AccScience Publishing / IJB / Volume 11 / Issue 1 / DOI: 10.36922/ijb.8109
RESEARCH ARTICLE

Establishing a framework for the design and fabrication of patient-specific scaffolds targeting partial meniscal defects

Francklin Trindade da Silva1 Willian Gonçalves Tsumura2 Millena de Cassia Sousa e Silva3 Anderson Oliveira Lobo3 Thiago Domingues Stocco2*
Show Less
1 Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
2 BioRegenera.Lab, Bioengineering Program, Scientific and Technological Institute University, São Paulo, SP, Brazil
3 Interdisciplinary Laboratory for Advanced Materials, Materials Science & Engineering Graduate Program, Federal University of Piauí, Teresina, PI, Brazil
IJB 2025, 11(1), 556–572; https://doi.org/10.36922/ijb.8109
Submitted: 21 December 2024 | Accepted: 14 January 2025 | Published: 15 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Meniscal injuries are a leading cause of knee dysfunction and are commonly treated with partial meniscectomy, which often leads to altered joint biomechanics and early onset osteoarthritis. Current meniscal implants and scaffolds fail to address patient-specific anatomical variations, particularly for partial defects, limiting their clinical effectiveness. This pioneering study introduces the first methodology specifically designed to develop patient-specific scaffolds tailored to partial meniscal injuries, representing a groundbreaking advancement in the field. By using medical imaging and computer-aided design, precise 3D models of injured and intact menisci were created, leveraging the contralateral meniscus as a reference. Scaffolds were fabricated through extrusion-based 3D printing to enable accurate replication of the defect geometry. Ex vivo analyses demonstrated the scaffolds’ adaptability to diverse defect types and their morphological fidelity to the native tissue. Quantitative assessments revealed minimal deviations, underscoring the precision of the proposed method. This innovative methodology provides a robust framework for developing anatomically precise scaffolds, paving the way for personalized regenerative strategies. Beyond its current application, this method holds potential for creating cell-laden scaffolds, acellular implants, or permanent prosthetic devices, addressing critical challenges in meniscal repair and advancing patient-specific tissue engineering.

Graphical abstract
Keywords
Bioprinting
Meniscus
Patient-specific modeling
Tissue engineering
Tissue scaffold
Funding
This work was supported by the National Council for Scientific and Technological Development (CNPq), the Department of Science and Technology of the Ministry of Health (Decit/SECTICS/MS), and the National Program for Genomics and Precision Health (Genomas Brasil) (CNPq: 444141/2023-5). Anderson Oliveira Lobo thanks to CNPq (403890/2023-3 and 310883/2020-2)
Conflict of interest
Thiago Domingues Stocco serves as the Editorial Board Member of the journal and Anderson Oliveira Lobo is the guest editor of the special issue: Advances in Bioprinting and Organ-on-a-chip and Applications for Precision Medicine, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly. All authors declare that they have no competing interests.
References
  1. Fox AJS, Wanivenhaus F, Burge AJ, Warren RF, Rodeo SA. The human meniscus: a review of anatomy, function, injury, and advances in treatment. Clin Anat. 2015;28(2):269-287. doi: 10.1002/ca.22456
  2. Schwer J, Ignatius A, Seitz AM. The biomechanical properties of human menisci: a systematic review. Acta Biomater. 2024;175:1-26. doi: 10.1016/j.actbio.2023.12.010
  3. Pasiński M, Zabrzyńska M, Adamczyk M, et al. A current insight into human knee menisci. Transl Res Anat. 2023;32:100259. doi: 10.1016/j.tria.2023.100259
  4. Adams BG, Houston MN, Cameron KL. The epidemiology of meniscus injury. Sports Med Arthrosc. 2021;29(3): e24-e33. doi: 10.1097/JSA.0000000000000329
  5. Bergstein VE, Ahiarakwe U, Haft M, Mikula JD, Best MJ. Decreasing Incidence of Partial Meniscectomy and Increasing Incidence of Meniscus Preservation Surgery From 2010 to 2020 in the United States. Arthroscopy. 2024: S0749-8063(24)00558-9. doi: 10.1016/j.arthro.2024.07.030
  6. Ozeki N, Seil R, Krych AJ, Koga H. Surgical treatment of complex meniscus tear and disease: state of the art. J ISAKOS. 2021;6(1):35-45. doi: 10.1136/jisakos-2019-000380
  7. Ha AY, Shalvoy RM, Voisinet A, Racine J, Aaron RK. Controversial role of arthroscopic meniscectomy of the knee: a review. World J Orthop. 2016;7(5):287. doi: 10.5312/wjo.v7.i5.287
  8. Roemer FW, Kwoh CK, Hannon MJ, et al. Partial meniscectomy is associated with increased risk of incident radiographic osteoarthritis and worsening cartilage damage in the following year. Eur Radiol. 2017;27(1):404-413. doi: 10.1007/s00330-016-4361-z
  9. Abram SGF, Judge A, Beard DJ, Price AJ. Adverse outcomes after arthroscopic partial meniscectomy: a study of 700 000 procedures in the national Hospital Episode Statistics database for England. Lancet. 2018;392(10160):2194-2202. doi: 10.1016/S0140-6736(18)31771-9
  10. Courties A, Kouki I, Soliman N, Mathieu S, Sellam J. Osteoarthritis year in review 2024: epidemiology and therapy. Osteoarthr Cartil. 2024;32(11):1397-1404. doi: 10.1016/j.joca.2024.07.014
  11. Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol. 2014;10(7):437-441. doi: 10.1038/nrrheum.2014.44
  12. Bian Y, Cai X, Zhou R, et al. Advances in meniscus tissue engineering: towards bridging the gaps from bench to bedside. Biomaterials. 2025;312:122716. doi: 10.1016/j.biomaterials.2024.122716
  13. van Minnen BS, van Tienen TG. The current state of meniscus replacements. Curr Rev Musculoskelet Med. 2024;17(8):293-302. doi: 10.1007/s12178-024-09902-1
  14. Kani KK, Porrino JA, Chew FS. Meniscal allograft transplantation: a pictorial review. Curr Probl Diagn Radiol. 2022;51(5):779-786. doi: 10.1067/j.cpradiol.2021.09.008
  15. Lucidi GA, Grassi A, Agostinone P, et al. Risk factors affecting the survival rate of collagen meniscal implant for partial meniscal deficiency: an analysis of 156 consecutive cases at a mean 10 years of follow-up. Am J Sports Med. 2022;50(11):2900-2908. doi: 10.1177/03635465221112635
  16. Accadbled F, Pham TT, Thevenin Lemoine C, Sales de Gauzy J. Implantation of an Actifit® polyurethane meniscal scaffold 18 months after subtotal lateral meniscectomy in a 13-year-old male adolescent. Am J Case Rep. 2020; 21:e920688. doi: 10.12659/AJCR.920688
  17. Cengiz IF, Pitikakis M, Cesario L, et al. Building the basis for patient-specific meniscal scaffolds: from human knee MRI to fabrication of 3D printed scaffolds. Bioprinting. 2016;1-2:1-10. doi: 10.1016/j.bprint.2016.05.001
  18. Filardo G, Petretta M, Cavallo C, et al. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Joint Res. 2019;8(2):101-106. doi: 10.1302/2046-3758.82.BJR-2018-0134.R1
  19. Stocco TD, Moreira Silva MC, Corat MAF, Gonçalves Lima G, Lobo AO. Towards bioinspired meniscus-regenerative scaffolds: engineering a novel 3D bioprinted patient-specific construct reinforced by biomimetically aligned nanofibers. Int J Nanomedicine. 2022;17:1111-1124. doi: 10.2147/IJN.S353937
  20. Jha V. Editorial commentary: rate of meniscal repair versus meniscectomy has improved and should continue to improve. Arthrosc J Arthrosc Relat Surg. Published online October 2024: S0749-8063(24)00787-4. doi: 10.1016/j.arthro.2024.10.006
  21. Zhang YS, Haghiashtiani G, Hübscher T, et al. 3D extrusion bioprinting. Nat Rev Methods Prim. 2021;1(1):75. doi: 10.1038/s43586-021-00073-8
  22. Huang G, Zhao Y, Chen D, et al. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci. 2024;12(6):1425-1448. doi: 10.1039/D3BM01934A
  23. Das S, Valoor R, Jegadeesan JT, Basu B. 3D bioprinted GelMA scaffolds for clinical applications: promise and challenges. Bioprinting. 2024;44:e00365. doi: 10.1016/j.bprint.2024.e00365
  24. Dobrisan MR, Lungu A, Ionita M. A review of the current state of the art in gelatin methacryloyl-based printing inks in bone tissue engineering. Virtual Phys Prototyp. 2024;19(1):e2378003. doi: 10.1080/17452759.2024.2378003
  25. Afewerki S, Bassous N, Harb SV, et al. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair. Commun Biol. 2021;4(1):233. doi: 10.1038/s42003-021-01758-2
  26. e Silva M de CS, de Sousa GF, das Virgens Santana M, Tsumura WG, Stocco TD, Lobo AO. Tailoring mechanical properties of printed GelMA scaffolds with multilayers of PLA/Laponite nanocomposite fibers. Mater Lett. 2024;364:136314. doi: 10.1016/j.matlet.2024.136314
  27. Montesdeoca CYC, Afewerki S, Stocco TD, et al. Oxygen-generating smart hydrogels supporting chondrocytes survival in oxygen-free environments. Colloids Surfaces B Biointerfaces. 2020;194:111192. doi: 10.1016/j.colsurfb.2020.111192
  28. Rajabi N, Rezaei A, Kharaziha M, et al. Recent advances on bioprinted gelatin methacrylate-based hydrogels for tissue repair. Tissue Eng Part A. 2021;27(11-12):679-702. doi: 10.1089/ten.tea.2020.0350
  29. Elkhoury K, Zuazola J, Vijayavenkataraman S. Bioprinting the future using light: a review on photocrosslinking reactions, photoreactive groups, and photoinitiators. SLAS Technol. 2023;28(3):142-151. doi: 10.1016/j.slast.2023.02.003
  30. Buffinton CM, Baish JW, Ebenstein DM. An introductory module in medical image segmentation for BME students. Biomed Eng Educ. 2023;3(1):95-109. doi: 10.1007/s43683-022-00085-0
  31. Yap Abdullah J, Manaf Abdullah A, Zaim S, et al. Three-dimensional analysis of reconstructed skulls using three different open-source software versus commercial software. Proc Inst Mech Eng Part H J Eng Med. 2024;238(1):55-62. doi: 10.1177/09544119231212034
  32. Gür Y. Masked stereolithography 3D printing of a brain tissue from an MRI data set. Alexandria Eng J. 2024;98:302-311. doi: 10.1016/j.aej.2024.05.002
  33. Bajaj S, Chhabra A, Taneja AK. 3D isotropic MRI of ankle: review of literature with comparison to 2D MRI. Skeletal Radiol. 2024;53(5):825-846. doi: 10.1007/s00256-023-04513-2
  34. Ai T, Zhang W, Priddy NK, Li X. Diagnostic performance of CUBE MRI sequences of the knee compared with conventional MRI. Clin Radiol. 2012;67(12):e58-e63. doi: 10.1016/j.crad.2012.07.020
  35. Parkar AP, Adriaensen MEAPM. ESR essentials: MRI of the knee—practice recommendations by ESSR. Eur Radiol. 2024;34(10):6590-6599. doi: 10.1007/s00330-024-10706-7
  36. Heckel R, Jacob M, Chaudhari A, Perlman O, Shimron E. Deep learning for accelerated and robust MRI reconstruction. Magn Reson Mater Physics, Biol Med. 2024;37(3):335-368. doi: 10.1007/s10334-024-01173-8
  37. Zhang H, Shinomiya Y, Yoshida S. 3D MRI reconstruction based on 2D generative adversarial network super-resolution. Sensors. 2021;21(9):2978. doi: 10.3390/s21092978
  38. Küstner T, Qin C, Sun C, Ning L, Scannell CM. The intelligent imaging revolution: artificial intelligence in MRI and MRS acquisition and reconstruction. Magn Reson Mater Physics, Biol Med. 2024;37(3):329-333. doi: 10.1007/s10334-024-01179-2
  39. Yoon JR, Jeong HI, Seo MJ, et al. The use of contralateral knee magnetic resonance imaging to predict meniscal size during meniscal allograft transplantation. Arthroscopy. 2014;30(10):1287-1293. doi: 10.1016/j.arthro.2014.05.009
  40. Nimeskern L, Feldmann EM, Kuo W, et al. Magnetic resonance imaging of the ear for patient-specific reconstructive surgery. In: Najbauer J, ed. PLoS One. 2014;9(8):e104975. doi: 10.1371/journal.pone.0104975
  41. Laubach M, Suresh S, Herath B, et al. Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects. J Orthop Transl. 2022;34:73-84. doi: 10.1016/j.jot.2022.04.004
  42. Holz J, Spalding T, Boutefnouchet T, et al. Patient-specific metal implants for focal chondral and osteochondral lesions in the knee; excellent clinical results at 2 years. Knee Surgery, Sport Traumatol Arthrosc. 2021; 29(9):2899-2910. doi: 10.1007/s00167-020-06289-7
  43. Mameri ES, Dasari SP, Fortier LM, et al. Review of meniscus anatomy and biomechanics. Curr Rev Musculoskelet Med. 2022;15(5):323-335. doi: 10.1007/s12178-022-09768-1
  44. Veronesi F, Di Matteo B, Vitale ND, et al. Biosynthetic scaffolds for partial meniscal loss: a systematic review from animal models to clinical practice. Bioact Mater. 2021;6(11):3782-3800. doi: 10.1016/j.bioactmat.2021.03.033
  45. Martínez Cendrero A, Franco Martínez F, Solórzano Requejo WG, Díaz Lantada A. Open-source library of tissue engineering scaffolds. Mater Des. 2022;223:111154. doi: 10.1016/j.matdes.2022.111154
  46. Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang YS. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience. 2023;26(2):106039. doi: 10.1016/j.isci.2023.106039
  47. Shiwarski DJ, Hudson AR, Tashman JW, Feinberg AW. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioeng. 2021;5(1):010904. doi: 10.1063/5.0032777
  48. Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting of complex living‐tissue constructs within seconds. Adv Mater. 2019;31(42):e1904209. doi: 10.1002/adma.201904209
  49. Guo A, Zhang S, Yang R, Sui C. Enhancing the mechanical strength of 3D printed GelMA for soft tissue engineering applications. Mater Today Bio. 2024;24:100939. doi: 10.1016/j.mtbio.2023.100939
  50. Bandyopadhyay A, Mandal BB. A three-dimensional printed silk-based biomimetic tri-layered meniscus for potential patient-specific implantation. Biofabrication. 2019;12(1):015003. doi: 10.1088/1758-5090/ab40fa
  51. Bandyopadhyay A, Ghibhela B, Shome S, Pal D, Nandi SK, Mandal BB. Silk-based injectable photocurable hydrogel loaded with autologous growth factors for patient-specific repair of meniscal defects in vivo. Appl Mater Today. 2024;37:102111. doi: 10.1016/j.apmt.2024.102111
  52. Avila A, Vasavada K, Shankar DS, Petrera M, Jazrawi LM, Strauss EJ. Current controversies in arthroscopic partial meniscectomy. Curr Rev Musculoskelet Med. 2022;15(5):336-343. doi: 10.1007/s12178-022-09770-7

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing