AccScience Publishing / IJB / Volume 10 / Issue 6 / DOI: 10.36922/ijb.4092
REVIEW

3D bioprinting technologies for the enhancement and application of functional lung organoid models

Jimin Jang1 Jooyoung Lee2 Sangryul Cha1 Minkyoung Lee2 Hyungseok Lee2,3* Se-Ran Yang1*
Show Less
1 Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon State, Republic of Korea
2 Department of Smart Health Science and Technology, College of Engineering Kangwon National University, Chuncheon, Gangwon State, Republic of Korea
3 Department of Mechanical and Biomedical, Mechatronics Engineering, College of Engineering, Kangwon National University, Chuncheon, Gangwon State, Republic of Korea
IJB 2024, 10(6), 4092 https://doi.org/10.36922/ijb.4092
Submitted: 30 June 2024 | Accepted: 14 August 2024 | Published: 16 August 2024
(This article belongs to the Special Issue The Latest Advancements in Bioprinting Technology)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Respiratory diseases, ranging from minor infections to serious chronic diseases and malignancies, negatively affect the respiratory system and are influenced by various environmental factors such as air pollution, occupational hazards, and tobacco smoke, as well as lifestyle, genetic causes, and infectious agents. The prevalence and severity of respiratory diseases require the development of advanced models to better understand their pathophysiology and develop effective treatments. In this context, 3D bioprinting technology emerges as an innovative tool to create functional lung organoid models. The use of induced pluripotent stem cells and extracellular matrix in bioprinting enables the development of organoids that closely mimic human lung tissue. Bioprinting-based organoids can better replicate the dynamic environment of the human lung, facilitating more accurate disease modeling and drug testing. In this review, we highlight the potential of bioprinted lung organoids in understanding the mechanisms of chronic respiratory diseases, testing the efficacy and safety of new drugs, and exploring regenerative medicine approaches. The integration of advanced bioprinting and organoid technologies is a promising field in respiratory disease research and treatment, offering new hope for patients suffering from lung diseases.

 

Graphical abstract
Keywords
Alveolar organoid
Chronic respiratory disease
Bioprinting
Extracellular matrix
Induced pluripotent stem cells
Funding
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (2020R1A5A8019180), the Ministry of Education (MOE) (2022RIS-005).
Conflict of interest
The authors declare they have no competing interests
References
  1. Levine SM, Marciniuk DD. Global impact of respiratory disease: what can we do, together, to make a difference? Chest. 2022;161(5):1153-1154. doi: 10.1016/j.chest.2022.01.014
  2. Shukla SD, Swaroop Vanka K, Chavelier A, et al. Chronic respiratory diseases: an introduction and need for novel drug delivery approaches. In: Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems; 2020:1-31. doi: 10.1016/B978-0-12-820658-4.00001-7
  3. Ayilya BL, Balde A, Ramya M, Benjakul S, Kim SK, Nazeer RA. Insights on the mechanism of bleomycin to induce lung injury and associated in vivo models: a review. Int Immunopharmacol. 2023;121:110493. doi: 10.1016/j.intimp.2023.110493
  4. Ribble A, Hellmann J, Conklin DJ, Bhatnagar A, Haberzettl P. Fine particulate matter (PM(2.5))-induced pulmonary oxidative stress contributes to increases in glucose intolerance and insulin resistance in a mouse model of circadian dyssynchrony. Sci Total Environ. 2023;877:162934. doi: 10.1016/j.scitotenv.2023.162934
  5. John G, Kohse K, Orasche J, et al. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models. Clin Sci (Lond). 2014;126(3):207-221. doi: 10.1042/cs20130117
  6. Khedoe PP, Wong MC, Wagenaar GT, et al. The effect of PPE-induced emphysema and chronic LPS-induced pulmonary inflammation on atherosclerosis development in APOE*3- LEIDEN mice. PLoS One. 2013;8(11):e80196. doi: 10.1371/journal.pone.0080196
  7. Ishida Y, Kuninaka Y, Mukaida N, Kondo T. Immune mechanisms of pulmonary fibrosis with bleomycin. Int J Mol Sci. 2023;24(4):3149. doi: 10.3390/ijms24043149
  8. Su J, Ye Q, Zhang D, et al. Joint association of cigarette smoking and PM(2.5) with COPD among urban and rural adults in regional China. BMC Pulm Med. 2021;21(1):87. doi: 10.1186/s12890-021-01465-y
  9. Kwon MC, Berns A. Mouse models for lung cancer. Mol Oncol. 2013;7(2):165-177. doi: 10.1016/j.molonc.2013.02.010
  10. Uhl EW, Warner NJ. Mouse models as predictors of human responses: evolutionary medicine. Curr Pathobiol Rep. 2015;3(3):219-223. doi: 10.1007/s40139-015-0086-y
  11. Rydell-Törmänen K, Johnson JR. The applicability of mouse models to the study of human disease. Methods Mol Biol. 2019;1940:3-22. doi: 10.1007/978-1-4939-9086-3_1
  12. Patisaul HB, Fenton SE, Aylor D. Animal models of endocrine disruption. Best Pract Res Clin Endocrinol Metab. 2018;32(3):283-297. doi: 10.1016/j.beem.2018.03.011
  13. Chae S, Ha DH, Lee H. 3D bioprinting strategy for engineering vascularized tissue models. Int J Bioprint. 2023;9(5):748. doi: 10.18063/ijb.748
  14. Bosáková V, De Zuani M, Sládková L, et al. Lung organoids-the ultimate tool to dissect pulmonary diseases? Front Cell Dev Biol. 2022;10:899368. doi: 10.3389/fcell.2022.899368
  15. Shrestha J, Razavi Bazaz S, Aboulkheyr Es H, et al. Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Crit Rev Biotechnol. 2020;40(2):213-230. doi: 10.1080/07388551.2019.1710458
  16. Hermanns MI, Unger RE, Kehe K, Peters K, Kirkpatrick CJ. Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro. Lab Invest. 2004;84(6): 736-752. doi: 10.1038/labinvest.3700081
  17. Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol. 2005;15(5):405-412. doi: 10.1016/j.semcancer.2005.06.009
  18. Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8(10):839-845. doi: 10.1038/nrm2236
  19. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  20. Zou S, Ye J, Wei Y, Xu J. Characterization of 3D-bioprinted in vitro lung cancer models using RNA-sequencing techniques. Bioengineering (Basel). 2023;10(6):667. doi: 10.3390/bioengineering10060667
  21. Wang X, Zhang X, Dai X, et al. Tumor-like lung cancer model based on 3D bioprinting. 3 Biotech. 2018;8:501. doi: 10.1007/s13205-018-1519-1
  22. Maina JN. Fundamental structural aspects and features in the bioengineering of the gas exchangers: comparative perspectives. Adv Anat Embryol Cell Biol. 2002;163:Iii-xii, 1-108. doi: 10.1007/978-3-642-55917-4
  23. Khan YS, Lynch DT. Histology, Lung. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
  24. Brownfield DG, de Arce AD, Ghelfi E, Gillich A, Desai TJ, Krasnow MA. Alveolar cell fate selection and lifelong maintenance of AT2 cells by FGF signaling. Nat Commun. 2022;13(1):7137. doi: 10.1038/s41467-022-34059-1
  25. Yang J, Hernandez BJ, Martinez Alanis D, et al. The development and plasticity of alveolar type 1 cells. Development. 2016;143(1):54-65. doi: 10.1242/dev.130005
  26. Han S, Lee M, Shin Y, et al. Mitochondrial integrated stress response controls lung epithelial cell fate. Nature. 2023;620(7975):890-897. doi: 10.1038/s41586-023-06423-8
  27. Quan R, Shi C, Fang B, et al. Age-dependent inflammatory microenvironment mediates alveolar regeneration. Int J Mol Sci. 2024;25(6):3476. doi: 10.3390/ijms25063476
  28. Basil MC, Katzen J, Engler AE, et al. The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell. 2020;26(4):482-502. doi: 10.1016/j.stem.2020.03.009
  29. Ruaro B, Salton F, Braga L, et al. The history and mystery of alveolar epithelial type II cells: focus on their physiologic and pathologic role in lung. Int J Mol Sci. 2021;22(5):2566. doi: 10.3390/ijms22052566
  30. Zhang J, Liu Y. Epithelial stem cells and niches in lung alveolar regeneration and diseases. Chin Med J Pulm Crit Care Med. 2024;2(1):17-26. doi: 10.1016/j.pccm.2023.10.007
  31. Beers MF, Moodley Y. When is an alveolar type 2 cell an alveolar type 2 cell? A conundrum for lung stem cell biology and regenerative medicine. Am J Respir Cell Mol Biol. 2017;57(1):18-27. doi: 10.1165/rcmb.2016-0426PS
  32. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123. doi: 10.3389/fphar.2014.00123
  33. Fu Z, Xu YS, Cai CQ. Ginsenoside Rg3 inhibits pulmonary fibrosis by preventing HIF-1α nuclear localisation. BMC Pulm Med. 2021;21(1):70. doi: 10.1186/s12890-021-01426-5
  34. Wilson MS, Wynn TA. Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol. 2009;2(2):103-121. doi: 10.1038/mi.2008.85
  35. Li YX, Wang HB, Li J, Jin JB, Hu JB, Yang CL. Targeting pulmonary vascular endothelial cells for the treatment of respiratory diseases. Front Pharmacol. 2022;13:983816. doi: 10.3389/fphar.2022.983816
  36. Vassiliou AG, Kotanidou A, Dimopoulou I, Orfanos SE. Endothelial damage in acute respiratory distress syndrome. Int J Mol Sci. 2020;21(22):8793. doi: 10.3390/ijms21228793
  37. Correale M, Chirivi F, Bevere EML, et al. Endothelial function in pulmonary arterial hypertension: from bench to bedside. J Clin Med. 2024;13(8):2444. doi: 10.3390/jcm13082444
  38. Meng X, Cui G, Peng G. Lung development and regeneration: newly defined cell types and progenitor status. Cell Regen. 2023;12(1):5. doi: 10.1186/s13619-022-00149-0
  39. Zhao Z, Chen X, Dowbaj AM, et al. Organoids. Nat Rev Methods Primers. 2022;2:94. doi: 10.1038/s43586-022-00174-y
  40. Arjmand B, Rabbani Z, Soveyzi F, et al. Advancement of organoid technology in regenerative medicine. Regen Eng Transl Med. 2023;9(1):83-96. doi: 10.1007/s40883-022-00271-0
  41. Parikh P, Wicher S, Khandalavala K, Pabelick CM, Britt RD, Jr., Prakash YS. Cellular senescence in the lung across the age spectrum. Am J Physiol Lung Cell Mol Physiol. 2019;316(5):L826-L842. doi: 10.1152/ajplung.00424.2018
  42. Koks S, Dogan S, Tuna BG, Gonzalez-Navarro H, Potter P, Vandenbroucke RE. Mouse models of ageing and their relevance to disease. Mech Ageing Dev. 2016;160:41-53. doi: 10.1016/j.mad.2016.10.001
  43. Fan C, Wu Y, Rui X, et al. Animal models for COVID-19: advances, gaps and perspectives. Signal Transduct Target Ther. 2022;7(1):220. doi: 10.1038/s41392-022-01087-8
  44. Cox TC. Utility and limitations of animal models for the functional validation of human sequence variants. Mol Genet Genomic Med. 2015;3(5):375-382. doi: 10.1002/mgg3.167
  45. Duval K, Grover H, Han LH, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 2017;32(4):266-277. doi: 10.1152/physiol.00036.2016
  46. Jubelin C, Munoz-Garcia J, Griscom L, et al. Three-dimensional in vitro culture models in oncology research. Cell Biosci. 2022;12(1):155. doi: 10.1186/s13578-022-00887-3
  47. Cacciamali A, Villa R, Dotti S. 3D cell cultures: evolution of an ancient tool for new applications. Front Physiol. 2022;13:836480. doi: 10.3389/fphys.2022.836480
  48. Miller AJ, Dye BR, Ferrer-Torres D, et al. Generation of lung organoids from human pluripotent stem cells in vitro. Nat Protoc. 2019;14(2):518-540. doi: 10.1038/s41596-018-0104-8
  49. Kong J, Wen S, Cao W, et al. Lung organoids, useful tools for investigating epithelial repair after lung injury. Stem Cell Res Ther. 2021;12(1):95. doi: 10.1186/s13287-021-02172-5
  50. Hein RFC, Conchola AS, Fine AS, et al. Stable iPSC-derived NKX2-1+ lung bud tip progenitor organoids give rise to airway and alveolar cell types. Development. 2022;149(20):dev200693. doi: 10.1242/dev.200693
  51. Chiu MC, Li C, Liu X, et al. A bipotential organoid model of respiratory epithelium recapitulates high infectivity of SARS-CoV-2 Omicron variant. Cell Discov. 2022;8(1):57. doi: 10.1038/s41421-022-00422-1
  52. Sucre JM, Wilkinson D, Vijayaraj P, et al. A three-dimensional human model of the fibroblast activation that accompanies bronchopulmonary dysplasia identifies Notch-mediated pathophysiology. Am J Physiol Lung Cell Mol Physiol. 2016;310(10):L889-L898. doi: 10.1152/ajplung.00446.2015
  53. Ng-Blichfeldt JP, de Jong T, Kortekaas RK, et al. TGF-beta activation impairs fibroblast ability to support adult lung epithelial progenitor cell organoid formation. Am J Physiol Lung Cell Mol Physiol. 2019;317(1):L14-L28. doi: 10.1152/ajplung.00400.2018
  54. Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, et al. Long-term expanding human airway organoids for disease modeling. EMBO J. 2019;38(4):e100300. doi: 10.15252/embj.2018100300
  55. Chan LLY, Anderson DE, Cheng HS, et al. The establishment of COPD organoids to study host-pathogen interaction reveals enhanced viral fitness of SARS-CoV-2 in bronchi. Nat Commun. 2022;13(1):7635. doi: 10.1038/s41467-022-35253-x
  56. Laube M, Pietsch S, Pannicke T, Thome UH, Fabian C. Development and functional characterization of fetal lung organoids. Front Med (Lausanne). 2021;8:678438. doi: 10.3389/fmed.2021.678438
  57. Matkovic Leko I, Schneider RT, Thimraj TA, et al. A distal lung organoid model to study interstitial lung disease, viral infection and human lung development. Nat Protoc. 2023;18(7):2283-2312. doi: 10.1038/s41596-023-00827-6
  58. Vazquez-Armendariz AI, Herold S. From clones to buds and branches: the use of lung organoids to model branching morphogenesis ex vivo. Front Cell Dev Biol. 2021;9:631579. doi: 10.3389/fcell.2021.631579
  59. Jain KG, Xi NM, Zhao R, Ahmad W, Ali G, Ji HL. Alveolar type 2 epithelial cell organoids: focus on culture methods. Biomedicines. 2023;11(11):3034. doi: 10.3390/biomedicines11113034
  60. Mulay A, Konda B, Garcia G, Jr., et al. SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. Cell Rep. 2021;35(5):109055. doi: 10.1016/j.celrep.2021.109055
  61. Konda B, Mulay A, Yao C, Beil S, Israely E, Stripp BR. Isolation and enrichment of human lung epithelial progenitor cells for organoid culture. J Vis Exp. 2020;(161). doi: 10.3791/61541
  62. Van Hung T, Emoto N, Vignon-Zellweger N, et al. Inhibition of vascular endothelial growth factor receptor under hypoxia causes severe, human-like pulmonary arterial hypertension in mice: potential roles of interleukin-6 and endothelin. Life Sci. 2014;118(2):313-328. doi: 10.1016/j.lfs.2013.12.215
  63. Zhang Y, Zhang H, Li S, Huang K, Jiang L, Wang Y. Metformin alleviates LPS-induced acute lung injury by regulating the SIRT1/NF-kappaB/NLRP3 pathway and inhibiting endothelial cell pyroptosis. Front Pharmacol. 2022;13:801337. doi: 10.3389/fphar.2022.801337
  64. Selimovic N, Bergh CH, Andersson B, Sakiniene E, Carlsten H, Rundqvist B. Growth factors and interleukin-6 across the lung circulation in pulmonary hypertension. Eur Respir J. 2009;34(3):662-668. doi: 10.1183/09031936.00174908
  65. Finicelli M, Digilio FA, Galderisi U, Peluso G. The emerging role of macrophages in chronic obstructive pulmonary disease: the potential impact of oxidative stress and extracellular vesicle on macrophage polarization and function. Antioxidants (Basel). 2022;11(3):464. doi: 10.3390/antiox11030464
  66. Osorio-Valencia S, Zhou B. Roles of macrophages and endothelial cells and their crosstalk in acute lung injury. Biomedicines. 2024;12(3):632. doi: 10.3390/biomedicines12030632
  67. Ramachandran S, Verma AK, Dev K, et al. Role of cytokines and chemokines in NSCLC immune navigation and proliferation. Oxid Med Cell Longev. 2021;2021:5563746. doi: 10.1155/2021/5563746
  68. Huskin G, Chen J, Davis T, Jun HW. Tissue-engineered 3D in vitro disease models for high-throughput drug screening. Tissue Eng Regen Med. 2023;20(4):523-538. doi: 10.1007/s13770-023-00522-3
  69. da Rosa NN, Appel JM, Irioda AC, et al. Three-dimensional bioprinting of an in vitro lung model. Int J Mol Sci. 2023;24(6):5852. doi: 10.3390/ijms24065852
  70. Mu P, Zhou S, Lv T, et al. Newly developed 3D in vitro models to study tumor-immune interaction. J Exp Clin Cancer Res. 2023;42(1):81. doi: 10.1186/s13046-023-02653-w
  71. Gibson I, Rosen DW, Stucker B, et al. Additive Manufacturing Technologies, vol 17. Springer; 2021. doi: 10.1007/978-1-4419-1120-9
  72. Shahrubudin N, Lee TC, Ramlan R. An overview on 3D printing technology: technological, materials, and applications. Procedia Manufact. 2019;35:1286-1296. doi: 10.1016/j.promfg.2019.06.089
  73. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018;22(1):11. doi: 10.1186/s40824-018-0122-1
  74. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication. 2010;2(2):022001. doi: 10.1088/1758-5082/2/2/022001
  75. Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4):422-434. doi: 10.1016/j.biotechadv.2015.12.011
  76. Fan P, Jin F, Qin Y, et al. Multiscale 3D bioprinting for the recapitulation of lung tissue. IJB. 2023;9(6):1166. doi: 10.36922/ijb.1166
  77. Ozbolat IT. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 2015;33(7):395-400. doi: 10.1016/j.tibtech.2015.04.005
  78. Groll J, Boland T, Blunk T, et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication. 2016;8(1):013001. doi: 10.1088/1758-5090/8/1/013001
  79. Miller AJ, Spence JR. In vitro models to study human lung development, disease and homeostasis. Physiology (Bethesda). 2017;32(3):246-260. doi: 10.1152/physiol.00041.2016
  80. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/ organ regenerative engineering. Biomaterials. 2020;226: 119536. doi: 10.1016/j.biomaterials.2019.119536
  81. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
  82. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946. doi: 10.1039/c7bm00765e
  83. Derby B. Printing and prototyping of tissues and scaffolds. Science. 2012;338(6109):921-926. doi: 10.1126/science.1226340
  84. Ning L, Chen X. A brief review of extrusion‐based tissue scaffold bio‐printing. Biotechnol J. 2017;12(8):1600671. doi: 10.1002/biot.201600671
  85. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26(1):93-99. doi: 10.1016/j.biomaterials.2004.04.011
  86. Kang D, Park JA, Kim W, et al. All‐inkjet‐printed 3D alveolar barrier model with physiologically relevant microarchitecture. Adv Sci (Weinh). 2021;8(10):2004990. doi: 10.1002/advs.202004990
  87. Scoutaris N, Ross S, Douroumis D. Current trends on medical and pharmaceutical applications of inkjet printing technology. Pharm Res. 2016;33(8):1799-1816. doi: 10.1007/s11095-016-1931-3
  88. Yang H, Yang K-H, Narayan RJ, Ma S. Laser-based bioprinting for multilayer cell patterning in tissue engineering and cancer research. Essays Biochem. 2021;65(3):409-416. doi: 10.1042/EBC20200093
  89. Gruene M, Pflaum M, Hess C, et al. Laser printing of three-dimensional multicellular arrays for studies of cell–cell and cell–environment interactions. Tissue Eng Part C: Methods. 2011;17(10):973-982. doi: 10.1089/ten.TEC.2011.0185
  90. Catros S, Guillotin B, Bačáková M, Fricain J-C, Guillemot F. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by laser-assisted bioprinting. Appl Surf Sci. 2011;257(12): 5142-5147. doi: 10.1016/j.apsusc.2010.11.049
  91. Guillotin B, Souquet A, Catros S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31(28):7250-7256. doi: 10.1016/j.biomaterials.2010.05.055
  92. Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials. 2017;124:106-115. doi: 10.1016/j.biomaterials.2017.01.042
  93. Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med. 2016;14:271. doi: 10.1186/s12967-016-1028-0
  94. Geckil H, Xu F, Zhang X, Moon S, Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine (Lond). 2010;5(3):469-484. doi: 10.2217/nnm.10.12
  95. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. doi: 10.1126/sciadv.1500758
  96. Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312-319. doi: 10.1038/nbt.3413
  97. Wang X, Ao Q, Tian X, et al. 3D bioprinting technologies for hard tissue and organ engineering. Materials (Basel). 2016;9(10):802. doi: 10.3390/ma9110911
  98. Krakos A, Cieslak A, Hartel E, Labowska MB, Kulbacka J, Detyna J. 3D bio-printed hydrogel inks promoting lung cancer cell growth in a lab-on-chip culturing platform. Mikrochim Acta. 2023;190(9):349. doi: 10.1007/s00604-023-05931-8
  99. Gerboles AG, Galetti M, Rossi S, et al. Three-dimensional bioprinting of organoid-based scaffolds (OBST) for long-term nanoparticle toxicology investigation. Int J Mol Sci. 2023;24(7):6595. doi: 10.3390/ijms24076595
  100. Urciuolo A, Giobbe GG, Dong Y, et al. Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures. Nat Commun. 2023;14(1):3128. doi: 10.1038/s41467-023-37953-4
  101. Choi YM, Lee H, Ann M, Song M, Rheey J, Jang J. 3D bioprinted vascularized lung cancer organoid models with underlying disease capable of more precise drug evaluation. Biofabrication. 2023;15(3):4104. doi: 10.1088/1758-5090/acd95f
  102. Ma X, Liu J, Zhu W, et al. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev. 2018;132:235-251. doi: 10.1016/j.addr.2018.06.011
  103. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008
  104. Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511-536. doi: 10.1016/j.bioactmat.2023.06.006
  105. Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 2019;364(6439):458-464. doi: 10.1126/science.aav9750
  106. Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv Mater. 2019;31(42):e1904209. doi: 10.1002/adma.201904209
  107. Richard C, Neild A, Cadarso VJ. The emerging role of microfluidics in multi-material 3D bioprinting. Lab Chip. 2020;20(12):2044-2056. doi: 10.1039/c9lc01184f
  108. Mironov V, Kasyanov V, Drake C, Markwald RR. Organ printing: promises and challenges. Regen Med. 2008;3(1):93-103. doi: 10.2217/17460751.3.1.93
  109. Sekar MP, Budharaju H, Zennifer A, et al. Current standards and ethical landscape of engineered tissues-3D bioprinting perspective. J Tissue Eng. 2021;12:20417314211027677. doi: 10.1177/20417314211027677
  110. Saini G, Segaran N, Mayer JL, Saini A, Albadawi H, Oklu R. Applications of 3D bioprinting in tissue engineering and regenerative medicine. J Clin Med. 2021;10(21):4966. doi: 10.3390/jcm10214966
  111. Huang G, Zhao Y, Chen D, et al. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci. 2024;12(6):1425-1448. doi: 10.1039/d3bm01934a

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing