AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.1256
Cite this article
205
Download
611
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Research progress of 3D-bioprinted functional pancreas and in vitro tumor models

Liusheng Wu1,2† Huansong Li3† Yangsui Liu3† Zhengyang Fan4† Jingyi Xu1† Ning Li5† Xinye Qian1 Zewei Lin6* Xiaoqiang Li2* Jun Yan1*
Show Less
1 Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
2 Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
3 Hepatobiliary Pancreatic Center, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
4 Department of Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, China
5 Graduate School of Qinghai University, Xining, Qinghai, China
6 Department of Hepatological Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
IJB 2024, 10(1), 1256 https://doi.org/10.36922/ijb.1256
Submitted: 5 September 2023 | Accepted: 27 September 2023 | Published: 3 January 2024
(This article belongs to the Special Issue Advances in Bioprinting for Medical Applications)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

With the rapid development of three-dimensional (3D) bioprinting technology, the research revolving around in vitro functional pancreas and tumor models has become the focus of attention in the field of life sciences. This review aims to summarize and deeply discuss the research progress and prospects of 3D-bioprinted functional pancreas and in vitro tumor models. The efforts in improving 3D printing technology to increase its accuracy and reliability in the biomedical applications have been ramped up over the past few years. Researchers are now able to create highly complex 3D structures through precise layering of biological materials at the micron scale. For instance, a functional pancreas can be printed in vitro by combining cells, biomaterials, and growth factors. The introduction of new technologies allows researchers to more accurately simulate the growth and spread of tumors, providing a more realistic platform for cancer treatment research. This not only helps accelerate the process of drug screening, but also lays the foundation for personalized medicine. As multiple disciplines, such as materials science, cell biology, and engineering, continue to converge with 3D bioprinting, emergence of more innovative applications is anticipated. However, despite significant progress, many technical and ethical challenges still need to be overcome before practical clinical applications can be implemented. In summary, the application of bioprinting technology is of great significance to the study of functional pancreas and in vitro tumor models, which could lead to new breakthroughs in the development of clinical treatment and personalized medicine.

Keywords
3D bioprinting technology
In vitro functional pancreatic model
In vitro pancreatic cancer model
Artificial intelligence programming technology
Funding
This work was supported by Scientific Research Project of Education Department of Anhui Province (YJS20210324), the National Natural Science Foundation of China (81972829), the Scientific Research Foundation of Peking University Shenzhen Hospital (KYQD202100X), Research and Development of Intelligent Surgical Navigation and Operating System for Precise Liver Resection (2022ZLA006), Start-up Fund for Talent Researchers of Tsinghua University (10001020507), and National Science and Technology Major Project of China (2017ZX100203205).
References
  1. Yang J, Xu J, Zhang B, et al. Ferroptosis: At the crossroad of gemcitabine resistance and tumorigenesis in pancreatic cancer. Int J Mol Sci. 2021;22(20):10944. doi: 10.3390/ijms222010944
  2. Zhou P, Li B, Liu F, et al. The epithelial to mesenchymal transition (EMT) and cancer stem cells: Implication for treatment resistance in pancreatic cancer. Mol Cancer. 2017;16(1):52. doi: 10.1186/s12943-017-0624-9
  3. Sherman MH, Beatty GL. Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance. Annu Rev Pathol. 2023;18: 123-148. doi: 10.1146/annurev-pathmechdis-031621-024600
  4. Masuo K, Chen R, Yogo A, et al. SNAIL2 contributes to tumorigenicity and chemotherapy resistance in pancreatic cancer by regulating IGFBP2. Cancer Sci. 2021;112(12):4987- 4999. doi: 10.1111/cas.15162
  5. Wei L, Wen JY, Chen J, et al. Oncogenic ADAM28 induces gemcitabine resistance and predicts a poor prognosis in pancreatic cancer. World J Gastroenterol. 2019;25(37): 5590-5603. doi: 10.3748/wjg.v25.i37.5590
  6. Thummuri D, Khan S, Underwood PW, et al. Overcoming gemcitabine resistance in pancreatic cancer using the BCL-XL-specific degrader DT2216. Mol Cancer Ther. 2022;21(1):184-192. doi: 10.1158/1535-7163.MCT-21-0474
  7. Yu S, Wang L, Che D, et al. Targeting CRABP-II overcomes pancreatic cancer drug resistance by reversing lipid raft cholesterol accumulation and AKT survival signaling. J Exp Clin Cancer Res. 2022;41(1):88. doi: 10.1186/s13046-022-02261-0
  8. Yang G, Guan W, Cao Z, et al. Integrative genomic analysis of gemcitabine resistance in pancreatic cancer by patient-derived xenograft models. Clin Cancer Res. 2021;27(12):3383-3396. doi: 10.1158/1078-0432.CCR-19-3975
  9. Capula M, Perán M, Xu G, et al. Role of drug catabolism, modulation of oncogenic signaling and tumor microenvironment in microbe-mediated pancreatic cancer chemoresistance. Drug Resist Updat. 2022;64: 100864. doi: 10.1016/j.drup.2022.100864
  10. Palikuqi B, Nguyen DT, Li G, et al. Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature. 2020;585(7825):426-432. doi: 10.1038/s41586-020-2712-z
  11. Meng Q, Liang C, Hua J, et al. A miR-146a-5p/TRAF6/NF-kB p65 axis regulates pancreatic cancer chemoresistance: Functional validation and clinical significance. Theranostics. 2020;10(9):3967-3979. doi: 10.7150/thno.40566
  12. Xu Y, Song D, Wang X. 3D bioprinting for pancreas engineering/ manufacturing. Polymers (Basel). 2022;14(23):5143. doi: 10.3390/polym14235143
  13. Zhao T, Xiao D, Jin F, et al. ESE3-positive PSCs drive pancreatic cancer fibrosis, chemoresistance and poor prognosis via tumour-stromal IL-1β/NF-κB/ESE3 signalling axis. Br J Cancer. 2022;127(8):1461-1472. doi: 10.1038/s41416-022-01927-y
  14. Grasso C, Jansen G, Giovannetti E. Drug resistance in pancreatic cancer: Impact of altered energy metabolism. Crit Rev Oncol Hematol. 2017;114: 139-152. doi: 10.1016/j.critrevonc.2017.03.026
  15. Niedźwiedzka-Rystwej P, Wołącewicz M, Cywoniuk P, et al. Transformation of stem cells used in the 3D bioprinting process as a personalized treatment method for type 1 diabetes. Arch Immunol Ther Exp (Warsz). 2020;68(2):13. doi: 10.1007/s00005-020-00578-2
  16. Hennig A, Baenke F, Klimova A, et al. Detecting drug resistance in pancreatic cancer organoids guides optimized chemotherapy treatment. J Pathol. 2022;257(5):607-619. doi: 10.1002/path.5906
  17. Halbrook CJ, Pontious C, Kovalenko I, et al. Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab. 2019;29(6):1390-1399.e6. doi: 10.1016/j.cmet.2019.02.001
  18. Grattarola M, Cucci MA, Roetto A, et al. Post-translational down-regulation of Nrf2 and YAP proteins, by targeting deubiquitinases, reduces growth and chemoresistance in pancreatic cancer cells. Free Radic Biol Med. 2021;174: 202-210. doi: 10.1016/j.freeradbiomed.2021.08.006
  19. Gautam SK, Basu S, Aithal A, et al. Regulation of pancreatic cancer therapy resistance by chemokines. Semin Cancer Biol. 2022;86(Pt 2):69-80. doi: 10.1016/j.semcancer.2022.08.010
  20. Ning E, Turnbull G, Clarke J, et al. 3D bioprinting of mature bacterial biofilms for antimicrobial resistance drug testing. Biofabrication. 2019;11(4):045018. doi: 10.1088/1758-5090/ab37a0
  21. Wang Y, Shi W, Kuss M, et al. 3D bioprinting of breast cancer models for drug resistance study. ACS Biomater Sci Eng. 2018;4(12):4401-4411. doi: 10.1021/acsbiomaterials.8b01277
  22. Papaefthymiou A, Doukatas A, Galanopoulos M. Pancreatic cancer and oligonucleotide therapy: Exploring novel therapeutic options and targeting chemoresistance. Clin Res Hepatol Gastroenterol. 2022;46(5):101911. doi: 10.1016/j.clinre.2022.101911
  23. Han X, Zhang WH, Wang WQ, et al. Cancer-associated fibroblasts in therapeutic resistance of pancreatic cancer: Present situation, predicaments, and perspectives. Biochim Biophys Acta Rev Cancer. 2020;1874(2):188444. doi: 10.1016/j.bbcan.2020.188444
  24. Sheikh R, Walsh N, Clynes M, et al. Challenges of drug resistance in the management of pancreatic cancer. Expert Rev Anticancer Ther. 2010;10(10):1647-1661. doi: 10.1586/era.10.148
  25. Long J, Zhang Y, Yu X, et al. Overcoming drug resistance in pancreatic cancer. Expert Opin Ther Targets. 2011;15(7):817- 828. doi: 10.1517/14728222.2011.566216
  26. Hakobyan D, Médina C, Dusserre N, et al. Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study. Biofabrication. 2020;12(3):035001. doi: 10.1088/1758-5090/ab7cb8
  27. Kuo YC, Kou HW, Hsu CP, et al. Identification and clinical significance of pancreatic cancer stem cells and their chemotherapeutic drug resistance. Int J Mol Sci. 2023; 24(8):7331. doi: 10.3390/ijms24087331
  28. Capurso G, Sette C. Drug resistance in pancreatic cancer: New player caught in act. EBioMedicine. 2019;40: 39-40. doi: 10.1016/j.ebiom.2019.02.008
  29. Beatty GL, Werba G, Lyssiotis CA, et al. The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev. 2021;35(13-14):940-962. doi: 10.1101/gad.348523.121
  30. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: An overview. Biomater Sci. 2018;6(5):915-946. doi: 10.1039/c7bm00765e
  31. Fitzgerald TL, McCubrey JA. Pancreatic cancer stem cells: Association with cell surface markers, prognosis, resistance, metastasis and treatment. Adv Biol Regul. 2014;56: 45-50. doi: 10.1016/j.jbior.2014.05.001
  32. Okazaki J, Tanahashi T, Sato Y, et al. MicroRNA-296-5p promotes cell invasion and drug resistance by targeting Bcl2-related ovarian killer, leading to a poor prognosis in pancreatic cancer. Digestion. 2020;101(6):794-806. doi: 10.1159/000503225
  33. Zhan T, Chen X, Tian X, et al. MiR-331-3p links to drug resistance of pancreatic cancer cells by activating WNT/β- catenin signal via ST7L. Technol Cancer Res Treat. 2020;19: 1533033820945801. doi: 10.1177/1533033820945801
  34. Hong N, Yang GH, Lee J, et al. 3D bioprinting and its in vivo applications. J Biomed Mater Res B Appl Biomater. 2018;106(1):444-459. doi: 10.1002/jbm.b.33826
  35. Yu S, Wang M, Zhang H, et al. Circ_0092367 inhibits EMT and gemcitabine resistance in pancreatic cancer via regulating the miR-1206/ESRP1 axis. Genes (Basel). 2021;12(11):1701. doi: 10.3390/genes12111701
  36. Szlasa W, Michel O, Sauer N, et al. Nanosecond pulsed electric field suppresses growth and reduces multi-drug resistance effect in pancreatic cancer. Sci Rep. 2023;13(1):351. doi: 10.1038/s41598-023-27605-4
  37. Cui J, Jiang W, Wang S, et al. Role of Wnt/β-catenin signaling in drug resistance of pancreatic cancer. Curr Pharm Des. 2012;18(17):2464-2471. doi: 10.2174/13816128112092464
  38. Liang C, Shi S, Meng Q, et al. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: Where we are and where we are going. Exp Mol Med. 2017;49(12):e406. doi: 10.1038/emm.2017.255
  39. Rahnama N, Jahangir M, Alesaeid S, et al. Association between microRNAs and chemoresistance in pancreatic cancer: Current knowledge, new insights, and forthcoming perspectives. Pathol Res Pract. 2022;236: 153982. doi: 10.1016/j.prp.2022.153982
  40. Chen Q, Wang Q, Wang Y, et al. Penetrating micelle for reversing immunosuppression and drug resistance in pancreatic cancer treatment. Small. 2022;18(18): e2107712. doi: 10.1002/smll.202107712
  41. Gurlin RE, Giraldo JA, Latres E. 3D bioprinting and translation of beta cell replacement therapies for type 1 diabetes. Tissue Eng Part B Rev. 2021;27(3):238-252. doi: 10.1089/ten.TEB.2020.0192
  42. Klak M, Kowalska P, Dobrzański T, et al. Bionic organs: Shear forces reduce pancreatic islet and mammalian cell viability during the process of 3D bioprinting. Micromachines (Basel). 2021;12(3):304. doi: 10.3390/mi12030304
  43. Duin S, Schütz K, Ahlfeld T, et al. 3D bioprinting of functional islets of langerhans in an alginate/methylcellulose hydrogel blend. Adv Healthc Mater. 2019;8(7):e1801631. doi: 10.1002/adhm.201801631
  44. Shim IK, Yi HJ, Yi HG, et al. Locally-applied 5-fluorouracil-loaded slow-release patch prevents pancreatic cancer growth in an orthotopic mouse model. Oncotarget, 2017;8(25):40140-40151. doi: 10.18632/oncotarget.17370
  45. Lee EM, Jung JI, Alam Z, et al. Effect of an oxygen-generating scaffold on the viability and insulin secretion function of porcine neonatal pancreatic cell clusters. Xenotransplantation. 2018;25(2):e12378. doi: 10.1111/xen.12378
  46. Kim J, Shim IK, Hwang DG, et al. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions. J Mater Chem B. 2019;7(10):1773-1781. doi: 10.1039/c8tb02787k
  47. Ahn, CB, Lee, JH, et al. Development of a 3D subcutaneous construct containing insulin-producing beta cells using. bioprinting. Bio-des Manuf. 2022;5: 265-276. doi: 10.1007/s42242-021-00178-9
  48. Lee SJ, Lee JB, Park YW, et al. 3D bioprinting for artificial pancreas organ. Adv Exp Med Biol, 2018;1064: 355-374. doi: 10.1007/978-981-13-0445-3_21
  49. Wszoła M, Nitarska D, Cywoniuk P, et al. Stem cells as a source of pancreatic cells for production of 3D bioprinted bionic pancreas in the treatment of type 1 diabetes. Cells. 2021;10(6):1544. doi: 10.3390/cells10061544
  50. Safir F, Vu N, Tadesse LF, et al. Combining acoustic bioprinting with AI-assisted raman spectroscopy for high-throughput identification of bacteria in blood. Nano Lett. 2023;23(6):2065-2073. doi: 10.1021/acs.nanolett.2c03015
  51. Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol. 2022;14(4):765-793. doi: 10.4251/wjgo.v14.i4.765
  52. Jiang T, Yang T, Bao Q, et al. Construction of tissue-customized hydrogels from cross-linkable materials for effective tissue regeneration. J Mater Chem B. 2022;10(25):4741-4758. doi: 10.1039/d1tb01935j
  53. Salg GA, Poisel E, Neulinger-Munoz M, et al. Toward 3D-bioprinting of an endocrine pancreas: A building-block concept for bioartificial insulin-secreting tissue. J Tissue Eng. 2022;13: 20417314221091033. doi: 10.1177/20417314221091033
  54. Farina M, Ballerini A, Fraga DW, et al. 3D printed vascularized device for subcutaneous transplantation of human islets. Biotechnol J. 2017; 12(9):1700169. doi: 10.1002/biot.201700169
  55. Hwang DG, Jo Y, Kim M, et al. A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication. 2021;14(1). doi: 10.1088/1758-5090/ac23ac
  56. Ravnic DJ, Leberfinger AN, Ozbolat IT. Bioprinting and cellular therapies for type 1 diabetes. Trends Biotechnol. 2017;35(11):1025-1034. doi: 10.1016/j.tibtech.2017.07.006
  57. Kumar SA, Delgado M, Mendez VE, et al. Applications of stem cells and bioprinting for potential treatment of diabetes. World J Stem Cells. 2019;11(1):13-32. doi: 10.4252/wjsc.v11.i1.13
  58. Di Piazza E, Pandolfi E, Cacciotti I, et al. Bioprinting technology in skin, heart, pancreas and cartilage tissues: Progress and challenges in clinical practice. Int J Environ Res Public Health. 2021;18(20):10806. doi: 10.3390/ijerph182010806
  59. Xu Y, Song D, Wang X. 3D bioprinting for pancreas engineering/ manufacturing. Polymers (Basel). 2022;14(23):5143. doi: 10.3390/polym14235143
  60. Huang B, Wei X, Chen K, et al. Bioprinting of hydrogel beads to engineer pancreatic tumor-stroma microtissues for drug screening. Int J Bioprint. 2023;9(3):676. doi: 10.18063/ijb.676
  61. Noel P, Muñoz R, Rogers GW, et al. Preparation and metabolic assay of 3-dimensional spheroid co-cultures of pancreatic cancer cells and fibroblasts. J Vis Exp. 2017;(126):56081. doi: 10.3791/56081
  62. Lee H. Engineering in vitro models: Bioprinting of organoids with artificial intelligence. Cyborg Bionic Syst. 2023;4: 0018. doi: 10.34133/cbsystems.0018
  63. Shukla P, Yeleswarapu S, Heinrich MA, et al. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling. Biofabrication, 2022;14(3). doi: 10.1088/1758-5090/ac6d11
  64. Qu J, Kalyani FS, Liu L, et al. Tumor organoids: Synergistic applications, current challenges, and future prospects in cancer therapy. Cancer Commun (Lond). 2021;41(12):1331-1353. doi: 10.1002/cac2.12224
  65. Fang L, Liu Y, Qiu J, et al. Bioprinting and its use in tumor-on-a-chip technology for cancer drug screening: A review. Int J Bioprint. 2022;8(4):603. doi: 10.18063/ijb.v8i4.603
  66. Lin M, Tang M, Duan W, et al. 3D bioprinting for tumor metastasis research. ACS Biomater Sci Eng. 2023;9(6): 3116-3133. doi: 10.1021/acsbiomaterials.3c00239
  67. Das R, Fernandez JG. Biomaterials for Mimicking and Modelling Tumor Microenvironment. Adv Exp Med Biol. 2022;1379:139-170. doi: 10.1007/978-3-031-04039-9_6
  68. Tang M, Xie Q, Gimple RC, et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res. 2020;30(10):833-853. doi: 10.1038/s41422-020-0338-1
  69. Mi X, Su Z, Yue X, et al. 3D bioprinting tumor models mimic the tumor microenvironment for drug screening. Biomater Sci. 2023;11(11):3813-3827. doi: 10.1039/d3bm00159h
  70. Mao S, Pang Y, Liu T, et al. Bioprinting of in vitro tumor models for personalized cancer treatment: A review. Biofabrication, 2020;12(4):042001. doi: 10.1088/1758-5090/ab97c0
  71. Staros R, Michalak A, Rusinek K, et al. Perspectives for 3D-bioprinting in modeling of tumor immune evasion. Cancers (Basel), 2022;14(13):3126. doi: 10.3390/cancers14133126
  72. Jung M, Ghamrawi S, Du EY, et al. Advances in 3D bioprinting for cancer biology and precision medicine: From matrix design to application. Adv Healthc Mater. 2022;11(24): e2200690. doi: 10.1002/adhm.202200690
  73. Ringquist R, Ghoshal D, Jain R, et al. Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev. 2021;179: 114003. doi: 10.1016/j.addr.2021.114003
  74. Parodi I, Di Lisa D, Pastorino L, et al. 3D bioprinting as a powerful technique for recreating the tumor microenviron­ment. Gels. 2023;9(6):482. doi: 10.3390/gels9060482
  75. Germain N, Dhayer M, Dekiouk S, et al. Current advances in 3D bioprinting for cancer modeling and personalized medicine. Int J Mol Sci. 2022;23(7):3432. doi: 10.3390/ijms23073432
  76. Jubelin C, Muñoz-Garcia J, Griscom L, et al. Three-dimensional in vitro culture models in oncology research. Cell Biosci. 2022;12(1):155. doi: 10.1186/s13578-022-00887-3
  77. Wang R, Zhang C, Li D, et al. Tumor-on-a-chip: Perfusable vascular incorporation brings new approach to tumor metastasis research and drug development. Front Bioeng Biotechnol. 2022;10: 1057913. doi: 10.3389/fbioe.2022.1057913
  78. Neufeld L, Yeini E, Pozzi S, et al. 3D bioprinted cancer models: From basic biology to drug development. Nat Rev Cancer. 2022;22(12):679-692. doi: 10.1038/s41568-022-00514-w
  79. Visalakshan RM, Lowrey MK, Sousa MGC, et al. Opportunities and challenges to engineer 3D models of tumor-adaptive immune interactions. Front Immunol. 2023;14: 1162905. doi: 10.3389/fimmu.2023.1162905
  80. Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4(4):370-380. doi: 10.1038/s41551-019-0471-7
  81. Kronemberger GS, Miranda GASC, Tavares RSN, et al. Recapitulating tumorigenesis in vitro: Opportunities and challenges of 3D bioprinting. Front Bioeng Biotechnol. 2021;9: 682498. doi: 10.3389/fbioe.2021.682498
  82. Molander D, Sbirkov Y, Sarafian V. 3D bioprinting as an emerging standard for cancer modeling and drug testing. Folia Med (Plovdiv), 2022;64(4):559-565. doi: 10.3897/folmed.64.e73419
  83. Kang Y, Datta P, Shanmughapriya S, et al. 3D bioprinting of tumor models for cancer research. ACS Appl Bio Mater. 2020;3(9):5552-5573. doi: 10.1021/acsabm.0c00791
  84. Hwang DG, Choi YM, Jang J. 3D bioprinting-based vascularized tissue models mimicking tissue-specific architecture and pathophysiology for in vitro studies. Front Bioeng Biotechnol. 2021;9: 685507. doi: 10.3389/fbioe.2021.685507
  85. Yang H, Yang KH, Narayan RJ, et al. Laser-based bioprinting for multilayer cell patterning in tissue engineering and cancer research. Essays Biochem. 2021;65(3):409-416. doi: 10.1042/EBC20200093
  86. Tiwari AP, Thorat ND, Pricl S, et al. Bioink: a 3D-bioprinting tool for anticancer drug discovery and cancer management. Drug Discov Today. 2021;26(7):1574-1590. doi: 10.1016/j.drudis.2021.03.010
  87. Prashantha K, Krishnappa A, Muthappa M. 3D bioprinting of gastrointestinal cancer models: A comprehensive review on processing, properties, and therapeutic implications. Biointerphases. 2023;18(2):020801. doi: 10.1116/6.0002372
  88. Palikuqi B, Nguyen DT, Li G, et al., 2020, Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature, 585(7825):426-432. doi: 10.1038/s41586-020-2712-z
  89. Wang D, Guo Y, Zhu J, et al. Hyaluronic acid methacrylate/ pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater. 2023;165: 86-101. doi: 10.1016/j.actbio.2022.06.036
  90. Hakobyan D, Médina C, Dusserre N, et al. Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study. Biofabrication. 2020;12(3):035001. doi: 10.1088/1758-5090/ab7cb8
  91. Zhuang X, Deng G, Wu X, et al. Recent advances of three-dimensional bioprinting technology in hepato-pancreato-biliary cancer models. Front Oncol. 2023;13: 1143600. doi: 10.3389/fonc.2023.1143600
  92. Pignatelli C, Campo F, Neroni A, et al. Bioengineering the vascularized endocrine pancreas: A fine-tuned interplay between vascularization, extracellular-matrix-based scaffold architecture, and insulin-producing cells. Transpl Int. 2022;35: 10555. doi: 10.3389/ti.2022.10555
  93. Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019;365(6452):482-487. doi: 10.1126/science.aav9051
  94. Chaudhary S, Chakraborty E. Hydrogel based tissue engineering and its future applications in personalized disease modeling and regenerative therapy. Beni Suef Univ J Basic Appl Sci, 2022;11(1):3. doi: 10.1186/s43088-021-00172-1
  95. Hospodiuk-Karwowski M, Chi K, Pritchard J, et al. Vascularized pancreas-on-a-chip device produced using a printable simulated extracellular matrix. Biomed Mater. 2022;17(6):065006. doi: 10.1088/1748-605X/ac8c74
  96. Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue engineering. Theranostics. 2021;11(16):7948-7969. doi: 10.7150/thno.61621
  97. Brandão LMS, Barbosa MS, Souza RL, et al. Lipase activation by molecular bioimprinting: The role of interactions between fatty acids and enzyme active site. Biotechnol Prog. 2021;37(1):e3064. doi: 10.1002/btpr.3064
  98. Manoukian P, Bijlsma M, Van Laarhoven H. The cellular origins of cancer-associated fibroblasts and their opposing contributions to pancreatic cancer growth. Front Cell Dev Biol. 2021;9: 743907. doi: 10.3389/fcell.2021.743907
  99. Bengtsson A, Andersson R, Rahm J, et al. Organoid technology for personalized pancreatic cancer therapy. Cell Oncol (Dordr). 2021;44(2):251-260. doi: 10.1007/s13402-021-00585-1
  100. Melzer MK, Resheq Y, Navaee F, et al. The application of pancreatic cancer organoids for novel drug discovery. Expert Opin Drug Discov. 2023;18(4):429-444. doi: 10.1080/17460441.2023.2194627
  101. Sun H, Wang Y, Yang H. Revolutionizing preclinical research for pancreatic cancer: the potential of 3D bioprinting technology for personalized therapy. Hepatobiliary Surg Nutr. 2023;12(4):616-618. doi: 10.21037/hbsn-23-248
  102. Monteiro MV, Ferreira LP, Rocha M, et al. Advances in bioengineering pancreatic tumor-stroma physiomimetic biomodels. Biomaterials; 2022;287:121653. doi: 10.1016/j.biomaterials.2022.121653
  103. Swayden M, Soubeyran P, Iovanna J. Upcoming revolutionary paths in preclinical modeling of pancreatic adenocarcinoma. Front Oncol. 2020;9: 1443. doi: 10.3389/fonc.2019.01443
  104. Banda Sánchez C, Cubo Mateo N, Saldaña L, et al. Selection and optimization of a bioink based on PANC-1- plasma/ alginate/methylcellulose for pancreatic tumour modelling. Polymers (Basel). 2023;15(15):3196. doi: 10.3390/polym15153196
  105. Xue W, Yu SY, Kuss M, et al. 3D bioprinted white adipose model for in vitro study of cancer-associated cachexia induced adipose tissue remodeling. Biofabrication. 2022;14(3). doi: 10.1088/1758-5090/ac6c4b
  106. De Barros NR, Gomez A, Ermis M, et al. Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling. Biofabrication. 2023;15(4). doi: 10.1088/1758-5090/ace0db
  107. Utama RH, Tan VTG, Tjandra KC, et al. A covalently crosslinked ink for multimaterials drop-on-demand 3D bioprinting of 3D cell cultures. Macromol Biosci. 2021;21(9): e2100125. doi: 10.1002/mabi.202100125
  108. Freeman S, Calabro S, Williams R, et al. Bioink formulation and machine learning-empowered bioprinting optimization. Front Bioeng Biotechnol, 2022;10: 913579. doi: 10.3389/fbioe.2022.913579
  109. Wang J, Cui Z, Maniruzzaman M. Bioprinting: A focus on improving bioink printability and cell performance based on different process parameters. Int J Pharm. 2023:640: 123020. doi: 10.1016/j.ijpharm.2023.123020
  110. Kupfer ME, Lin WH, Ravikumar V, et al. In situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid. Circ Res. 2020;127(2):207-224. doi: 10.1161/CIRCRESAHA.119.316155
  111. Banerjee D, Singh YP, Datta P, et al. Strategies for 3D bioprinting of spheroids: A comprehensive review. Biomaterials. 2022;291: 121881. doi: 10.1016/j.biomaterials.2022.121881
  112. Asim S, Tabish TA, Liaqat U, et al. Advances in gelatin bioinks to optimize bioprinted cell functions. Adv Healthc Mater. 2023;12(17):e2203148. doi: 10.1002/adhm.202203148
Conflict of interest
The authors declare no competing conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing