AccScience Publishing / IJB / Volume 10 / Issue 6 / DOI: 10.36922/ijb.3590
REVIEW

Bioprinting of wearable sensors, brain-machine interfaces, and exoskeleton robots

Xinrui Wang1,2 Wei Dong1 Hui Dong1* Yongzhuo Gao1* Jiawen Lin3 Haichao Jia3 Yihui Tao4 Hao Sun3*
Show Less
1 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
2 Weapon Equipment Research Institute South Industries Group Corp., Beijing, 102202, China
3 College of Mechanical Engineering, Fuzhou University, Fuzhou, 350001, China
4 College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518118, China
IJB 2024, 10(6), 3590 https://doi.org/10.36922/ijb.3590
Submitted: 6 May 2024 | Accepted: 24 July 2024 | Published: 31 July 2024
(This article belongs to the Special Issue Biomimetic and Bioinspired Printed Structures)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bioprinting holds the promise of producing biocompatible structures capable of seamlessly integrating with human physiology, improving human health by enabling the precise fabrication of tissue models that closely mimic the architecture and functions of human skin, brain, and bone. Building on the advancements of bioprinting, there has been a corresponding increase in cross-disciplinary innovations in wearable technologies, brain-machine interfaces, and exoskeleton robotics. Given the progress of bioprinting in skin study, wearable electronics are expected to have improved biocompatibility and integration with the human body. For patient-specific neural tissues created using bioprinting, the potential to replicate neural activities through the synergy of bioprinting and brain-machine interfaces presents opportunities to enhance the performance of more advanced neuromorphic systems. Inspired by the advancements of bioprinting in producing patient-specific bone grafts and scaffolds, this technology could bridge the gap between mechanical systems and biomechanics, redefining the limits of skeleton robotics. This review explores the advancements of bioprinting in wearable sensors, brain-machine interfaces, and exoskeleton robots, and briefly addresses the existing and potential challenges in interdisciplinary research.  

Graphical abstract
Keywords
Bioprinting
Wearable sensor
Brain-machine interface
Exoskeleton robot
Funding
This work was supported by the National Natural Science Foundation of China (grant numbers: 62173093; 61604042).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  2. Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting-an emerging strategy to fabricate biomimetic and large vascularized tissue constructs. Bioact Mater. 2024;32:356-384. doi: 10.1016/j.bioactmat.2023.10.012
  3. Vijayavenkataraman S, Yan W C, Lu W F, et al. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132:296-332. doi: 10.1016/j.addr.2018.07.004
  4. Dornhof J, Zieger V, Kieninger J, et al. Bioprinting-based automated deposition of single cancer cell spheroids into oxygen sensor microelectrode wells. Lab Chip. 2022;22(22):4369-4381. doi: 10.1039/D2LC00705C
  5. Liu H, Xing F, Yu P, et al. A review of biomacromolecule-based 3D bioprinting strategies for structure-function integrated repair of skin tissues. Int J Biol Macromol. 2024;268:131623. doi: 10.1016/j.ijbiomac.2024.131623
  6. Abbadessa A, Ronca A, Salerno A. Integrating bioprinting, cell therapies and drug delivery towards in vivo regeneration of cartilage, bone and osteochondral tissue. Drug Deliv Transl Res. 2024;14:858-894. doi: 10.1007/s13346-023-01437-1
  7. Lee S J, Esworthy T, Stake S, et al. Advances in 3D bioprinting for neural tissue engineering. Adv Biosyst. 2018;2(4):1700213. doi: 10.1002/adbi.201700213
  8. Gravina R, Fortino G. Wearable body sensor networks: state-of-the-art and research directions. IEEE Sens J. 2020;21(11):12511-12522. doi: 10.1109/JSEN.2020.3044447
  9. Vasilopoulou M, Mohd Yusoff AR, Chai Y, et al. Neuromorphic computing based on halide perovskites. Nat Electron. 2023;6(12):949-962. doi: 10.1038/s41928-023-01082-z
  10. Spezialetti M, Placidi G, Rossi S. Emotion recognition for human-robot interaction: recent advances and future perspectives. Front Robot AI. 2020;7:532279. doi: 10.3389/frobt.2020.532279
  11. Ates HC, Nguyen PQ, Gonzalez-Macia L, et al. End-to-end design of wearable sensors. Nat Rev Mater. 2022; 7(11):887-907. doi: 10.1038/s41578-022-00460-x
  12. Liu F, Deswal S, Christou A, et al. Neuro-inspired electronic skin for robots. Sci Robot. 2022;7(67):eabl7344. doi: 10.1126/scirobotics.abl7344
  13. Li D, Yao K, Gao Z, et al. Recent progress of skin-integrated electronics for intelligent sensing. Light: Advanced Manufacturing. 2021;2(1):39-58. doi: 10.37188/lam.2021.004
  14. Shanechi MM. Brain–machine interfaces from motor to mood. Nat Neurosci. 2019;22(10):1554-1564. doi: 10.1038/s41593-019-0488-y
  15. Ziai Y, Zargarian SS, Rinoldi C, et al. Conducting polymer‐based nanostructured materials for brain–machine interfaces. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15(5):e1895. doi: 10.1002/wnan.1895
  16. Portillo-Lara R, Goding JA, Green RA. Adaptive biomimicry: design of neural interfaces with enhanced biointegration. Curr Opin Biotechnol. 2021;72:62-68. doi: 10.1016/j.copbio.2021.10.004
  17. Shi D, Zhang W, Zhang W, et al. A review on lower limb rehabilitation exoskeleton robots. Chin J Mech Eng. 2019;32(1):1-11. doi: 10.1186/s10033-019-0389-8
  18. Selvam A, Aggarwal T, Mukherjee M, et al. Humans and robots: friends of the future? a bird’s eye view of biomanufacturing industry 5.0. Biotechnol Adv. 2023;68:108237. doi: 10.1016/j.biotechadv.2023.108237
  19. da Silva JLGF, Gonçalves SMB, da Silva HHP, et al. Three-dimensional printed exoskeletons and orthoses for the upper limb – a systematic review. Prosthet Orthot Int. 2022;10:1097. doi: 10.1097/PXR.0000000000000318
  20. Popov A, Malferrari S, Kalaskar DM. 3D bioprinting for musculoskeletal applications. J 3D Print Med. 2017;1(3): 191-211. doi: 10.2217/3dp-2017-0004
  21. Zhang YS, Haghiashtiani G, Hübscher T, et al. 3D extrusion bioprinting. Nat Rev Methods Primers. 2021;1(1):75. doi: 10.1038/s43586-021-00073-8
  22. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(9):10793-10833. doi: 10.1021/acs.chemrev.0c00008
  23. Yang J, Chen Z, Gao C, et al. A mechanical-assisted post-bioprinting strategy for challenging bone defects repair. Nat Commun. 2024;15(1):3565. doi: 10.1038/s41467-024-48023-8
  24. Di Buduo CA, Lunghi M, Kuzmenko V, et al. Bioprinting soft 3D models of hematopoiesis using natural silk fibroin-based bioink efficiently supports platelet differentiation. Adv Sci. 2024;11:2308276. doi: 10.1002/advs.202308276
  25. Gillispie G, Prim P, Copus J, et al. Assessment methodologies for extrusion-based bioink printability. Biofabrication. 2020;12(2):022003. doi: 10.1088/1758-5090/ab6f0d
  26. Schwab A, Levato R, D’Este M, et al. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028-11055. doi: 10.1021/acs.chemrev.0c00084
  27. Cooke ME, Rosenzweig DH. The rheology of direct and suspended extrusion bioprinting. APL Bioengineering. 2021;5(1):011502. doi: 10.1063/5.0031475
  28. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20-42. doi: 10.1016/j.biomaterials.2016.06.012
  29. Shah PP, Shah HB, Maniar KK, et al. Extrusion-based 3D bioprinting of alginate-based tissue constructs. Procedia CIRP. 2020;95:143-148. doi: 10.1016/j.procir.2020.06.007
  30. Kačarević ŽP, Rider PM, Alkildani S, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials. 2018;11(11):2199. doi: 10.3390/ma11112199
  31. Levato R, Dudaryeva O, Garciamendez-Mijares CE, et al. Light-based vat-polymerization bioprinting. Nat Rev Methods Primers. 2023;3(1):47. doi: 10.1038/s43586-023-00231-0
  32. Chang J, Sun X. Laser-induced forward transfer based laser bioprinting in biomedical applications. Front Bioeng Biotechnol. 2023;11:1255782. doi: 10.3389/fbioe.2023.1255782
  33. Wu Y, Su H, Li M, et al. Digital light processing‐based multi‐material bioprinting: processes, applications, and perspectives. J Biomed Mater Res A. 2023;111(4):527-542. doi: 10.1002/jbm.a.37473
  34. Afting C, Mainik P, Vazquez-Martel C, et al. Minimal-invasive 3D laser printing of microimplants in organismo. Adv Sci. 2024:2401110. doi: 10.1002/advs.202401110
  35. Zennifer A, Manivannan S, Sethuraman S, et al. 3D bioprinting and photocrosslinking: emerging strategies & future perspectives. Biomater Adv. 2022;134:112576. doi: 10.1016/j.msec.2021.112576
  36. Kam D, Rulf O, Reisinger A, et al. 3D printing by stereolithography using thermal initiators. Nat Commun. 2024;15(1):2285. doi: 10.1038/s41467-024-46532-0
  37. Thangadurai M, Ajith A, Budharaju H, et al. Advances in electrospinning and 3D bioprinting strategies to enhance functional regeneration of skeletal muscle tissue, Biomater Adv. 2022;142:213135. doi: 10.1016/j.bioadv.2022.213135
  38. Van de Walle A, Perez J E, Wilhelm C. Magnetic bioprinting of stem cell-based tissues. Bioprinting, 2023;30:e00265. doi: 10.1016/j.bprint.2023.e00265
  39. Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics– changing paradigm in tissue engineering, therapeutics development, and biosensing. Lab Chip. 2023;23(5): 1300-1338. doi: 10.1039/D2LC00439A
  40. Raees S, Ullah F, Javed F, et al. Classification, processing, and applications of bioink and 3D bioprinting: a detailed review. Int J Biol Macromol. 2023;232:123476. doi: 10.1016/j.ijbiomac.2023.123476
  41. Wang H, Yu H, Zhou X, et al. An overview of extracellular matrix-based bioinks for 3D bioprinting. Front Bioeng Biotechnol. 2022;10:905438. doi: 10.3389/fbioe.2022.905438
  42. Ong CS, Yesantharao P, Huang CY, et al. 3D bioprinting using stem cells. Pediatr Res. 2018;83(1):223-231. doi: 10.1038/pr.2017.252
  43. Zhang H, Wang Y, Zheng Z, et al. Strategies for improving the 3D printability of decellularized extracellular matrix bioink. Theranostics. 2023;13(8):2562. doi: 10.7150/thno.81785
  44. Tang M, Rich JN, Chen S. Biomaterials and 3D bioprinting strategies to model glioblastoma and the blood-brain barrier. Adv. Mater. 2021;33(5):2004776. doi: 10.1002/adma.202004776
  45. Hull SM, Brunel LG, Heilshorn SC. 3D bioprinting of cell‐laden hydrogels for improved biological functionality. Adv. Mater. 2022;34(2):2103691. doi: 10.1002/adma.202103691
  46. Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, et al. Hydrogels for bioprinting: a systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Front Bioeng Biotechnol. 2020;8:776. doi: 10.3389/fbioe.2020.00776
  47. Liu F, Wang X. Synthetic polymers for organ 3D printing. Polymers. 2020;12(8):1765. doi: 10.3390/polym12081765
  48. Muthukrishnan L. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs. Carbohydr Polym. 2021;260:117774. doi: 10.1016/j.carbpol.2021.117774
  49. Cai Y, Chang SY, Gan SW, et al. Nanocomposite bioinks for 3D bioprinting. Acta Biomater. 2022;151:45-69. doi: 10.1016/j.actbio.2022.08.014
  50. Loukelis K, Helal ZA, Mikos AG, et al. Nanocomposite bioprinting for tissue engineering applications. Gels. 2023;9(2):103. doi: 10.3390/gels9020103
  51. Dong H, Lin J, Tao Y, et al. AI-enhanced biomedical micro/nanorobots in microfluidics. Lab Chip. 2024;24: 1419-1440. doi: 10.1039/D3LC00909B
  52. Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: a review. Acta Biomater. 2020; 113:1-22. doi: 10.1016/j.actbio.2020.06.040
  53. Kolan KCR, Semon JA, Bindbeutel AT, et al. Bioprinting with bioactive glass loaded polylactic acid composite and human adipose stem cells. Bioprinting. 2020;18:e00075. doi: 10.1016/j.bprint.2020.e00075
  54. Sordi MB, Cruz A, Fredel MC, et al. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. Mater Sci Eng C Mater Biol Appl. 2021;124:112055. doi: 10.1016/j.msec.2021.112055
  55. Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4(4):370-380. doi: 10.1038/s41551-019-0471-7
  56. Xu H, Zhang Y, Zhang Y, et al. 3D bioprinting advanced biomaterials for craniofacial and dental tissue engineering – a review. Materials & Design. 2024;241:112886. doi: 10.1016/j.matdes.2024.112886
  57. Khati, V, Ramachandraiah, H, et al. 3D Bioprinting of multi-material decellularized liver matrix hydrogel at physiological temperatures. Biosensors. 2022;12(7):521. doi: 10.3390/bios12070521
  58. Zhang Y, Enhejirigala, Yao B, et al. Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles. Burns Trauma. 2021;9:tkab013. doi: 10.1093/burnst/tkab013
  59. O’Shea DG, Hodgkinson T, Curtin CM, et al. An injectable and 3D printable pro-chondrogenic hyaluronic acid and collagen type II composite hydrogel for the repair of articular cartilage defects. Biofabrication. 2023;16(1):015007. doi: 10.1088/1758-5090/ad047a
  60. Cruz EM, Machado LS, Zamproni LN, et al. A gelatin methacrylate-based hydrogel as a potential bioink for 3D bioprinting and neuronal differentiation. Pharmaceutics. 2023;15(2):627. doi: 10.3390/pharmaceutics15020627
  61. Xiong R, Zhang Z, Chai W, et al. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs. Biofabrication. 2015;7:045011. doi: 10.1088/1758-5090/7/4/045011
  62. Xie M, Gao Q, Zhao H, et al. Electro‐assisted bioprinting of low‐concentration GelMA microdroplets. Small. 2019;15:1804216. doi: 10.1002/smll.201804216
  63. Puistola P, Miettinen S, Skottman H, et al. Novel strategy for multi-material 3D bioprinting of human stem cell based corneal stroma with heterogenous design. Mater Today Bio.2024;24:100924. doi: 10.1016/j.mtbio.2023.100924
  64. Mahdavi SS, Abdekhodaie MJ, Kumar H, et al. Stereolithography 3D bioprinting method for fabrication of human corneal stroma equivalent. Ann Biomed Eng. 2020;48:1955-1970. doi: 10.1007/s10439-020-02537-6
  65. Boularaoui S, Shanti A, Lanotte M, et al. Nanocomposite conductive bioinks based on low-concentration GelMA and MXene nanosheets/gold nanoparticles providing enhanced printability of functional skeletal muscle tissues. ACS Biomater Sci Eng. 2021;7(12):5810-5822. doi: 10.1021/acsbiomaterials.1c01193
  66. Lackner F, Šurina P, Fink J, et al. 4‐axis 3D‐printed tubular biomaterials imitating the anisotropic nanofiber orientation of porcine aortae. Adv Healthc Mater. 2024;13(2):2302348. doi: 10.1002/adhm.202302348
  67. Mousavi A, Hedayatnia A, van Vliet PP, et al. Development of photocrosslinkable bioinks with improved electromechanical properties for 3D bioprinting of cardiac BioRings. Applied Materials Today. 2024;36:102035. doi: 10.1016/j.apmt.2023.102035
  68. Wang Y, Yuan X, Yao B, et al. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioact Mater. 2022;17:178-194. doi: 10.1016/j.bioactmat.2022.01.024
  69. Ozbek II, Saybasili H, Ulgen KO. Applications of 3D bioprinting technology to brain cells and brain tumor models: special emphasis to glioblastoma. ACS Biomater Sci Eng. 2024;10(5):2616-2635. doi: 10.1021/acsbiomaterials.3c01569
  70. Daly AC, Prendergast ME, Hughes AJ, et al. Bioprinting for the biologist. Cell. 2021;184:18-32. doi: 10.1016/j.cell.2020.12.002
  71. Ramesh S, Deep A, Tamayol A, et al. Advancing 3D bioprinting through machine learning and artificial intelligence. Bioprinting. 2024:e00331. doi: 10.1016/j.bprint.2024.e00331
  72. Manz A, Graber N, Widmer HM. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B Chem. 1990;1(1-6):244-248. doi: 10.1016/0925-4005(90)80209-I
  73. Sun H, Jia Y, Dong H, et al. Combining additive manufacturing with microfluidics: an emerging method for developing novel organs-on-chips. Curr Opin Chem Eng. 2020;28:1-9. doi: 10.1016/j.coche.2019.10.006
  74. Yu S, Jing Y, Fan Y, et al. Ultrahigh efficient emulsification with drag-reducing liquid gating interfacial behavior. Proc Natl Acad Sci USA. 2022;119(29):e2206462119. doi: 10.1073/pnas.2206462119
  75. Cai B, Kilian D, Ramos Mejia D, et al. Diffusion‐based 3D bioprinting strategies. Adv Sci. 2024;11(8):2306470. doi: 10.1002/advs.202306470
  76. Sun H, Xiong L, Huang Y, et al. AI-aided on-chip nucleic acid assay for smart diagnosis of infectious disease. Fundam Res. 2022;2(3):476-486. doi: 10.1016/j.fmre.2021.12.005
  77. Sujigarasharma K, Sharulatha S, Lawanya Shri M, et al. Optimizing 3D bioprinting using advanced deep learning techniques a comparative study of CNN, RNN, and GAN. Comput Intell Bioprint. 2024;8: 157-173. doi: 10.1002/9781394204878.ch8
  78. Ramesh S, Deep A, Tamayol A, et al. Advancing 3D bioprinting through machine learning and artificial intelligence. Bioprinting. 2024;38:e00331. doi: 10.1016/j.bprint.2024.e00331
  79. Sun H, Xie W, Mo J, et al. Deep learning with microfluidics for on-chip droplet generation, control, and analysis. Front Bioeng Biotechnol. 2023;11:1208648. doi: 10.3389/fbioe.2023.1208648
  80. Liu C, Wang L, Lu W, et al. Computer vision-aided bioprinting for bone research. Bone Res. 2022;10(1):21. doi: 10.1038/s41413-022-00192-2
  81. Thai MT, Phan PT, Tran HA, et al. Advanced soft robotic system for in situ 3D bioprinting and endoscopic surgery. Adv Sci. 2023;10(12):2205656. doi: 10.1002/advs.202205656
  82. Wang Z, Xiao C, Roy M, et al. Bioinspired skin towards next-generation rehabilitation medicine. Front Bioeng Biotechnol. 2023;11:1196174. doi: 10.3389/fbioe.2023.1196174
  83. Motter Catarino C, Cigaran Schuck D, Dechiario L, et al. Incorporation of hair follicles in 3D bioprinted models of human skin. Sci Adv. 2023;9(41):eadg0297. doi: 10.1126/sciadv.adg0297
  84. Zhang B, Li J, Zhou J, et al. A three-dimensional liquid diode for soft, integrated permeable electronics. Nature. 2024;628:84-92. doi: 10.1038/s41586-024-07161-1
  85. Jorgensen AM, Gorkun A, Mahajan N, et al. Multicellular bioprinted skin facilitates human-like skin architecture in vivo. Sci Transl Med. 2023;15(716):eadf7547. doi: 10.1126/scitranslmed.adf7547
  86. Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater. 2016;15(9):937-950. doi: 10.1038/nmat4671
  87. Dong T, Hu J, Dong Y, et al. Advanced biomedical and electronic dual-function skin patch created through microfluidic-regulated 3D bioprinting. Bioact Mater. 2024;40:261-274. doi: 10.1016/j.bioactmat.2024.06.015
  88. Yang JC, Mun J, Kwon SY, et al. Electronic skin: recent progress and future prospects for skin‐attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019;31:1904765. doi: 10.1002/adma.20190476
  89. Apelgren P, Amoroso M, Säljö K, et al. Long‐term in vivo integrity and safety of 3D‐bioprinted cartilaginous constructs. J Biomed Mater Res B Appl Biomater. 2021;109:126-136. doi: 10.1002/jbm.b.34687
  90. Agarwala S, Lee JM, Ng WL, et al. A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform. Biosens Bioelectron. 2018;102:365-371. doi: 10.1016/j.bios.2017.11.039
  91. Krishnadoss V, Kanjilal B, Hesketh A, et al. In situ 3D printing of implantable energy storage devices. Chem Eng J. 2021;409:128213. doi: 10.1016/j.cej.2020.128213
  92. Lei IM, Jiang C, Lei CL, et al. 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients. Nat Commun. 2021;12:6260. doi: 10.1038/s41467-021-26491-6
  93. Xu Y, Rothe R, Voigt D, et al. Convergent synthesis of diversified reversible network leads to liquid metal-containing conductive hydrogel adhesives. Nat Commun. 2021;12(1):2407. doi: 10.1038/s41467-021-22675-2
  94. Chatterjee B, Mohseni P, Sen S. Bioelectronic sensor nodes for the internet of bodies. Annu Rev Biomed Eng. 2023;25:101-129. doi: 10.1146/annurev-bioeng-110220-112448
  95. Kim Y, Alimperti S, Choi P, et al. An inkjet printed flexible electrocorticography (ECoG) microelectrode array on a thin parylene-C film. Sensors. 2022;22(3):1277. doi: 10.3390/s22031277
  96. Xie M, Shi Y, Zhang C, et al. In situ 3D bioprinting with bioconcrete bioink. Nat Commun. 2022;13(1):3597. doi: 10.1038/s41467-022-30997-y
  97. Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci. 1999;19:5731-5740. doi: 10.1523/JNEUROSCI.19-14-05731.1999
  98. Carpanini SM, Torvell M, Morgan BP. Therapeutic inhibition of the complement system in diseases of the central nervous system. Front Immunol. 2019;10:362. doi: 10.3389/fimmu.2019.00362
  99. Hu Y, Wu Y, Gou Z, et al. 3D-engineering of cellularized conduits for peripheral nerve regeneration. Sci Rep. 2016;6(1):32184. doi: 10.1038/srep32184
  100. Hsu RS, Li SJ, Fang JH, et al. Wireless charging-mediated angiogenesis and nerve repair by adaptable microporous hydrogels from conductive building blocks. Nat Commun. 2022;13(1):5172. doi: 10.1038/s41467-022-32912-x
  101. Fang Y, Wang C, Liu Z, et al. 3D printed conductive multiscale nerve guidance conduit with hierarchical fibers for peripheral nerve regeneration. Adv Sci. 2023;10(12):2205744. doi: 10.1002/advs.202205744
  102. Courtine G, Micera S, DiGiovanna J, et al. Brain-machine interface: closer to therapeutic reality?. Lancet. 2013;381(9866):515-517. doi: 10.1016/S0140-6736(12)62164-3
  103. Zhang Q, Hu S, Talay R, et al. A prototype closed-loop brain–machine interface for the study and treatment of pain. Nat Biomed Eng. 2023;7(4):533-545. doi: 10.1038/s41551-021-00736-7
  104. Kantawala B, Hamitoglu AE, Nohra L, et al. Microengineered neuronal networks: enhancing brain-machine interfaces. Ann Med Surg. 2024;86(6):3535-3542. doi: 10.1097/MS9.0000000000002130
  105. Ghafoor U, Kim S, Hong KS. Selectivity and longevity of peripheral-nerve and machine interfaces: a review. Front Neurorobot. 2017;11:59. doi: 10.3389/fnbot.2017.00059
  106. Sun G, Zeng F, McCartin M, et al. Closed-loop stimulation using a multiregion brain-machine interface has analgesic effects in rodents. Sci Transl Med. 2022;14(651):eabm5868. doi: 10.1126/scitranslmed.abm5868
  107. Adewole DO, Struzyna LA, Burrell JC, et al. Development of optically controlled “living electrodes” with long-projecting axon tracts for a synaptic brain-machine interface. Sci Adv. 2021;7(4):eaay5347. doi: 10.1126/sciadv.aay5347
  108. Afanasenkau D, Kalinina D, Lyakhovetskii V, et al. Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nat Biomed Eng. 2020;4(10): 1010-1022. doi: 10.1038/s41551-020-00615-7
  109. Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng. 2019;3(1):58-68. doi: 10.1038/s41551-018-0335-6
  110. Roth JG, Brunel LG, Huang MS, et al. Spatially controlled construction of assembloids using bioprinting. Nat Commun. 2023;14(1):4346. doi: 10.1038/s41467-023-40006-5
  111. Ahmed T. Bio-inspired artificial synapses: neuromorphic computing chip engineering with soft biomaterials, memories-materials, devices. Circuits Syst. 2023;6:100088. doi: 10.1016/j.memori.2023.100088
  112. Cheng Z, Ríos C, Pernice WHP, et al. On-chip photonic synapse. Sci Adv. 2017;3(9):e1700160. doi: 10.1126/sciadv.1700160
  113. Fu T, Liu X, Fu S, et al. Self-sustained green neuromorphic interfaces. Nat Commun. 2021;12(1):3351. doi: 10.1038/s41467-021-23744-2
  114. Abdollahiyan P, Oroojalian F, Mokhtarzadeh A, et al. Hydrogel‐based 3D bioprinting for bone and cartilage tissue engineering. Biotechnol J. 2020;15(12):2000095. doi: 10.1002/biot.202000095
  115. Li T, Ma Z, Zhang Y, et al. Regeneration of humeral head using a 3D bioprinted anisotropic scaffold with dual modulation of endochondral ossification. Adv Sci. 2023;10(12): 2205059. doi: 10.1002/advs.202205059
  116. Liu Q, Dong X, Qi H, et al. 3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principle. Nat Commun. 2024;1 5(1):3237. doi: 10.1038/s41467-024-47597-7
  117. Du L, Wu J, Han Y, et al. Immunomodulatory multicellular scaffolds for tendon-to-bone regeneration. Sci Adv. 2024;10(10):eadk6610. doi: 10.1126/sciadv.adk6610
  118. Jo HJ, Kang MS, Heo HJ, et al. Skeletal muscle regeneration with 3D bioprinted hyaluronate/gelatin hydrogels incorporating MXene nanoparticles. Int J Biol Macromol. 2024;265:130696. doi: 10.1016/j.ijbiomac.2024.130696
  119. Huan Y, Zhou D, Wu X, et al. 3D bioprinted autologous bone particle scaffolds for cranioplasty promote bone regeneration with both implanted and native BMSCs. Biofabrication. 2023;15(2):025016. doi: 10.1088/1758-5090/acbe21
  120. He H, Yuan Y, Wu Y, et al. Exoskeleton partial‐coated stem cells for infarcted myocardium restoring. Adv. Mater. 2023;35(52):2307169. doi: 10.1002/adma.202307169
  121. Zhao T, Zhou J, Wu W, et al. Antibacterial conductive polyacrylamide/quaternary ammonium chitosan hydrogel for electromagnetic interference shielding and strain sensing. Int J Biol Macromol. 2024;265:130795. doi: 10.1016/j.ijbiomac.2024.130795
  122. Wu J, Zhu Z, Pei X. 3D-printed biomimetic hydrogel for repairing tissue damage in motor systems. Chin J Tissue Eng Res. 2024;28:4703. doi: 10.12307/2024.535
  123. Xue Q, Ma L, Hu H, et al. 3D bioprinting as a prospective therapeutic strategy for corneal limbal epithelial stem cell deficiency. Int J Bioprint. 2023;9(3):710. doi: 10.18063/ijb.710
  124. Panagou S, Neumann WP, Fruggiero F. A scoping review of human robot interaction research towards Industry 5.0 human-centric workplaces. Int J Product Res. 2024;62(3): 974-990. doi: 10.1080/00207543.2023.2172473
  125. Dong H, Hu B, Zhang W, et al. Robotic-assisted automated in situ bioprinting. Int J Bioprint. 2023;9(1):629. doi: 10.18063/ijb.v9i1.629
  126. Guix M, Mestre R, Patiño T, et al. Biohybrid soft robots with self-stimulating skeletons. Sci Robot. 2021;6(53):eabe7577. doi: 10.1126/scirobotics.abe7577
  127. Mestre R, Patiño T, Sánchez S. Biohybrid robotics: from the nanoscale to the macroscale. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(5):e1703. doi: 10.1002/wnan.1703
  128. Jin D, Zhang L. Embodied intelligence weaves a better future. Nat Machine Intell. 2020;2(11):663-664. doi: 10.1038/s42256-020-00250-6
  129. Smirnova L, Caffo BS, Gracias DH, et al. Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish. Front Sci. 2023; 1:1017235. doi: 10.3389/fsci.2023.1017235
  130. Lee W, Xu C, Fu H, et al. 3D bioprinting highly elastic PEG‐PCL‐DA hydrogel for soft tissue fabrication and biomechanical stimulation. Adv Funct Mater. 2024;34:2313942. doi: 10.1002/adfm.202313942
  131. Kronenfeld JM, Rother L, Saccone MA, et al. Roll-to-roll, high-resolution 3D printing of shape-specific particles. Nature. 2024;627(8003):306-312. doi: 10.1038/s41586-024-07061-4

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing