AccScience Publishing / IJB / Volume 10 / Issue 6 / DOI: 10.36922/ijb.4426
RESEARCH ARTICLE

Development and in vitro evaluation of bioprinted plasma-infused biocarriers for mesenchymal stromal cell delivery in musculoskeletal disorder treatment

Cristina Del Amo1,2 Miguel Perez Garrastachu3 Inés Jaúregui2 Francisco J Alvarez1,4 Isabel Andia1,4*
Show Less
1 Regenerative Therapies Unit, Biobizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
2 3D Printing and Bioprinting Lab, Biobizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
3 Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Biscay, Spain
4 Cruces University Hospital, Osakidetza-Basque Health Service and Biobizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
IJB 2024, 10(6), 4426 https://doi.org/10.36922/ijb.4426
Submitted: 2 August 2024 | Accepted: 24 September 2024 | Published: 24 September 2024
(This article belongs to the Special Issue Bioprinting of Nanomaterials for Biomedical Applications)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

A meta-analysis revealed no advantage of surgical over non-surgical treatments, emphasizing the need for non-invasive methods, particularly for prevalent osteoarticular diseases like knee osteoarthritis. To enhance therapeutic efficacy, we developed a plasma-infused gelatin methacryloyl (GelMA) biocarrier loaded with bone marrow-derived mesenchymal stromal cells (BMSCs). These constructs were evaluated in vitro for their properties and paracrine interactions in non-inflamed and inflamed environments. GelMA infused with platelet-rich plasma (PRP) and fresh frozen plasma (FFP; platelet-poor) were compared. Pristine GelMA was used as a control. Both PRP and FFP enhanced the proliferation and viability of BMSCs in biocarriers, promoting cell survival pathways while inhibiting necrotic and apoptotic events. Proteomic analysis displayed no differences in BMSC behavior between PRP and FFP in the absence of inflammation (p = 0.550). However, both plasmas significantly modified cell behavior under inflammatory conditions (p = 0.001). Both PRP- and FFP-infused biocarriers activated 10 key signaling pathways, including HIF- 1α, neuroinflammation, and extracellular matrix turnover. PRP-specific pathways included IL-17, IL-6, and several growth factor signaling pathways. No significant differences in angiogenesis were linked to platelet dose (p = 0.079), but both PRP and FFP significantly enhanced angiogenesis compared to GelMA alone (p < 0.001 for PRP; p = 0.002 for FFP). FFP displayed stronger angiogenesis than PRP under IL-1β treatment (p = 0.042). Plasma-infused biocarriers altered BMSC behavior in response to inflammatory cytokines compared to GelMA (p = 0.001). PRP specifically activated TGF-β signaling under IL-1β (Z = 2.308; p = 1.02E-35), which was not observed under TNF-α exposure. These findings suggest that PRP- and FFP-infused biocarriers may offer promising improvements in regenerative therapies for inflammatory osteoarticular conditions like knee osteoarthritis.  

Graphical abstract
Keywords
Extrusion bioprinting
Mesenchymal stromal cells
Platelet-rich plasma
Biocarrier
Musculoskeletal conditions
Osteoarticular pathology
Funding
This work was supported by a collaborative fundamental research grant from the Basque Government, Elkartek Program (grant no. BIO4CURE kk-2022-000). Cristina Del Amo and Inés Jaúregui are funded by PT20/00185 from ISCIII, and Miguel Perez-Garrastachu is funded by the post-doctoral fellowship Margarita Salas.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Chen N, Fong DYT, Wong JYH. Health and economic outcomes associated with musculoskeletal disorders attributable to high body mass index in 192 countries and territories in 2019. JAMA Netw Open. 2023;6:E2250674. doi: 10.1001/jamanetworkopen.2022.50674
  2. Ferrari AJ, Santomauro DF, Aali A, et al. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2024;403(10440):2133-2161. doi: 10.1016/S0140-6736(24)00757-8
  3. Skou ST, Poulsen E, Bricca A, et al. Benefits and harms of interventions with surgery compared to interventions without surgery for musculoskeletal conditions: a systematic review with meta-analysis. J Orthop Sports Phys Ther. 2022;52:312-344. doi: 10.2519/jospt.2022.11075
  4. Yin P, Jiang Y, Fang X, et al. Cell-based therapies for degenerative musculoskeletal diseases. Adv Sci (Weinh). 2023; 10(21):e2207050. doi: 10.1002/advs.202207050
  5. Belk JW, Lim JJ, Keeter C, et al. Patients with knee osteoarthritis who receive platelet-rich plasma or bone marrow aspirate concentrate injections have better outcomes than patients who receive hyaluronic acid: systematic review and meta-analysis. Arthroscopy. 2023;39:1714-1734. doi: 10.1016/j.arthro.2023.03.001
  6. Anz AW, Plummer HA, Cohen A, Everts PA, Andrews JR, Hackel JG. Bone marrow aspirate concentrate is equivalent to platelet-rich plasma for the treatment of knee osteoarthritis at 2 years: a prospective randomized trial. Am J Sports Med. 2022;50:618-629. doi: 10.1177/03635465211072554
  7. Zhang Y, Yang H, He F, Zhu X. Intra-articular injection choice for osteoarthritis: making sense of cell source-an updated systematic review and dual network meta-analysis. Arthritis Res Ther. 2022;24:260. doi: 10.1186/s13075-022-02953-0
  8. Brunet A, Goodell MA, Rando TA. Ageing and rejuvenation of tissue stem cells and their niches. Nat Rev Mol Cell Biol. 2023;24(1):45-62. doi: 10.1038/S41580-022-00510-w
  9. Kim SH, Djaja YP, Park YB, Park JG, Ko YB, Ha CW. Intra-articular injection of culture-expanded mesenchymal stem cells without adjuvant surgery in knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med. 2020;48:2839-2849. doi: 10.1177/0363546519892278
  10. Dai P, Wu Y, Gao Y, et al. Multiomics analysis of platelet-rich plasma promoting biological performance of mesenchymal stem cells. BMC Genomics. 2024;25(1):564. doi: 10.1186/s12864-024-10329-8
  11. Álvarez Hernández P, de la Mata Llord J. Expanded mesenchymal stromal cells in knee osteoarthritis: a systematic literature review. Reumatol Clin (Engl Ed). 2022;18(1):49-55. doi: 10.1016/j.reumae.2020.10.001
  12. de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol. 2023;24:334. doi: 10.1038/S41580-022-00568-6
  13. Zohora FT, Aliyu M, Saboor-Yaraghi AA. Secretome-based acellular therapy of bone marrow-derived mesenchymal stem cells in degenerative and immunological disorders: a narrative review. Heliyon. 2023;9(7):e18120. doi: 10.1016/j.heliyon.2023.e18120
  14. Mamidi N, Ijadi F, Norahan MH. Leveraging the recent advancements in GelMA scaffolds for bone tissue engineering: an assessment of challenges and opportunities. Biomacromolecules. 2024;25(4):2075-2113. doi: 10.1021/acs.biomac.3c00279
  15. Harrison P. Subcommittee on platelet physiology. The use of platelets in regenerative medicine and proposal for a new classification system: guidance from the SSC of the ISTH. J Thromb Haemost. 2018;16(9):1895-1900. doi: 10.1111/jth.14223
  16. de Melo BAG, França CG, Dávila JL, et al. Hyaluronic acid and fibrin from L-PRP form semi-IPNs with tunable properties suitable for use in regenerative medicine. Mater Sci Eng C Mater Biol Appl. 2020;109:110547. doi: 10.1016/j.msec.2019.110547
  17. Daly AC, Prendergast ME, Hughes AJ, Burdick JA. Bioprinting for the biologist. Cell. 2021;184(1):18-32. doi: 10.1016/j.cell.2020.12.002
  18. Del Amo C, Andia I. Blood-derived biomaterials for tissue graft biofabrication by solvent-based extrusion bioprinting. Int J Bioprinting. 2023;9:762. doi: 10.18063/ijb.762
  19. Del Amo C, Perez-Garrastachu M, Jauregui I, Llama-Pino X, Andia I. Assessing bioprinted functionalized grafts for biological tendon augmentation in vitro. Int J Mol Sci. 2024;25(9):4752. doi: 10.3390/ijms25094752
  20. IRIS Home. Available at: https://iris.who.int/?locale-attribute=en& (accessed on Jul 23, 2024)
  21. Potyondy T, Uquillas JA, Tebon PJ, et al. Recent advances in 3D bioprinting of musculoskeletal tissues. Biofabrication. 2021;13(2):10.1088/1758-5090/abc8de. doi: 10.1088/1758-5090/abc8de
  22. Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ bioprinting - bioprinting from benchside to bedside? Acta Biomater. 2020;101:14-25. doi: 10.1016/j.actbio.2019.08.045
  23. Adib AA, Sheikhi A, Shahhosseini M, et al. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue. Biofabrication. 2020;12(4):045006. doi: 10.1088/1758-5090/ab97a1
  24. Samandari M, Mostafavi A, Quint J, Memić A, Tamayol A. In situ bioprinting: intraoperative implementation of regenerative medicine. Trends Biotechnol. 2022;40:1229-1247. doi: 10.1016/j.tibtech.2022.03.009
  25. Andia I, Iturregi A, Jauregi I, et al. Intracorporeal extruder device for bio-ink application in laparoscopic surgery. Spanish patent 232528ES. 2023.
  26. Jovic D, Yu Y, Wang D, et al. A brief overview of global trends in MSC-based cell therapy. Stem cell Rev Rep. 2022;18:1525-1545. doi: 10.1007/S12015-022-10369-1
  27. Gupta PK, Maheshwari S, Cherian JJ, et al. Efficacy and safety of stempeucel in osteoarthritis of the knee: a phase 3 randomized, double-blind, multicenter, placebo-controlled study. Am J Sports Med. 2023;51:2254-2266. doi: 10.1177/03635465231180323
  28. Jeyaraman M, Muthu S, Ganie PA. Does the source of mesenchymal stem cell have an effect in themanagement of osteoarthritis of the knee? Meta-analysis of randomized controlled trials. Cartilage. 2021;13:1532S. doi: 10.1177/1947603520951623
  29. Hurley ET, Sherman SL, Stokes DJ, et al. Experts achieve consensus on a majority of statements regarding platelet-rich plasma treatments for treatment of musculoskeletal pathology. Arthroscopy. 2024;40:470-477.e1. doi: 10.1016/j.arthro.2023.08.020
  30. Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost. 2011;105(Suppl 1):S13-33. doi: 10.1160/THS10-11-0720
  31. Schol J, Tamagawa S, Volleman TNE, Ishijima M, Sakai D. A comprehensive review of cell transplantation and platelet‐rich plasma therapy for the treatment of disc degeneration‐related back and neck pain: a systematic evidence‐based analysis. JOR Spine. 2024;7(2):e1348. doi: 10.1002/JSP2.1348
  32. Abbadessa A, Ronca A, Salerno A. Integrating bioprinting, cell therapies and drug delivery towards in vivo regeneration of cartilage, bone and osteochondral tissue. Drug Deliv Transl Res. 2024;14:858-894. doi: 10.1007/s13346-023-01437-1
  33. Acebes-Huerta A, Martínez-Botía P, Carbajo-Argüelles G, et al. Characterization of the molecular composition and in vitro regenerative capacity of platelet-based bioproducts and related subfractions. Acta Biomater. 2024;177(3):132-147. doi: 10.1016/j.actbio.2024.01.029
  34. Piao Y, You H, Xu T, et al. Biomedical applications of gelatin methacryloyl hydrogels. Eng Regen. 2021;2:47-56. doi: 10.1016/j.engreg.2021.03.002
  35. Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater. 2022;8:267-295. doi: 10.1016/j.bioactmat.2021.06.027
  36. Gu Y, Miao F, Liu K, et al. Fabrication of gelatin methacryloyl/ graphene oxide conductive hydrogel for bone repair. J Biomater Sci Polym Ed. 2023;34:2076-2090. doi: 10.1080/09205063.2023.2217063
  37. Haskell A, White BP, Rogers RE, et al. Scalable manufacture of therapeutic mesenchymal stromal cell products on customizable microcarriers in vertical wheel bioreactors that improve direct visualization, product harvest, and cost. Cytotherapy. 2024;26(4):372-382. doi: 10.1016/j.jcyt.2024.01.009
  38. Kusuma GD, Carthew J, Lim R, Frith JE. Effect of the microenvironment on mesenchymal stem cell paracrine signaling: opportunities to engineer the therapeutic effect. Stem Cells Dev. 2017;26:617-631. doi: 10.1089/scd.2016.0349
  39. Iseki T, Rothrauff BB, Kihara S, et al. Enhanced osteochondral repair by leukocyte-depleted platelet-rich plasma in combination with adipose-derived mesenchymal stromal cells encapsulated in a three-dimensional photocrosslinked injectable hydrogel in a rabbit model. Stem Cell Res. Ther. 2024;15(1):159. doi: 10.1186/S13287-024-03750-z
  40. Cuesta-Gomez N, Graham GJ, Campbell JDM. Chemokines and their receptors: predictors of the therapeutic potential of mesenchymal stromal cells. J Transl Med. 2021; 19(1):1-10. doi: 10.1186/s12967-021-02822-5
  41. Burnouf T, Chou ML, Lundy DJ, Chuang EY, Tseng CL, Goubran H. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J Biomed Sci. 2023;30:79. doi: 10.1186/S12929-023-00972-w
  42. Noronha NDC, Mizukami A, Caliári-Oliveira C, et al. Correction to: priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther. 2019;10(1):132. doi: 10.1186/S13287-019-1259-0
  43. Lu P, Ruan D, Huang M, et al. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther. 2024;9(1):166. doi: 10.1038/s41392-024-01852-x
  44. Cruz EM, Machado LS, Zamproni LN, et al. A gelatin methacrylate-based hydrogel as a potential bioink for 3d bioprinting and neuronal differentiation. Pharmaceutics. 2023;15(2):627. doi: 10.3390/pharmaceutics15020627

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing