AccScience Publishing / IJB / Volume 11 / Issue 1 / DOI: 10.36922/ijb.6383
RESEARCH ARTICLE

3D-printed cardiac patch coated with human extracellular matrix hydrogel: Significant improvement of cell adhesion and immune reaction

Marjan Enayati1,2* Christopher Riedmüller1,2 Sabrina Rohringer1,2 Lukas Weber1 Felix Pointner1 Luis Pichelkastner1 Marta Bonora2,3 Ana Isabel Antunes Goncalves1 Francesco Moscato2,3,4 Ewald Unger3 Emir Benca5 Marvin Dötzlhofer1 Bruno K. Podesser1,2 Karl H. Schneider1,2,4 Helga Bergmeister1,2
Show Less
1 Center for Biomedical Research and Translational Surgery, Medical University Vienna, Austria
2 Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
3 Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Austria
4 Austrian Cluster for Tissue Regeneration, Vienna, Austria
5 Department of Orthopedics and Trauma Surgery, Medical University Vienna, Austria
IJB 2025, 11(1), 532–555; https://doi.org/10.36922/ijb.6383
Submitted: 21 November 2024 | Accepted: 2 January 2025 | Published: 2 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Constructing a cell-inductive scaffold that promotes the proliferation of cardiac-specific host cells for effective myocardium repair is a great challenge in the realm of cardiac tissue engineering. Three-dimensional (3D) printing allows for the precise fabrication of intricate structures like cardiac patches but produces large pores (sub-macron), reducing surface area for cell attachment and tissue regeneration. Moreover, the hydrophobic nature of most polyesters used in 3D printing further complicates cell adhesion and integration. In this study, human chorion placenta extracellular matrix (hpcECM) hydrogel with highly preserved ECM components, such as glycosaminoglycans (GAG), elastin, and collagen, was coated on a hydrophobic 3D-printed poly-ε-caprolactone (PCL) patch. The presence of hpcECM on the 3D-printed PCL patches could significantly induce higher levels of cell attachment, proliferation, and activation of cells such as human umbilical vein endothelial cells (HUVECs), endothelial progenitor cells (EPCs), H9c2 undifferentiated/differentiated cardiomyoblasts and fibroblasts. Fibronectin-coated samples served as controls in the experiment. Coating efficiency, hpcECM modulus of elasticity (in nanoscale), surface profile roughness, and contact angle measurements were performed and confirmed the significant potential of hpcECM as a stable, soft, hydrophilic coating matrix with low modulus of elasticity for 3D-printed synthetic constructs. Furthermore, hpcECM could modulate the high expression of inflammatory genes (CCR7 and IL-1α, expressed after 72 hours) via high expression of IL-10 in macrophages after one week. Expression of adhesion molecules (ICAM, VCAM-1, and PECAM-1) and hemolysis rate did not show statistically significant changes. All these findings highlight hpcECM as a promising immunomodulatory matrix supporting tissue-specific cell attachment and activation; particularly, hydrophobic 3D-printed constructs would outperform equivalents like fibronectin-coated constructs.

Graphical abstract
Keywords
3D printing
Human placenta chorion ECM
Induced hydrophilicity
Cell adhesion
Immunomodulation
Funding
This study was partly funded by the Ludwig Boltzmann Institute for Cardiovascular Research and by the Optiflow 3D project funded by the Austrian Research Promotion Agency (FFG) Nr. FO999891239.
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2022 update: a report from the American heart association. Circulation. 2022;145(8):e153-e639. doi: 10.1161/CIR.0000000000001052
  2. Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest. 2017;127(5): 1600-1612. doi: 10.1172/jci87491
  3. Nielsen SH, Mouton AJ, DeLeon-Pennell KY, Genovese F, Karsdal M, Lindsey ML. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biol. 2019;75-76:43-57. doi: 10.1016/j.matbio.2017.12.001
  4. Richbourg NR, Peppas NA, Sikavitsas VI. Tuning the biomimetic behavior of scaffolds for regenerative medicine through surface modifications. J Tissue Eng Regen Med. 2019;13(8):1275-1293. doi: 10.1002/term.2859
  5. Sutthiwanjampa C, Hong S, Kim WJ, Kang SH, Park H. Hydrophilic modification strategies to enhance the surface biocompatibility of poly(dimethylsiloxane)-based biomaterials for medical applications. Adv Mater Interf. 2023;10(12):2202333. doi: 10.1002/admi.202202333
  6. Ghaedamini Sl, Karbasi S, Hashemibeni B, Honarvar A, Rabiei A. PCL/Agarose 3D-printed scaffold for tissue engineering applications: fabrication, characterization, and cellular activities. Res Pharm Sci. 2023;18(5):566-579. doi: 10.4103/1735-5362.383711
  7. Rashidi N, Najmoddin N, Tavakoli AH, Samanipour R. 3D printed hetero-layered composite scaffold with engineered superficial zone promotes osteogenic differentiation of pre-osteoblast MC3T3-E1 cells. Surf Interfaces. 2024;51:104683. doi: 10.1016/j.surfin.2024.104683
  8. Rezaei H, Matin AA, Mohammadnejad M. Cold atmospheric plasma treated 3D printed polylactic acid film; application in thin film solid phase microextraction of anticancer drugs. Talanta. 2024;266:125064. doi: 10.1016/j.talanta.2023.125064
  9. Ebrahimi Z, Irani S, Ardeshirylajimi A, Seyedjafari E. Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite. Sci Rep-UK. 2022;12(1):12359. doi: 10.1038/s41598-022-15602-y
  10. García AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res. 2005;84(5):407-413. doi: 10.1177/154405910508400502
  11. Sarker M, Park S, Kumar V, Lee CH. Micro-thin hydrogel coating integrated in 3D printing for spatiotemporal delivery of bioactive small molecules. Biofabrication. 2025;17(1): 015019. doi: 10.1088/1758-5090/ad89fe
  12. Pei M, Hwangbo H, Kim G. Hierarchical fibrous collagen/ poly(ε-caprolactone) structure fabricated with a 3D-printing process for tissue engineering applications. Comp B Eng. 2023;259:110730. doi: 10.1016/j.compositesb.2023.110730
  13. Loyo C, Palza H, Saavedra M, et al. Electrospun polycaprolactone/graphene oxide scaffolds with secondary surface porosity and gelatin-coating. Mater Today Commun. 2024;39:109057. doi: 10.1016/j.mtcomm.2024.109057
  14. Zhu J, Li Z, Zou Y, et al. Advanced application of collagen-based biomaterials in tissue repair and restoration. J Leather Sci Eng. 2022;4(1):30. doi: 10.1186/s42825-022-00102-6
  15. Lukin I, Erezuma I, Maeso L, et al. Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics. 2022;14(6):1177. doi: 10.3390/pharmaceutics14061177
  16. Al-Yafeai Z, Yurdagul A, Peretik JM, Alfaidi M, Murphy PA, Orr AW. Endothelial FN (Fibronectin) deposition by α5β1 integrins drives atherogenic inflammation. Arterioscler Thromb Vasc Biol. 2018;38(11):2601-2614. doi: 10.1161/atvbaha.118.311705
  17. Kang BJ, Kim H, Lee SK, et al. Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function. Acta Biomater. 2014;10(7):3007-3017. doi: 10.1016/j.actbio.2014.03.013
  18. Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh AM, Majidi Zolbin M. Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods. Front Bioeng Biotechnol. 2022;10:805299. doi: 10.3389/fbioe.2022.805299
  19. Dwivedi R, Kumar S, Pandey R, et al. Polycaprolactone as biomaterial for bone scaffolds: review of literature. J Oral Biol Craniofac Res. 2020;10(1):381-388. doi: 10.1016/j.jobcr.2019.10.003
  20. Hu Z, Luo Y, Ni R, et al. Biological importance of human amniotic membrane in tissue engineering and regenerative medicine. Mater Today Bio. 2023;22:100790. doi: 10.1016/j.mtbio.2023.100790
  21. Kim JT, Kim KW, Mun SK, Chun YS, Kim JC. Transplantation of autologous perichondrium with amniotic membrane for progressive scleral necrosis. The Ocular Surface. 2019;17(3):571-577. doi: 10.1016/j.jtos.2019.05.004
  22. DiDomenico LA, Orgill DP, Galiano RD, et al. Use of an aseptically processed, dehydrated human amnion and chorion membrane improves likelihood and rate of healing in chronic diabetic foot ulcers: a prospective, randomised, multi-centre clinical trial in 80 patients. Int Wound J. 2018;15(6):950-957. doi: 10.1111/iwj.12954
  23. Jiang Y, Sun SJ, Zhen Z, et al. Myocardial repair of bioengineered cardiac patches with decellularized placental scaffold and human-induced pluripotent stem cells in a rat model of myocardial infarction. Stem Cell Res Ther. 2021;12(1):13. doi: 10.1186/s13287-020-02066-y
  24. Francis MP, Breathwaite E, Bulysheva AA, et al. Human placenta hydrogel reduces scarring in a rat model of cardiac ischemia and enhances cardiomyocyte and stem cell cultures. Acta Biomater. 2017;52:92-104. doi: 10.1016/j.actbio.2016.12.027
  25. Duan Y, Huang W, Zhan B, et al. Bioink derived from human placenta supporting angiogenesis. Biomed Mater. 2022;17(5). doi: 10.1088/1748-605X/ac7b5b
  26. Schneider KH, Goldberg BJ, Hasturk O, et al. Silk fibroin, gelatin, and human placenta extracellular matrix-based composite hydrogels for 3D bioprinting and soft tissue engineering. Biomater Res. 2023;27(1):117. doi: 10.1186/s40824-023-00431-5
  27. Khosrowpour Z, Bashiri Z, Jafari D, et al. Translation prospects of a novel ECM-silk fibroin/alginate 3D-printed scaffold for treatment of full-thickness skin wounds: an in vitro and in vivo study. Polym Adv Technol. 2024;35(11):e6637. doi: 10.1002/pat.6637
  28. Lakkireddy C, Vishwakarma SK, Raju N, et al. Fabrication of decellularized amnion and chorion scaffolds to develop bioengineered cell-laden constructs. Cell Mol Bioeng. 2022;15(1):137-150. doi: 10.1007/s12195-021-00707-7
  29. Patel HN, Vohra YK, Singh R, Thomas V. HuBiogel incorporated fibro-porous hybrid nanomatrix graft for vascular tissue interfaces. Mater Today Chem. 2020;17: 100323. doi: 10.1016/j.mtchem.2020.100323.
  30. Lei J, Priddy LB, Lim JJ, Koob TJ. Dehydrated human amnion/ chorion membrane (dHACM) allografts as a therapy for orthopedic tissue repair. Tech Orthop. 2017;32(3):149-157. doi: 10.1097/bto.0000000000000229
  31. Go YY, Chae SW, Song JJ. Osteogenic effects of exosomes derived from human chorion membrane extracts. Biomater Res. 2021;25(1):16. doi: 10.1186/s40824-021-00218-6
  32. Flores-Espinosa P, Méndez I, Irles C, et al. Immunomodulatory role of decidual prolactin on the human fetal membranes and placenta. Frontiers in Immunology. 2023;14:1212736. doi: 10.3389/fimmu.2023.1212736
  33. McQuilling JP, Vines JB, Kimmerling KA, Mowry KC. Proteomic comparison of amnion and chorion and evaluation of the effects of processing on placental membranes. Wounds. 2017;29(6):E36-E40.
  34. Schneider KH, Enayati M, Grasl C, et al. Acellular vascular matrix grafts from human placenta chorion: impact of ECM preservation on graft characteristics, protein composition and in vivo performance. Biomaterials. 2018;177:14-26. doi: 10.1016/j.biomaterials.2018.05.045
  35. Rohringer S, Schneider KH, Eder G, et al. Chorion-derived extracellular matrix hydrogel and fibronectin surface coatings show similar beneficial effects on endothelialization of expanded polytetrafluorethylene vascular grafts. Mater Today Bio. 2022;14:100262. doi: 10.1016/j.mtbio.2022.100262
  36. Kaniuk E, Lechowska-Liszka A, Gajek M, et al. Correlation between porosity and physicochemical and biological properties of electrospinning PLA/PVA membranes for skin regeneration. Biomater Adv. 2023;152:213506. doi: 10.1016/j.bioadv.2023.213506
  37. Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G. Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res A. 2010;93a(2):716-723. doi: 10.1002/jbm.a.32584
  38. Janssen D, De Palma R, Verlaak S, Heremans P, Dehaen W. Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films. 2006;515(4):1433-1438. doi: 10.1016/j.tsf.2006.04.006
  39. Thaler B, Baik N, Hohensinner PJ, et al. Differential expression of Plg-R(KT) and its effects on migration of proinflammatory monocyte and macrophage subsets. Blood. 2019;134(6):561-567. doi: 10.1182/blood.2018850420
  40. Silvestri A, Boffito M, Sartori S, Ciardelli G. Biomimetic materials and scaffolds for myocardial tissue regeneration. Macromol Biosci. 2013;13(8):984-1019. doi: 10.1002/mabi.201200483
  41. Liu T, Hao Y, Zhang Z, et al. Advanced cardiac patches for the treatment of myocardial infarction. Circulation. 2024;149(25):2002-2020. doi: 10.1161/CIRCULATIONAHA.123.067097
  42. Kakabadze Z, Kakabadze A, Chakhunashvili D, et al. Decellularized human placenta supports hepatic tissue and allows rescue in acute liver failure. Hepatology. 2018;67(5):1956-1969. doi: 10.1002/hep.29713
  43. Kim BS, Kim H, Gao G, Jang J, Cho DW. Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication. 2017;9(3):034104. doi: 10.1088/1758-5090/aa7e98
  44. Prince E, Kumacheva E. Design and applications of man-made biomimetic fibrillar hydrogels. Nat Rev Mater. 2019;4(2):99-115. doi: 10.1038/s41578-018-0077-9
  45. Schneider KH, Aigner P, Holnthoner W, et al. Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts. Acta Biomater. 2016;29:125-134. doi: 10.1016/j.actbio.2015.09.038
  46. Ferreira SA, Motwani MS, Faull PA, et al. Bi-directional cell-pericellular matrix interactions direct stem cell fate. Nat Commun. 2018;(1):4049. doi: 10.1038/s41467-018-06183-4
  47. Huebsch N, Arany PR, Mao AS, et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater. 2010;9(6):518-526. doi: 10.1038/nmat2732
  48. Simmons CA, Alsberg E, Hsiong S, Kim WJ, Mooney DJ. Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone. 2004;35(2):562-569. doi: 10.1016/j.bone.2004.02.027
  49. Tang J, Vandergriff A, Wang Z, et al. A regenerative cardiac patch formed by spray painting of biomaterials onto the heart. Tissue Eng Part C Methods. 2017;23(3):146-155. doi: 10.1089/ten.TEC.2016.0492
  50. Rebollar E, Frischauf I, Olbrich M, et al. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials. 2008;29(12):1796-1806. doi: 10.1016/j.biomaterials.2007.12.039
  51. Paragkumar T, Edith ND, Six JL. Surface characteristics of PLA and PLGA films. Appl Surf Sci. 2006;253(5):2758-2764. doi: 10.1016/j.apsusc.2006.05.047
  52. Kapnisi M, Mansfield C, Marijon C, et al. Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction. Adv Funct Mater. 2018;28(21):1800618. doi: 10.1002/adfm.201800618
  53. Wall ST, Walker JC, Healy KE, Ratcliffe MB, Guccione JM. Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation. 2006;114(24):2627-2635. doi: 10.1161/circulationaha.106.657270
  54. Saraswathibhatla A, Indana D, Chaudhuri O. Cell– extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol. 2023;24(7):495-516. doi: 10.1038/s41580-023-00583-1
  55. Yang B, Wei K, Loebel C, et al. Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics. Nat Commun. 2021;12(1):3514. doi: 10.1038/s41467-021-23120-0
  56. Gautieri A, Vesentini S, Redaelli A, Buehler MJ. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 2011;11(2):757-766. doi: 10.1021/nl103943u
  57. Vader D, Kabla A, Weitz D, Mahadevan L. Strain-induced alignment in collagen gels. PLoS One. 2009;4(6):e5902. doi: 10.1371/journal.pone.0005902
  58. Kolliopoulos V, Dewey MJ, Polanek M, Xu H, Harley BAC. Amnion and chorion matrix maintain hMSC osteogenic response and enhance immunomodulatory and angiogenic potential in a mineralized collagen scaffold. Front Bioeng Biotechnol. 2022;10:1034701. doi: 10.3389/fbioe.2022.1034701
  59. Soundararajan M, Kannan S. Fibroblasts and mesenchymal stem cells: two sides of the same coin?. J Cell Physiol. 2018;233(12):9099-9109. doi: 10.1002/jcp.26860
  60. Costa-Almeida R, Gomez-Lazaro M, Ramalho C, Granja PL, Soares R, Guerreiro SG. Fibroblast-endothelial partners for vascularization strategies in tissue engineering. Tissue Eng Part A. 2015;21(5-6):1055-1065. doi: 10.1089/ten.TEA.2014.0443
  61. Loureiro J, Miguel SP, Galván-Chacón V, et al. Three-dimensionally printed hydrogel cardiac patch for infarct regeneration based on natural polysaccharides. Polymers. 2023;15(13):2824. doi: 10.3390/polym15132824
  62. Virag JI, Murry CE. Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am J Pathol. 2003;163(6):2433-2440. doi: 10.1016/S0002-9440(10)63598-5
  63. Caneparo C, Baratange C, Chabaud S, Bolduc S. Conditioned medium produced by fibroblasts cultured in low oxygen pressure allows the formation of highly structured capillary-like networks in fibrin gels. Sci Rep-UK. 2020; 10(1):9291. doi: 10.1038/s41598-020-66145-z
  64. Kunz-Schughart LA, Schroeder JA, Wondrak M, et al. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. Am J Physiol Cell Physiol. 2006;290(5):C1385-C1398. doi: 10.1152/ajpcell.00248.2005
  65. Amin K, Dannenfelser RM. In vitro hemolysis: guidance for the pharmaceutical scientist. J Pharm Sci. 2006;95(6): 1173-1176. doi: 10.1002/jps.20627
  66. Huang H, Huang W. Regulation of endothelial progenitor cell functions in ischemic heart disease: new therapeutic targets for cardiac remodeling and repair. Front Cardiovasc Med. 2022;9:896782. doi: 10.3389/fcvm.2022.896782
  67. Du F, Zhou J, Gong R, et al. Endothelial progenitor cells in atherosclerosis. Front Biosci (Landmark Ed). 2012;17(6): 2327-2349. doi: 10.2741/4055
  68. Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2012;2(7):a006692. doi: 10.1101/cshperspect.a006692
  69. Clauder F, Czerniak AS, Friebe S, Mayr SG, Scheinert D, Beck-Sickinger AG. Endothelialization of titanium surfaces by bioinspired cell adhesion peptide coatings. Bioconjug Chem. 2019;30(10):2664-2674. doi: 10.1021/acs.bioconjchem.9b00573
  70. Ardila DC, Liou JJ, Maestas D, et al. Surface modification of electrospun scaffolds for endothelialization of tissue-engineered vascular grafts using human cord blood-derived endothelial cells. J Clin Med. 2019;8(2):185. doi: 10.3390/jcm8020185
  71. Sgarioto M, Vigneron P, Patterson J, Malherbe F, Nagel MD, Egles C. Collagen type I together with fibronectin provide a better support for endothelialization. C R Biol. 2012;335(8):520-528. doi: 10.1016/j.crvi.2012.07.003
  72. Kaur R, Singh V, Kumari P, Singh R, Chopra H, Emran TB. Novel insights on the role of VCAM-1 and ICAM-1: potential biomarkers for cardiovascular diseases. Ann Med Surg (Lond). 2022;84:104802. doi: 10.1016/j.amsu.2022.104802
  73. Lertkiatmongkol P, Liao D, Mei H, Hu Y, Newman PJ. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr Opin Hematol. 2016;23(3):253-259. doi: 10.1097/moh.0000000000000239
  74. Bačáková L, Mareš V, Lisá V, Švorčı́k V. Molecular mechanisms of improved adhesion and growth of an endothelial cell line cultured on polystyrene implanted with fluorine ions. Biomaterials. 2000;21(11):1173-1179. doi: 10.1016/S0142-9612(00)00009-0
  75. Post A, Wang E, Cosgriff-Hernandez E. A review of integrin-mediated endothelial cell phenotype in the design of cardiovascular devices. Ann Biomed Eng. 2019;47(2):366-380. doi: 10.1007/s10439-018-02171-3
  76. Kimes BW, Brandt BL. Properties of a clonal muscle cell line from rat heart. Exp Cell Res. 1976;98(2):367-381. doi: 10.1016/0014-4827(76)90447-x
  77. Watkins SJ, Borthwick GM, Arthur HM. The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim. 2011;47(2):125-131. doi: 10.1007/s11626-010-9368-1
  78. Branco AF, Pereira SP, Gonzalez S, Gusev O, Rizvanov AA, Oliveira PJ. Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS One. 2015;10(6):e0129303. doi: 10.1371/journal.pone.0129303.
  79. Branco AF, Sampaio SF, Wieckowski MR, Sardão VA, Oliveira PJ. Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: differential activation of stress and survival pathways. Int J Biochem Cell Biol. 2013;45(11):2379-2391. doi: 10.1016/j.biocel.2013.08.006
  80. Arıcı Ş, Kamali AR, Ege D. CMC/Gel/GO 3D-printed cardiac patches: GO and CMC improve flexibility and promote H9C2 cell proliferation, while EDC/NHS enhances stability. Biofabrication. 2025;17(1):015025. doi: 10.1088/1758-5090/ad8e87
  81. Bertani FR, Mozetic P, Fioramonti M, et al. Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis. Sci Rep-UK. 2017;7(1):8965. doi: 10.1038/s41598-017-08121-8
  82. Rey-Giraud F, Hafner M, Ries CH. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One. 2012;7(8):e42656. doi: 10.1371/journal.pone.0042656
  83. Yue B. Biology of the extracellular matrix: an overview. J Glaucoma. 2014;23(8 Suppl 1):S20-S23. doi: 10.1097/ijg.0000000000000108
  84. Mehanna RA, Essawy MM, Barkat MA, et al. Cardiac stem cells: current knowledge and future prospects. World J Stem Cells. 2022;14(1):1-40. doi: 10.4252/wjsc.v14.i1.1

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing