoozi N, Kang Y. Immobilization of FGF on poly(xylitol dodecanedioic Acid) polymer for tissue regeneration. Sci Rep. 2020;10(1):10419. doi: 10.1038/s41598-020-67261-6
  55. Ghosh S, Scott AK, Seelbinder B, et al. Dedifferentiation alters chondrocyte nuclear mechanics during in vitro culture and expansion. Biophys J. 2022;121(1):131-141. doi: 10.1016/j.bpj.2021.11.018
  56. Baek JW, Kim KS, Park H, Kim BS. Marine plankton exoskeletone-derived hydroxyapatite/polycaprolactone composite 3D scaffold for bone tissue engineering. Biomater Sci. 2022;10(24):7055-7066. doi: 10.1039/D2BM00875K
  57. Lee J, Lee S, Huh SJ, Kang B, Shin H. Directed regeneration of osteochondral tissue by hierarchical assembly of spatially organized composite spheroids. Adv Sci. 2022;9(3): 2103525. doi: 10.1002/advs.202103525
  58. Qin C, Ma J, Chen L, et al. 3D bioprinting of multicellular scaffolds for osteochondral regeneration. Mater Today. 2021;49:68-84. doi: 10.1016/j.mattod.2021.04.016
  59. Wang Z, Le H, Wang Y, et al. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater. 2022;11:317-338. doi: 10.1016/j.bioactmat.2021.10.002
  60. Yang T, Tamaddon M, Jiang L, et al. Bilayered scaffold with 3D printed stiff subchondral bony compartment to provide constant mechanical support for long-term cartilage regeneration. J Orthop Transl. 2021;30:112-121. doi: 10.1016/j.jot.2021.09.001

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing