AccScience Publishing / IJB / Volume 10 / Issue 4 / DOI: 10.36922/ijb.4053
RESEARCH ARTICLE

Characterization of biological and mechanical properties of 3D-bioprinted osteochondral plugs

Nicholas A. Chartrain1,2* Maria Piroli1,2 Kristin H. Gilchrist1,2 Vincent B. Ho1 George J. Klarmann1,2
Show Less
1 4D Bio³ Center for Biotechnology and Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
2 The Geneva Foundation, Tacoma, Washington, USA
IJB 2024, 10(4), 4053 https://doi.org/10.36922/ijb.4053
Submitted: 26 June 2024 | Accepted: 17 July 2024 | Published: 19 August 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Three-dimensional (3D) bioprinting offers significant potential for the repair of articular cartilage by engineering functional osteochondral tissue. However, progress has been hindered by a lack of printable bioinks that promote the development of bone and chondral tissue while also maintaining sufficient cytocompatibility and mechanical strength. Herein, we designed a biphasic osteochondral plug with distinct chondral and bone regions and developed suitable bioinks for each tissue using photorheology and compression testing. The chondral region consisted of human bone marrow-derived mesenchymal stem cells (hbMSCs) encapsulated in a chondral bioink composed of methacrylated hyaluronic acid and high molecular weight hyaluronic acid. The bone region was 3D bioprinted from an hbMSC-laden methacrylated gelatin (GelMA) bioink and a biodegradable thermoplastic and ceramic lattice that provided mechanical strength. The viability and functionality of hbMSC encapsulated in the bioinks were confirmed through live/dead assays, histology, biochemical assays, and fluorescence microscopy. Over 56 days of culture in a chondrogenic medium, hbMSCs encapsulated in chondral bioink deposited cartilage-like extracellular matrix components, such as type II collagen and glycosaminoglycans. Similarly, cells encapsulated in the bone bioink and cultured in osteogenic medium deposited hydroxyapatite, a key component of bone. These findings provide promising initial results for using 3D-bioprinted plugs to repair osteochondral defects in articular cartilage.  

Keywords
3D Bioprinting
Osteochondral plug
Cartilage
Bioink
Funding
This research was funded by the Uniformed Services University of the Health Sciences (Grant No. HU00011920022) and administered by The Geneva Foundation. The opinions and assertions expressed here are those of the author(s) and do not reflect the official policy or position of the Uniformed Services University of the Health Sciences or the U.S. Department of Defense.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461-468. doi: 10.1177/1941738109350438
  2. Shepherd DE, Seedhom BB. Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis. 1999;58(1):27-34. doi: 10.1136/ard.58.1.27
  3. Primorac D, Molnar V, Rod E, et al. Knee osteoarthritis: a review of pathogenesis and state-of-the-art non-operative therapeutic considerations. Genes (Basel). 2020;11(8):854. doi: 10.3390/genes11080854
  4. Athanasiou KA, Darling EM, Hu JC, DuRaine GD, Reddi AH. Articular Cartilage. 2nd ed. Boca Raton: CRC Press; 2017. doi: 10.1201/9781315194158
  5. Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465-480.
  6. Hvid I. Mechanical strength of trabecular bone at the knee. Dan Med Bull. 1988;35(4):345-365.
  7. Martin JA, Buckwalter JA. Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop J. 2001;21:1-7.
  8. Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr Cartil. 2009;17:971-979. doi: 10.1016/j.joca.2009.03.002
  9. Spector TD, MacGregor AJ. Risk factors for osteoarthritis genetics. Osteoarthritis Cartilage. 2004;12(Suppl):S39-S44. doi: 10.1016/j.joca.2003.09.005
  10. Martin JA, Coleman M, Buckwalter JA. Articular cartilage injury. In: Lanza R, Langer R, Vacanti JP, Atala A, eds. Princ. Tissue Eng. 5th ed. Academic Press; 2020:967-977. doi: 10.1016/b978-0-12-818422-6.00054-x
  11. Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA. Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma. 2006;20(10):739-744. doi: 10.1097/01.bot.0000246468.80635.ef.
  12. Thomas AC, Hubbard-Turner T, Wikstrom EA, Palmieri- Smith RM. Epidemiology of posttraumatic osteoarthritis. J Athl Train. 2017;52(6):491-496. doi: 10.4085/1062-6050-51.5.08
  13. Roos H, Adalberth T, Dahlberg L, Lohmander LS. Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. Osteoarthritis Cartilage. 1995;3(4):261-267. doi: 10.1016/s1063-4584(05)80017-2
  14. Cameron KL, Hsiao MS, Owens BD, Burks R, Svoboda SJ. Incidence of physician-diagnosed osteoarthritis among active duty United States military service members. Arthritis Rheum. 2011;63(10):2974-2982. doi: 10.1002/art.30498
  15. Murphy LB, Helmick CG, Allen KD, et al. Arthritis among veterans. Morb Mortal Wkly Rep Arthritis. 2014;63: 999-1003. http://www.cdc.gov/brfss/annual_data/annual_data.htm. † A d d i t i o n a l i n f o r ma t i o n a v a i l a b l e a t http://www.cdc.gov/ nchs/data/statnt/statnt20.pdf.
  16. Tveit M, Rosengren BE, Nilsson JÅ, Karlsson MK. Former male elite athletes have a higher prevalence of osteoarthritis and arthroplasty in the hip and knee than expected. Am J Sports Med. 2012;40(3):527-533. doi: 10.1177/0363546511429278
  17. Rivera JC, Wenke JC, Buckwalter JA, Ficke JR, Johnson AE. Posttraumatic osteoarthritis caused by battlefield injuries: the primary source of disability in warriors. J Am Acad Orthop Surg. 2012;20(Suppl 1):S64-S69. doi: 10.5435/JAAOS-20-08-S64
  18. Patzkowski JC, Rivera JC, Ficke JR, Wenke JC. The changing face of disability in the US Army: the operation enduring freedom and operation Iraqi freedom effect. J Am Acad Orthop Surg. 2012;20(Suppl 1):S23-S30. doi: 10.5435/JAAOS-20-08-S23
  19. Buckwalter JA. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther. 1998;28(4):192-202. doi: 10.2519/jospt.1998.28.4.192
  20. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993;75(4):532-553. doi: 10.2106/00004623-199304000-00009
  21. Athanasiou KA, Darling EM, Hu JC. Articular Cartilage Tissue Engineering; Cham, Switzerland: Springer; 2009. doi: 10.2200/s00212ed1v01y200910tis003
  22. Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053-2063. doi: 10.1177/0363546508328414
  23. Kreuz PC, Steinwachs MR, Erggelet C, et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage. 2006;14(11):1119-1125. doi: 10.1016/j.joca.2006.05.003
  24. Orth P, Gao L, Madry H. Microfracture for cartilage repair in the knee: a systematic review of the contemporary literature. Knee Surg Sports Traumatol Arthrosc. 2020;28(3):670-706. doi: 10.1007/s00167-019-05359-9
  25. Hangody L, Vásárhelyi G, Hangody LR, et al. Autologous osteochondral grafting--technique and long-term results. Injury. 2008;39(Suppl 1):S32-S39. doi: 10.1016/j.injury.2008.01.041
  26. Gomoll AH, Filardo G, de Girolamo L, et al. Surgical treatment for early osteoarthritis. Part I: cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc. 2012;20(3):450-466. doi: 10.1007/s00167-011-1780-x
  27. Davies RL, Kuiper NJ. Regenerative medicine: a review of the evolution of autologous chondrocyte implantation (ACI) therapy. Bioengineering (Basel). 2019;6(1):22. doi: 10.3390/bioengineering6010022
  28. Boushell MK, Hung CT, Hunziker EB, Strauss EJ, Lu HH. Current strategies for integrative cartilage repair. Connect Tissue Res. 2017;58(5):393-406. doi: 10.1080/03008207.2016.1231180
  29. Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science. 2012;338(6109): 917-921. doi: 10.1126/science.1222454
  30. Robert H. Chondral repair of the knee joint using mosaicplasty. Orthop Traumatol Surg Res. 2011;97(4): 418-429. doi: 10.1016/j.otsr.2011.04.001
  31. Torrie AM, Kesler WW, Elkin J, Gallo RA. Osteochondral allograft. Curr Rev Musculoskelet Med. 2015;8(4):413-422. doi: 10.1007/s12178-015-9298-3
  32. Giannini S, Buda R, Ruffilli A, et al. Failures in bipolar fresh osteochondral allograft for the treatment of end-stage knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2015;23(7):2081-2089. doi: 10.1007/s00167-014-2961-1
  33. Angele P, Niemeyer P, Steinwachs M, et al. Chondral and osteochondral operative treatment in early osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2016;24(6): 1743-1752. doi: 10.1007/s00167-016-4047-8
  34. Görtz S, Bugbee WD. Allografts in articular cartilage repair. Instr Course Lect. 2007;56:469-480.
  35. Chartrain NA, Williams CB, Whittington AR. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater. 2018;74:90-111. doi: 10.1016/j.actbio.2018.05.010
  36. Gibson I, Rosen D, Stucker B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. New York: Springer; 2015. doi: 10.1007/978-1-4939-2113-3
  37. Murphy S, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–785. doi: 10.1038/nbt.2958
  38. Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ. 3D bioprinting for cartilage and osteochondral tissue engineering. Adv Healthc Mater. 2017;6(22):1700298. doi: 10.1002/adhm.201700298
  39. Kang HW, Lee S, Ko I, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34:312-319. doi: 10.1038/nbt.3413
  40. Galarraga JH, Kwon MY, Burdick JA. 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue. Sci Rep. 2019;9(1):19987. doi: 10.1038/s41598-019-56117-3
  41. Critchley S, Sheehy EJ, Cunniffe G, et al. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater. 2020;113:130-143. doi: 10.1016/j.actbio.2020.05.040
  42. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;83:195-201. doi: 10.1016/j.msec.2017.09.002
  43. Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng. 2016;2(10):1800-1805. doi: 10.1021/acsbiomaterials.6b00288
  44. Allen NB, Abar B, Johnson L, Burbano J, Danilkowicz RM, Adams SB. 3D-bioprinted GelMA-gelatin-hydroxyapatite osteoblast-laden composite hydrogels for bone tissue engineering. Bioprinting. 2022;26:e00196. doi: 10.1016/j.bprint.2022.e00196
  45. Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication. 2014;6(2):024103. doi: 10.1088/1758-5082/6/2/024103
  46. Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. doi: 10.1038/ncomms4935
  47. Husen M, Custers RJH, Hevesi M, Krych AJ, Saris DBF. Size of cartilage defects and the need for repair: a systematic review. J Cartil Jt Preserv. 2022;2(3):100049. doi: 10.1016/j.jcjp.2022.100049
  48. Kabir W, Di Bella C, Choong PF, O’Connell CD. Assessment of native human articular cartilage: a biomechanical protocol. Cartilage. 202;13(2):427S-37S. doi: 10.1177/1947603520973240
  49. Chartrain NA, Gilchrist KH, Ho VB, Klarmann GJ. 3D bioprinting for the repair of articular cartilage and osteochondral tissue. Bioprinting. 2022;28:e00239. doi: 10.1016/j.bprint.2022.e00239
  50. Imhof H, Sulzbacher I, Grampp S, Czerny C, Youssefzadeh S, Kainberger F. Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol. 2000;35(10): 581-588. doi: 10.1097/00004424-200010000-00004
  51. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23:4. doi: 10.1186/s40824-018-0149-3
  52. Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA. The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech. 1990;23(11):1103-1113. doi: 10.1016/0021-9290(90)90003-l
  53. Goldstein SA. The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech. 1987;20(11-12):1055-1061. doi: 10.1016/0021-9290(87)90023-6
  54. Goldring MB. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis. 2012;4(4):269-285. doi: 10.1177/1759720X12448454
  55. Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 2013;9(7): 7081-7092. doi: 10.1016/j.actbio.2013.03.005
  56. Erickson IE, Huang AH, Sengupta S, Kestle S, Burdick JA, Mauck RL. Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels. Osteoarthritis Cartilage. 2009;17(12):1639-1648. doi: 10.1016/j.joca.2009.07.003
  57. Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials. 2009;30(35):6702-6707. doi: 10.1016/j.biomaterials.2009.08.055
  58. Nguyen AK, Goering PL, Reipa V, Narayan RJ. Toxicity and photosensitizing assessment of gelatin methacryloyl-based hydrogels photoinitiated with lithium phenyl- 2,4,6-trimethylbenzoylphosphinate in human primary renal proximal tubule epithelial cells. Biointerphases. 2019;14(2):021007. doi: 10.1116/1.5095886
  59. Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication. 2016;8(4):045002. doi: 10.1088/1758-5090/8/4/045002
  60. Anderson DE, Johnstone B. Dynamic mechanical compression of chondrocytes for tissue engineering: a critical review. Front Bioeng Biotechnol. 2017;5:76. doi: 10.3389/fbioe.2017.00076
  61. Tsanaktsidou E, Kammona O, Labude N, et al. Biomimetic cell-laden MeHA hydrogels for the regeneration of cartilage tissue. Polymers (Basel). 2020;12(7):1598. doi: 10.3390/polym12071598
  62. Shim JH, Jang KM, Hahn SK, et al. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication. 2016;8(1):014102. doi: 10.1088/1758-5090/8/1/014102
  63. Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev. 2010;16(1):105-115. doi: 10.1089/ten.TEB.2009.0452
  64. Moran CJ, Ramesh A, Brama PA, O’Byrne JM, O’Brien FJ, Levingstone TJ. The benefits and limitations of animal models for translational research in cartilage repair. J Exp Orthop. 2016;3(1):1. doi: 10.1186/s40634-015-0037-x
  65. Medina G, Görtz S. Osteochondral techniques: where are we now? J Cartil Jt Preserv. 2023;3(1):100105. doi: 10.1016/j.jcjp.2023.100105
  66. Andrade R, Vasta S, Pereira R, et al. Knee donor-site morbidity after mosaicplasty - a systematic review. J Exp Orthop. 2016;3(1):31. doi: 10.1186/s40634-016-0066-0
  67. Feczkó P, Hangody L, Varga J, et al. Experimental results of donor site filling for autologous osteochondral mosaicplasty. Arthroscopy. 2003;19(7):755-761. doi: 10.1016/s0749-8063(03)00402-x

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing