AccScience Publishing / IJB / Volume 10 / Issue 2 / DOI: 10.36922/ijb.1857
RESEARCH ARTICLE

3D-bioprinted cell-laden blood vessel with dual drug delivery nanoparticles for advancing vascular regeneration

Eun Ji Lee1,2† Jaewoo Choi1,2† Hye Ji Lim1,2 Deokhyeon Yoon1,2 Dong Myoung Lee1,2 Donggu Kang3 Jeong-Seok Lee3 Hojun Jeon3 Kyeong Hyeon Lee4 Yong-Il Shin4,5 Sang-Cheol Han6 Woong Bi Jang1,2* Sang-Mo Kwon1,2*
Show Less
1 Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan, Republic of Korea
2 Convergence Stem Cell Research Center, Pusan National University, Yangsan, Republic of Korea
3 Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-do, South Korea
4 Science of Convergence, School of Medicine, Pusan National University, Yangsan, Republic of Korea
5 Department of Rehabilitation Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
6 CEN Co., Ltd., Nano-Convergence Center, 761 Muan-ro, Miryang, Republic of Korea
IJB 2024, 10(2), 1857 https://doi.org/10.36922/ijb.1857
Submitted: 18 September 2023 | Accepted: 17 November 2023 | Published: 12 January 2024
(This article belongs to the Special Issue Nano-enabled 3D Bioprinting for Various Tissue Engineering)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Vascular regeneration plays a critical role in the treatment of cardiovascular diseases and in tissue engineering applications. In this study, we fabricated and characterized statin/curcumin-loaded nanoparticles for potential applications in vascular regeneration. The nanoparticles exhibited consistent spherical shape and sizes, indicating reproducibility and stability of the fabrication process. The sustained release of the loaded drugs from the nanoparticles indicated their suitability for controlled and prolonged drug delivery. Biocompatibility assessments revealed that the nanoparticles were nontoxic even at high concentrations and over extended periods. Moreover, the incorporation of statin within the nanoparticles enhanced the proliferative capacity and functional abilities of endothelial progenitor cells, thereby promoting angiogenesis and vascular repair. Co-administration of curcumin with statin further augmented the therapeutic effects by reducing intracellular reactive oxygen species levels and providing antioxidant protection against oxidative stress. Furthermore, we successfully integrated these nanoparticles into artificial blood vessels (ABVs) using three-dimensional printing technology, creating customizable constructs capable of supporting vascular regeneration. The viability and proliferative capacity of cells within the ABVs were preserved, which has potential for targeted drug delivery and localized therapy. In in vivo models of hindlimb ischemia, transplantation of nanoparticle-loaded ABVs resulted in significant improvements in terms of recovery speed and blood flow. Histological analysis confirmed the enhanced expression of vascular-related markers, indicating improved angiogenesis. Collectively, our findings demonstrate the potential of statin/curcumin-loaded nanoparticles as a promising approach for vascular tissue engineering and regenerative medicine. These nanoparticles offer controlled drug delivery, biocompatibility, and enhanced regenerative properties, suggesting that they are valuable tools for promoting vascular regeneration and advancing therapeutic interventions for cardiovascular diseases. Further research is required to fully elucidate the mechanisms of action and optimize their clinical applications.

Keywords
3D Bioprinting
Nanoparticles
Artificial blood vessels
Atorvastatin
Curcumin
Funding
This work was supported by a grant from the National Research Foundation (NRF2020R1A2C2101297 and 2022R1A5A2027161) funded by the Korean government.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Pancholy SB, Patel GA, Shah SC, Patel TM. Vascular complications of the wrist: prevention and management. Interv Cardiol Clin. 2020;9(1):87-97. doi: 10.1016/j.iccl.2019.08.002
  2. Fan J, Watanabe T. Atherosclerosis: known and unknown. Pathol Int. 2022;72(3):151-160. doi: 10.1111/pin.13202
  3. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524-533. doi: 10.1038/s41586-021-03392-8
  4. Balta S. Endothelial dysfunction and inflammatory markers of vascular disease. Curr Vasc Pharmacol. 2021;19(3):243-249. doi: 10.2174/1570161118666200421142542
  5. Han Y, Li L, Zhang Y, et al. Phenomics of vascular disease: the systematic approach to the combination therapy. Curr Vasc Pharmacol. 2015;13(4):433-440. doi: 10.2174/1570161112666141014144829
  6. Horvath L, Nemeth N, Feher G, Kívés Z, Endrei D, Boncz I. Epidemiology of peripheral artery disease: narrative review. Life (Basel). 2022;12(7):1041. doi: 10.3390/life12071041
  7. St Hilaire C. Medial arterial calcification: a significant and independent contributor of peripheral artery disease. Arterioscler Thromb Vasc Biol. 2022;42(3):253-260. doi: 10.1161/ATVBAHA.121.316252
  8. Conte SM, Vale PR. Peripheral arterial disease. Heart Lung Circ. 2018;27(4):427-432. doi: 10.1016/j.hlc.2017.10.014
  9. Regmi M, Siccardi MA. Coronary Artery Disease Prevention. Treasure Island, FL: StatPearls; 2023.
  10. Pragodpol P, Ryan C. Critical review of factors predicting health-related quality of life in newly diagnosed coronary artery disease patients. J Cardiovasc Nurs. 2013;28(3):277-284. doi: 10.1097/JCN.0b013e31824af56e
  11. Lichota A, Szewczyk EM, Gwozdzinski K. Factors affecting the formation and treatment of thrombosis by natural and synthetic compounds. Int J Mol Sci. 2020;21(21):7975. doi: 10.3390/ijms21217975
  12. Chen H, McGowan EM, Ren N, et al. Nattokinase: a promising alternative in prevention and treatment of cardiovascular diseases. Biomark Insights. 2018;13:1177271918785130. doi: 10.1177/1177271918785130
  13. Krisnanda C, Menahem S, Lane GK. Intravascular stent implantation for the management of pulmonary artery stenosis. Heart Lung Circ. 2013;22(1):56-70. doi: 10.1016/j.hlc.2012.08.008
  14. Elens M, Le Fevere de Ten Hove G. In stent re-stenosis after carotid artery stenting. Eur J Vasc Endovasc Surg. 2023;65(3):378. doi: 10.1016/j.ejvs.2022.11.026
  15. John S, Bain MD, Hui FK, et al. Long-term follow-up of in-stent stenosis after pipeline flow diversion treatment of intracranial aneurysms. Neurosurgery. 2016;78(6):862-867. doi: 10.1227/NEU.0000000000001146
  16. Chiarito M, Mehran R. Panta rhei, also drug eluting stent technology. Catheter Cardiovasc Interv. 2020;95(6):1074-1075. doi: 10.1002/ccd.28918
  17. El-Kadiry AE, Rafei M, Shammaa R. Cell therapy: types, regulation, and clinical benefits. Front Med (Lausanne). 2021;8:756029. doi: 10.3389/fmed.2021.756029
  18. Zhang L, Xu Q. Stem/progenitor cells in vascular regeneration. Arterioscler Thromb Vasc Biol. 2014;34(6):1114-1119. doi: 10.1161/ATVBAHA.114.303809
  19. Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68. doi: 10.1186/s13287-019-1165-5
  20. Xie Y, Fan Y, Xu Q. Vascular regeneration by stem/progenitor cells. Arterioscler Thromb Vasc Biol. 2016;36(5):e33-40. doi: 10.1161/ATVBAHA.116.307303
  21. Leeper NJ, Hunter AL, Cooke JP. Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation. 122(5):517-526. doi: 10.1161/CIRCULATIONAHA.109.881441
  22. Bashor CJ, Hilton IB, Bandukwala H, Smith DM, Veiseh O. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov. 2022;21(9):655-675. doi: 10.1038/s41573-022-00476-6
  23. Lovell MJ, Mathur A. Cardiac stem cell therapy: progress from the bench to bedside. Heart. 2010;96(19):1531-1537. doi: 10.1136/hrt.2009.192385
  24. Hou YC, Cui X, Qin Z, et al. Three-dimensional bioprinting of artificial blood vessel: process, bioinks, and challenges. Int J Bioprint. 2023;9(4):740. doi: 10.18063/ijb.740
  25. Yang GH, Kang D, An S, et al. Advances in the development of tubular structures using extrusion-based 3D cell-printing technology for vascular tissue regenerative applications. Biomater Res. 2022;26(1):73. doi: 10.1186/s40824-022-00321-2
  26. Moore MJ, Tan RP, Yang N, Rnjak-Kovacina J, Wise SG. Bioengineering artificial blood vessels from natural materials. Trends Biotechnol. 2022;40(6):693-707. doi: 10.1016/j.tibtech.2021.11.003
  27. Wang D, Xu Y, Li Q, Turng L-S. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B. 2020;8(9):1801-1822. doi: 10.1039/c9tb01849b
  28. Sun D, Zheng Y, Yin T, et al. Coronary drug-eluting stents: from design optimization to newer strategies. J Biomed Mater Res A. 2014;102(5):1625-40. doi: 10.1002/jbm.a.34806
  29. Sternberg K, Grabow N, Petersen S, et al. Advances in coronary stent technology--active drug-loaded stent surfaces for prevention of restenosis and improvement of biocompatibility. Curr Pharm Biotechnol. 2013;14(1):76-90. doi: 10.2174/138920113804805377
  30. Wang Z, Lee SJ, Cheng HJ, Yoo JJ, Atala A. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater. 2018;70:48-56. doi: 10.1016/j.actbio.2018.02.007
  31. Neumann B, Baror R, Zhao C, et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell. 2019;25(4):473-485.e8. doi: 10.1016/j.stem.2019.08.015
  32. Jang WB, Park JH, Ji ST, et al. Cytoprotective roles of a novel compound, MHY-1684, against hyperglycemia-induced oxidative stress and mitochondrial dysfunction in human cardiac progenitor cells. Oxid Med Cell Longev. 2018;2018:4528184. doi: 10.1155/2018/4528184
  33. Mohseni N, Roshan R, Naderi S, Behdani M, Kazemi-Lomedasht F. In vitro combination therapy of pathologic angiogenesis using anti-vascular endothelial growth factor and anti-neuropilin-1 nanobodies. Iran J Basic Med Sci. 2020;23(10):1335-1339. doi: 10.22038/ijbms.2020.47782.11000
  34. Niklason LE, Lawson JH. Bioengineered human blood vessels. Science. 2020;370(6513):eaaw8682. doi: 10.1126/science.aaw8682
  35. Papaioannou TG, Manolesou D, Dimakakos E, Tsoucalas G, Vavuranakis M, Tousoulis D. 3D bioprinting methods and techniques: applications on artificial blood vessel fabrication. Acta Cardiol Sin. 2019;35(3):284-289. doi: 10.6515/ACS.201905_35(3).20181115A
  36. Kakisis JD, Liapis CD, Breuer C, Sumpio BE. Artificial blood vessel: the Holy Grail of peripheral vascular surgery. J Vasc Surg. 2005;41(2):349-354. doi: 10.1016/j.jvs.2004.12.026
  37. Colosi C, Shin SR, Manoharan V, et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater. 2016;28(4):677-684. doi: 10.1002/adma.201503310
  38. Munisso MC, Yamaoka T. Circulating endothelial progenitor cells in small-diameter artificial blood vessel. J Artif Organs. 2020;23(1):6-13. doi: 10.1007/s10047-019-01114-6
  39. Zhou X, Nowicki M, Sun H, et al. 3D bioprinting-tunable small-diameter blood vessels with biomimetic biphasic cell layers. ACS Appl Mater Interfaces. 2020;12(41): 45904-45915. doi: 10.1021/acsami.0c14871
  40. Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365(6452):482-487. doi: 10.1126/science.aav9051
  41. Alonzo M, AnilKumar S, Roman B, Tasnim N, Joddar B. 3D bioprinting of cardiac tissue and cardiac stem cell therapy. Transl Res. 2019;211:64-83. doi: 10.1016/j.trsl.2019.04.004
  42. Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-throughput screening: drug screening, disease modeling, and precision medicine applications. Appl Phys Rev. 2019;6(1):011302. doi: 10.1063/1.5056188
  43. Vanderburgh J, Sterling JA, Guelcher SA. 3D printing of tissue engineered constructs for in vitro modeling of disease progression and drug screening. Ann Biomed Eng. 2017;45(1):164-179. doi: 10.1007/s10439-016-1640-4
  44. Gonzalez LM, Moeser AJ, Blikslager AT. Animal models of ischemia-reperfusion-induced intestinal injury: progress and promise for translational research. Am J Physiol Gastrointest Liver Physiol. 2015;308(2):G63-75. doi: 10.1152/ajpgi.00112.2013
  45. Rahbar Saadat Y, Hosseiniyan Khatibi SM, Sani A, Vahed SZ, Ardalan M. Ischemic tubular injury: oxygen-sensitive signals and metabolic reprogramming. Inflammopharmacology. 2023;31(4):1657-1669. doi: 10.1007/s10787-023-01232-x
  46. Guan Y, Gao N, Niu H, Dang Y, Guan J. Oxygen-release microspheres capable of releasing oxygen in response to environmental oxygen level to improve stem cell survival and tissue regeneration in ischemic hindlimbs. J Control Release. 2021;331:376-389. doi: 10.1016/j.jconrel.2021.01.034
  47. Dambrova M, Zuurbier CJ, Borutaite V, Liepinsh E, Makrecka-Kuka M. Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/ reperfusion injury. Free Radic Biol Med. 2021;165:24-37. doi: 10.1016/j.freeradbiomed.2021.01.036
  48. Rojas-Morales P, Leon-Contreras JC, Sanchez-Tapia M, et al. A ketogenic diet attenuates acute and chronic ischemic kidney injury and reduces markers of oxidative stress and inflammation. Life Sci. 2022;289:120227. doi: 10.1016/j.lfs.2021.120227
  49. Mokhtari-Zaer A, Marefati N, Atkin SL, Butler AE, Sahebkar A. The protective role of curcumin in myocardial ischemia-reperfusion injury. J Cell Physiol. 2018;234(1):214-222. doi: 10.1002/jcp.26848
  50. Malko P, Jiang LH. TRPM2 channel-mediated cell death: an important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol. 2020;37:101755. doi: 10.1016/j.redox.2020.101755
  51. Zhao X, Li S, Mo Y, et al. DCA protects against oxidation injury attributed to cerebral ischemia-reperfusion by regulating glycolysis through PDK2-PDH-Nrf2 axis. Oxid Med Cell Longev. 2021;2021:5173035. doi: 10.1155/2021/5173035
  52. Rivera JC, Dabouz R, Noueihed B, Omri S, Tahiri H, Chemtob S. Ischemic retinopathies: oxidative stress and inflammation. Oxid Med Cell Longev. 2017;2017:3940241. doi: 10.1155/2017/3940241
  53. Santos-Zas I, Lemarie J, Tedgui A, Ait-Oufella H. Adaptive immune responses contribute to post-ischemic cardiac remodeling. Front Cardiovasc Med. 2018;5:198. doi: 10.3389/fcvm.2018.00198
  54. Carlsson PO. Influence of microenvironment on engraftment of transplanted beta-cells. Ups J Med Sci. 2011;116(1):1-7. doi: 10.3109/03009734.2010.548609
  55. Yan LL, Ye LP, Chen YH, et al. The influence of microenvironment on survival of intraportal transplanted islets. Front Immunol. 2022;13:849580. doi: 10.3389/fimmu.2022.849580
  56. Zenclussen AC, Hammerling GJ. Cellular regulation of the uterine microenvironment that enables embryo implantation. Front Immunol. 2015;6:321. doi: 10.3389/fimmu.2015.00321
  57. Yavarpour-Bali H, Ghasemi-Kasman M, Pirzadeh M. Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int J Nanomedicine. 2019;14:4449-4460. doi: 10.2147/IJN.S208332
  58. Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: a review. Neuroscience. 2019;406:1-21. doi: 10.1016/j.neuroscience.2019.02.020
  59. Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr. 2020;60(6):887-939. doi: 10.1080/10408398.2018.1552244
  60. Zhao W, Xiao ZJ, Zhao SP. The benefits and risks of statin therapy in ischemic stroke: a review of the literature. Neurol India. 2019;67(4):983-992. doi: 10.4103/0028-3886.266274
  61. Stancu C, Sima A. Statins: mechanism of action and effects. J Cell Mol Med. 2001;5(4):378-387. doi: 10.1111/j.1582-4934.2001.tb00172.x
  62. Lee SE, Chang HJ, Sung JM, et al. Effects of statins on coronary atherosclerotic plaques: the PARADIGM Study. JACC Cardiovasc Imaging. 2018;11(10):1475-1484. doi: 10.1016/j.jcmg.2018.04.015
  63. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 2016;11(6):673-692. doi: 10.2217/nnm.16.5
  64. Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano. 2015;9(9):8655-8671. doi: 10.1021/acsnano.5b03184
  65. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A): 28-51. doi: 10.1016/j.addr.2015.09.012
  66. Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34-47. doi: 10.1016/j.jconrel.2016.05.044
  67. Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019; 143:68-96. doi: 10.1016/j.addr.2019.04.008
  68. Gao G, Lee JH, Jang J, et al. Tissue engineered bio-blood-vessels constructed using a tissue-specific bioink and 3d coaxial cell printing technique: a novel therapy for ischemic disease. Adv Funct Mater. 2017;27(33):1700798. doi: 10.1002/adfm.201770192
  69. Kim J, Kim HS, Lee N, et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed Engl. 2008;47(44):8438-8441. doi: 10.1002/anie.200802469
  70. Lee SH, Lee JH, Yoo SY, Hur J, Kim H-S, Kwon SM. Hypoxia inhibits cellular senescence to restore the therapeutic potential of old human endothelial progenitor cells via the hypoxia-inducible factor-1alpha-TWIST-p21 axis. Arterioscler Thromb Vasc Biol. 2013;33(10): 2407-2414. doi: 10.1161/ATVBAHA.113.301931
  71. Guo X, Mao F, Wang W, Yang Y, Bai Z. Sulfhydryl-modified Fe3O4@SiO2 core/shell nanocomposite: synthesis and toxicity assessment in vitro. ACS Appl Mater Interfaces. 2015;7(27):14983-14991. doi: 10.1021/acsami.5b03873
  72. Shi B, Xie L, Ma B, Zhou Z, Xu B, Qu L. Preparation and properties of highly transparent SiO(2) aerogels for thermal insulation. Gels. 2022;8(11):744. doi: 10.3390/gels8110744
  73. Gheorghita Puscaselu R, Lobiuc A, Dimian M, Covasa M. Alginate: from food industry to biomedical applications and management of metabolic disorders. Polymers (Basel). 2020;12(10):2417. doi: 10.3390/polym12102417
  74. Tarbell JM, Cancel LM. The glycocalyx and its significance in human medicine. J Intern Med. 2016;280(1):97-113. doi: 10.1111/joim.12465
  75. Schmelzer KP, Liebetrau D, Kammerer W, Meisinger C, Hyhlik-Dürr A. Strategies for avoiding typical drug-drug interactions and drug-related problems in patients with vascular diseases. Medicina (Kaunas). 2023; 59(4):780. doi: 10.3390/medicina59040780
  76. Huynh DTN, Heo KS. Therapeutic targets for endothelial dysfunction in vascular diseases. Arch Pharm Res. 2019;42(10):848-861. doi: 10.1007/s12272-019-01180-7
  77. Weiss AJ, Lorente-Ros M, Correa A, Barman N, Tamis- Holland JE. Recent advances in stent technology: do they reduce cardiovascular events? Curr Atheroscler Rep. 2022;24(9):731-744. doi: 10.1007/s11883-022-01049-z
  78. Suryawan IGR, Luke K, Agustianto RF, Budi Mulia EP. Coronary stent infection: a systematic review. Coron Artery Dis. 2022;33(4):318-326. doi: 10.1097/MCA.0000000000001098
  79. Sanchez-Jimenez E, El-Mokdad R, Chaddad R, Cortese B. Drug-coated balloon for the management of coronary chronic total occlusions. Rev Cardiovasc Med. 2022;23(2):42. doi: 10.31083/j.rcm2302042
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing