AccScience Publishing / IJB / Volume 10 / Issue 3 / DOI: 10.36922/ijb.1790
RESEARCH ARTICLE

3D-bioprinted hydrogels with instructive niches for dental pulp regeneration

Nazi Zhou1 Shunyao Zhu1 Xinlin Wei2 Xueyuan Liao1 Yu Wang1 Yue Xu1 Liyun Bai1 Haoyuan Wan1 Li Liu1 Jiumeng Zhang3 Ling Zeng4 Jie Tao1* Rui Liu1*
Show Less
1 Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
2 College of Materials Science and Engineering, Sichuan University, Chengdu, China
3 Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
4 Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
IJB 2024, 10(3), 1790 https://doi.org/10.36922/ijb.1790
Submitted: 11 September 2023 | Accepted: 21 December 2023 | Published: 5 February 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Infections to dental pulp commonly result in pulpitis and pulp necrosis, and surgical removal of the infected tissues is the only therapeutic approach. Dental pulp injury remains a challenging medical issue due to the limited regenerative capability of dental pulp. In this work, a dental pulp guidance construct (DPGC) with the instructive niche was bioprinted to mimic native teeth for dentin and neovascular-like structure reconstruction. GelMA-Dextran aqueous emulsion was used as an ink for in situ printing of porous DPGC to induce predominant nuclear localization of Yes-associated protein (YAP) in the encapsulated dental pulp stem cells (DPSCs) and enhance their stemness properties. Furthermore, the DPSCs encapsulated in DPGC with microporous structures exhibited enhanced viability, migration, and spreading. Meanwhile, we found that DPGC could promote capillary tube formation and induce neurogenesis. In a mouse subcutaneous implant model, the DPGC consisted of porous structures, such as odontoblasts and newly formed vascular structures, that mimic dental pulp characteristics. This study demonstrated a new strategy to design DPGC with instructive niche for dental pulp regeneration, presenting a potential treatment alternative to root canal therapy.

Keywords
Dental pulp guidance construct
Dental pulp stem cells
Porous hydrogel
Dental pulp regeneration
Funding
This study was supported by grants from the National Natural Science Foundation of China (82201087), Science and Technology Innovation Capability Enhancement Project of Army Medical University (2022XJS30), Direct Train Research Project of Chongqing Doctor (CSTB2022BSM-C0027), and National Natural Science Foundation of China (82100306).
Conflict of interest
The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
References
  1. Zhang W, Yelick PC. Tooth repair and regeneration: potential of dental stem cells. Trends Mol Med. 2021;27(5):501-511. doi: 10.1016/j.molmed.2021.02.005
  2. Nalliah RP, Allareddy V, Elangovan S, et al. Hospital emergency department visits attributed to pulpal and periapical disease in the United States in 2006. J Endod. 2011;37(1):6-9. doi: 10.1016/j.joen.2010.09.006
  3. Siddiqui Z, Acevedo-Jake AM, Griffith A, et al. Cells and material-based strategies for regenerative endodontics. Bioact Mater. 2022;14:234-249. doi: 10.1016/j.bioactmat.2021.11.015
  4. Goldberg F, Cantarini C, Alfie D, Macchi RL, Arias A. Relationship between unintentional canal overfilling and the long-term outcome of primary root canal treatments and nonsurgical retreatments: a retrospective radiographic assessment. Int Endod J. 2020;53(1):19-26. doi: 10.1111/iej.13209
  5. Wigsten E, Kvist T, Jonasson P, Davidson T. Comparing quality of life of patients undergoing root canal treatment or tooth extraction. J Endod. 2020;46(1):19-28.e1. doi: 10.1016/j.joen.2019.10.012
  6. Zipser CM, Cragg JJ, Guest JD, et al. Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol. 2022;21(7):659-670. doi: 10.1016/s1474-4422(21)00464-6
  7. Chen H, Fu H, Wu X, et al. Regeneration of pulpo-dentinal-like complex by a group of unique multipotent CD24a(+) stem cells. Sci Adv. 2020;6(15):eaay1514. doi: 10.1126/sciadv.aay1514
  8. Xuan K, Li B, Guo H, et al. Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Sci Transl Med. 2018;10(455). doi: 10.1126/scitranslmed.aaf3227
  9. Liu S, Sun J, Yuan S, et al. Treated dentin matrix induces odontogenic differentiation of dental pulp stem cells via regulation of Wnt/β-catenin signaling. Bioact Mater. 2022;7:85-97. doi: 10.1016/j.bioactmat.2021.05.026
  10. Zhang R, Xie L, Wu H, et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater. 2020;113:305-316.

doi: 10.1016/j.actbio.2020.07.012

  1. Yang T, Zhang Q, Xie L, et al. hDPSC-laden GelMA microspheres fabricated using electrostatic microdroplet method for endodontic regeneration. Mater Sci Eng C Mater Biol Appl. 2021;121:111850. doi: 10.1016/j.msec.2020.111850
  2. Kim SW, Im GB, Jeong GJ, et al. Delivery of a spheroids-incorporated human dermal fibroblast sheet increases angiogenesis and M2 polarization for wound healing. Biomaterials. 2021;275:120954. doi: 10.1016/j.biomaterials.2021.120954
  3. Soman SS, Vijayavenkataraman S. Applications of 3D bioprinted-induced pluripotent stem cells in healthcare. Int J Bioprint. 2020;6(4):280. doi: 10.18063/ijb.v6i4.280
  4. Yang L, Liu X, Song L, et al. Melatonin restores the pluripotency of long-term-cultured embryonic stem cells through melatonin receptor-dependent m6A RNA regulation. J Pineal Res. 2020;69(2):e12669. doi: 10.1111/jpi.12669
  5. Kim Y, Jin HJ, Heo J, et al. Small hypoxia-primed mesenchymal stem cells attenuate graft-versus-host disease. Leukemia. 2018;32(12):2672-2684. doi: 10.1038/s41375-018-0151-8
  6. Huebsch N, Lippens E, Lee K, et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat Mater. 2015;14(12): 1269-1277. doi: 10.1038/nmat4407
  7. Yuan Z, Yuan X, Zhao Y, et al. Injectable GelMA cryogel microspheres for modularized cell delivery and potential vascularized bone regeneration. Small. 2021;17(11):e2006596. doi: 10.1002/smll.202006596
  8. Ying G, Jiang N, Parra C, et al. Bioprinted injectable hierarchically porous gelatin methacryloyl hydrogel constructs with shape-memory properties. Adv Funct Mater. 2020;30(46):2003740. doi: 10.1002/adfm.202003740
  9. Guo Y, Xue Y, Wang P, et al. Muse cell spheroids have therapeutic effect on corneal scarring wound in mice and tree shrews. Sci Transl Med. 2020;12(562):eaaw1120. doi: 10.1126/scitranslmed.aaw1120
  10. Zhou L, Zeng Z, Liu S, et al. Multifunctional DNA hydrogel enhances stemness of adipose‐derived stem cells to activate immune pathways for guidance burn wound regeneration. Adv Funct Mater. 2022;32(46). doi: 10.1002/adfm.202207466
  11. Han M, Yang H, Lu X, et al. Three-dimensional-cultured MSC-derived exosome-hydrogel hybrid microneedle array patch for spinal cord repair. Nano Lett. 2022;22(15):6391- 6401. doi: 10.1021/acs.nanolett.2c02259
  12. Zhang J, Hu Q, Wang S, Tao J, Gou M. Digital light processing based three-dimensional printing for medical applications. Int J Bioprint. 2020;6(1):242. doi: 10.18063/ijb.v6i1.242
  13. Levato R, Jungst T, Scheuring RG, Blunk T, Groll J, Malda J. From shape to function: the next step in bioprinting. Adv Mater. 2020;32(12):e1906423. doi: 10.1002/adma.201906423
  14. Tao J, Liu H, Wu W, et al. 3D‐printed nerve conduits with live platelets for effective peripheral nerve repair. Adv Funct Mater. 2020;30(42). doi: 10.1002/adfm.202004272
  15. Tao J, Zhu S, Zhou N, et al. Nanoparticle-stabilized emulsion bioink for digital light processing based 3D bioprinting of porous tissue constructs. Adv Healthc Mater. 2022;11(12):e2102810. doi: 10.1002/adhm.202102810
  16. Shi S, Cui M, Sun F, et al. An innovative solvent-responsive coiling-expanding stent. Adv Mater. 2021;33(32):e2101005. doi: 10.1002/adma.202101005
  17. Lu X, Xu G, Lin Z, et al. Engineered exosomes enriched in netrin-1 modRNA promote axonal growth in spinal cord injury by attenuating inflammation and pyroptosis. Biomater Res. 2023;27(1):3. doi: 10.1186/s40824-023-00339-0
  18. Zhang X, Wu W, Huang Y, Yang X, Gou M. Antheraea pernyi silk fibroin bioinks for digital light processing 3D printing. Int J Bioprint. 2023;9(5):760. doi: 10.18063/ijb.760
  19. Zhang M, Yang F, Han D, et al. 3D bioprinting of corneal decellularized extracellular matrix: GelMA composite hydrogel for corneal stroma engineering. Int J Bioprint. 2023;9(5). doi: 10.18063/ijb.774
  20. Wu Y, Li M, Su H, Chen H, Zhu Y. Up-to-date progress in bioprinting of bone tissue. Int J Bioprint. 2023;9(1):628. doi: 10.18063/ijb.v9i1.628
  21. Zhang C, Ren Y, Kong W, et al. Photocurable 3D-printed PMBG/TCP biphasic scaffold mimicking vasculature for bone regeneration. Int J Bioprint. 2023;9(5):767. doi: 10.18063/ijb.767
  22. Tang Z, Zhou Y, Ma L, Li J. Flow performance of porous implants with different geometry: line, surface, and volume structures. Int J Bioprint. 2023;9(3):700. doi: 10.18063/ijb.700
  23. Yu C, Zhu W, Sun B, Mei D, Gou M, Chen S. Modulating physical, chemical, and biological properties in 3D printing for tissue engineering applications. Appl Phys Rev. 2018;5(4). doi: 10.1063/1.5050245
  24. Seetharaman S, Vianay B, Roca V, et al. Microtubules tune mechanosensitive cell responses. Nat Mater. 2022;21(3): 366-377. doi: 10.1038/s41563-021-01108-x
  25. Li C, Jin Y, Wei S, et al. Hippo signaling controls NLR family pyrin domain containing 3 activation and governs immunoregulation of mesenchymal stem cells in mouse liver injury. Hepatology. 2019;70(5):1714-1731. doi: 10.1002/hep.30700
  26. Moya IM, Halder G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol. 2019;20(4):211-226. doi: 10.1038/s41580-018-0086-y
  27. Lian M, Sun B, Han Y, et al. A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration. Biomaterials. 2021;274:120841. doi: 10.1016/j.biomaterials.2021.120841
  28. Liu S, Tang L, Zhao X, et al. Yap promotes noncanonical Wnt signals from cardiomyocytes for heart regeneration. Circ Res. 2021;129(8):782-797. doi: 10.1161/CIRCRESAHA.121.318966
  29. Dey A, Varelas X, Guan KL. Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov. 2020;19(7):480-494. doi: 10.1038/s41573-020-0070-z
  30. Jeanette H, Marziali LN, Bhatia U, et al. YAP and TAZ regulate Schwann cell proliferation and differentiation during peripheral nerve regeneration. Glia. 2021;69(4): 1061-1074. doi: 10.1002/glia.23949
  31. Liang H, Wang Y, Chen S, Liu Y, Liu Z, Bai J. Nano-hydroxyapatite bone scaffolds with different porous structures processed by digital light processing 3D printing. Int J Bioprint. 2022;8(1):502. doi: 10.18063/ijb.v8i1.502
  32. Hasturk O, Kaplan DL. Cell armor for protection against environmental stress: advances, challenges and applications in micro- and nanoencapsulation of mammalian cells. Acta Biomater. 2019;95:3-31. doi: 10.1016/j.actbio.2018.11.040
  33. Brusatin G, Panciera T, Gandin A, Citron A, Piccolo S. Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. Nat Mater. 2018;17(12):1063-1075. doi: 10.1038/s41563-018-0180-8
  34. Chaudhuri O, Gu L, Darnell M, et al. Substrate stress relaxation regulates cell spreading. Nat Commun. 2015;6:6364. doi: 10.1038/ncomms7365
  35. Tang S, Ma H, Tu HC, Wang HR, Lin PC, Anseth KS. Adaptable fast relaxing boronate-based hydrogels for probing cell-matrix interactions. Adv Sci. 2018;5(9): 1800638. doi: 10.1002/advs.201800638
  36. Qian Y, Gong J, Lu K, et al. DLP printed hDPSC-loaded GelMA microsphere regenerates dental pulp and repairs spinal cord. Biomaterials. 2023;299. doi: 10.1016/j.biomaterials.2023.122137
  37. Guo S, Redenski I, Landau S, Szklanny A, Merdler U, Levenberg S. Prevascularized scaffolds bearing human dental pulp stem cells for treating complete spinal cord injury. Adv Healthc Mater. 2020;9(20). doi: 10.1002/adhm.202000974
  38. Sultan N, Amin LE, Zaher AR, Grawish ME, Scheven BA. Dental pulp stem cells stimulate neuronal differentiation of PC12 cells. Neural Regen Res. 2021;16(9):1821-1828. doi: 10.4103/1673-5374.306089
  39. Liu C, Fan L, Tian Z, et al. Self-curling electroconductive nerve dressing for enhancing peripheral nerve regeneration in diabetic rats. Bioact Mater. 2021;6(11):3892-3903. doi: 10.1016/j.bioactmat.2021.03.034
  40. Fang W, Yang M, Wang L, et al. Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: current progress and challenges. Int J Bioprint. 2023;9(5):759. doi: 10.18063/ijb.759
  41. Rodenhizer D, Gaude E, Cojocari D, et al. A three-dimensional engineered tumour for spatial snapshot analysis of cell metabolism and phenotype in hypoxic gradients. Nat Mater. 2016;15(2):227-234. doi: 10.1038/nmat4482
  42. Liu Y, Graves DT, Wang S. Development and clinical application of human mesenchymal stem cell drugs. Sci Bull. 2023;68(9):860-863. doi: 10.1016/j.scib.2023.03.050
  43. Rodriguez-Salvador M, Ruiz-Cantu L. Revealing emerging science and technology research for dentistry applications of 3D bioprinting. Int J Bioprint. 2019;5(1):170. doi: 10.18063/ijb.v5i1.170
  44. Chang PH, Chao HM, Chern E, Hsu SH. Chitosan 3D cell culture system promotes naïve-like features of human induced pluripotent stem cells: A novel tool to sustain pluripotency and facilitate differentiation. Biomaterials. 2021;268:120575. doi: 10.1016/j.biomaterials.2020.120575
  45. Lu X, Sun C, Chen L, et al. Stemness maintenance and massproduction of neural stem cells on poly L-lactic acid nanofibrous membrane based on piezoelectric effect. Small. 2022;18(13):e2107236. doi: 10.1002/smll.202107236
  46. Gao J, Wang H, Li M, et al. DLP-printed GelMA-PMAA scaffold for bone regeneration through endochondral ossification. Int J Bioprint. 2023;9(5):754. doi: 10.18063/ijb.754
  47. Salvador T, Oliveira MB, Mano JF. Leachable-free fabrication of hydrogel foams enabling homogeneous viability of encapsulated cells in large-volume constructs. Adv Healthc Mater. 2020;9(20):e2000543. doi: 10.1002/adhm.202000543
  48. Silvestro I, Sergi R, Scotto d’Abusco A, et al. Chitosan scaffolds with enhanced mechanical strength and elastic response by combination of freeze gelation, photo-crosslinking and freeze-drying. Carbohydr Polym. 2021;267:118156. doi: 10.1016/j.carbpol.2021.118156
  49. Yang XY, Chen LH, Li Y, Rooke JC, Sanchez C, Su BL. Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev. 2017;46(2):481-558. doi: 10.1039/c6cs00829a
  50. Esquena J. Water-in-water (W/W) emulsions. Curr Opin Colloid Interface Sci. 2016;25:109-119. doi: 10.1016/j.cocis.2016.09.010
  51. Hu Q, Lu Y, Luo Y. Recent advances in dextran-based drug delivery systems: from fabrication strategies to applications. Carbohydr Polym. 2021;264:117999. doi: 10.1016/j.carbpol.2021.117999
  52. Wu X, Zhu H, Che J, Xu Y, Tan Q, Zhao Y. Stem cell niche-inspired microcarriers with ADSCs encapsulation for diabetic wound treatment. Bioact Mater. 2023;26:159-168. doi: 10.1016/j.bioactmat.2023.02.031
  53. Wilson KL, Pérez SCL, Naffaa MM, Kelly SH, Segura T. Stoichiometric post-modification of hydrogel microparticles dictates neural stem cell fate in microporous annealed particle scaffolds. Adv Mater. 2022;34(33):e2201921. doi: 10.1002/adma.202201921
  54. Zhao Y, Shi Y, Yang H, et al. Stem cell microencapsulation maintains stemness in inflammatory microenvironment. Int J Oral Sci. 2022;14(1):48. doi: 10.1038/s41368-022-00198-w
  55. Kong Y, Ma B, Liu F, et al. Cellular stemness maintenance of human adipose-derived stem cells on ZnO nanorod arrays. Small. 2019;15(51):e1904099. doi: 10.1002/smll.201904099
  56. Kim J, Kim YM, Song SC. One-step preparation of an injectable hydrogel scaffold system capable of sequential dual-growth factor release to maximize bone regeneration. Adv Healthc Mater. 2023;12(4):e2202401. doi: 10.1002/adhm.202202401
  57. Madl CM, LeSavage BL, Khariton M, Heilshorn SC. Neural progenitor cells alter chromatin organization and neurotrophin expression in response to 3D matrix degradability. Adv Healthc Mater. 2020;9(18):e2000754. doi: 10.1002/adhm.202000754
  58. Bhattacharya S, Mukherjee A, Pisano S, et al. The biophysical property of the limbal niche maintains stemness through YAP. Cell Death Differ. 2023;30(6):1601-1614. doi: 10.1038/s41418-023-01156-7
  59. Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 2016;539(7630):560-564. doi: 10.1038/nature20168
  60. Atlas Y, Gorin C, Novais A, et al. Microvascular maturation by mesenchymal stem cells in vitro improves blood perfusion in implanted tissue constructs. Biomaterials. 2021;268:120594. doi: 10.1016/j.biomaterials.2020.120594
  61. Gorin C, Rochefort GY, Bascetin R, et al. Priming dental pulp stem cells with fibroblast growth factor-2 increases angiogenesis of implanted tissue-engineered constructs through hepatocyte growth factor and vascular endothelial growth factor secretion. Stem Cells Transl Med. 2016;5(3):392-404. doi: 10.5966/sctm.2015-0166
  62. Xu D, Wu D, Qin M, et al. Efficient delivery of nerve growth factors to the central nervous system for neural regeneration. Adv Mater. 2019;31(33):e1900727. doi: 10.1002/adma.201900727
  63. Jiang S, Lyu C, Zhao P, et al. Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nat Commun. 2019;10(1). doi: 10.1038/s41467-019-11397-1
  64. Zhang J, Chen Y, Huang Y, et al. A 3D-printed self-adhesive bandage with drug release for peripheral nerve repair. Adv Sci. 2020;7(23):2002601. doi: 10.1002/advs.202002601
  65. Khayat A, Monteiro N, Smith EE, et al. GelMA-encapsulated hDPSCs and HUVECs for dental pulp regeneration. J Dent Res. 2017;96(2):192-199. doi: 10.1177/0022034516682005
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing