AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.1037
Cite this article
217
Download
590
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Three-dimensional bioprinting for musculoskeletal regeneration and disease modeling

Qiang Wei1† Yuhao Peng1† Weicheng Chen1 Yudong Duan1 Genglei Chua1 Jie Hu1 Shujun Lyu2 Zhigang Chen2* Fengxuan Han1* Bin Li1*
Show Less
1 Medical 3D Printing Center, Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215006, China
2 Department of Orthopaedic Surgery, The Affiliated Hai’an Hospital of Nantong University, Hai’an, Nantong 226600, China
IJB 2024, 10(1), 1037 https://doi.org/10.36922/ijb.1037
Submitted: 3 June 2023 | Accepted: 31 July 2023 | Published: 2 January 2024
(This article belongs to the Special Issue The Latest Advances of Bioinks for 3D Bioprinting)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Musculoskeletal disease and injury are highly prevalent disorders that impose tremendous medical and socioeconomic burdens. Tissue engineering has attracted increasing attention as a promising technique of regenerative medicine to restore degenerative or damaged tissues and is used to produce functional disease models. As a revolutionary technology, three-dimensional (3D) bioprinting has demonstrated a considerable potential in enhancing the versatility of tissue engineering. 3D bioprinting allows for the rapid and accurate spatial patterning of cells, growth factors, and biomaterials to generate biomimetic tissue constructs. Meanwhile, 3D-bioprinted in vitro models also offer a viable option to enable precise pharmacological interventions in various diseases. This review provides an overview of 3D bioprinting methods and bioinks for therapeutic applications and describes their potential for musculoskeletal tissue regeneration. We also highlight the fabrication of 3D-bioprinted models for drug development targeting musculoskeletal disease. Finally, the existing challenges and future perspectives of 3D bioprinting for musculoskeletal regeneration and disease modeling are discussed.

Keywords
3D bioprinting; Bioink; Musculoskeletal tissue; Regeneration; Disease modeling
Funding
This work was funded by the National Natural Science Foundation of China (81925027, 32130059, 32171350), the Medical and Health Science and Technology Innovation Project of Suzhou (SKY2022105), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
References
  1. Khodabukus A, Guyer T, Moore AC, Stevens MM, Guldberg RE, Bursac N. Translating musculoskeletal bioengineering into tissue regeneration therapies. Sci Transl Med. 2022;14:eabn9074. doi: 10.1126/scitranslmed.abn9074
  2. Cieza A, Causey K, Kamenov K, Hanson SW, Chatterji S, Vos T. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2021;396:2006-2017. doi: 10.1016/s0140-6736(20)32340-0
  3. Zhang S, Xing M, Li B. Recent advances in musculoskeletal local drug delivery. Acta Biomater. 2019;93:135-151. doi: 10.1016/j.actbio.2019.01.043
  4. Agarwal R, Williams K, Umscheid CA, Welch WC. Osteoinductive bone graft substitutes for lumbar fusion: A systematic review. J Neurosurg Spine. 2009;11: 729-740. doi: 10.3171/2009.6.Spine08669
  5. Charalambides C, Beer M, Cobb AG. Poor results after augmenting autograft with xenograft (Surgibone) in hip revision surgery: A report of 27 cases. Acta Orthop. 2005;76: 544-549. doi: 10.1080/17453670510041547
  6. Shapira A, Dvir T. 3D tissue and organ printing—Hope and reality. Adv Sci. 2021;8:2003751. doi: 10.1002/advs.202003751
  7. Vanderburgh J, Sterling JA, Guelcher SA. 3D printing of tissue engineered constructs for in vitro modeling of disease progression and drug screening. Ann Biomed Eng. 2017;45:164-179. doi: 10.1007/s10439-016-1640-4
  8. Cui H, Miao S, Esworthy T, et al. 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev. 2018;132:252-269. doi: 10.1016/j.addr.2018.07.014
  9. Groll J, Boland T, Blunk T, et al. Biofabrication: Reappraising the definition of an evolving field. Biofabrication. 2016;8:013001. doi: 10.1088/1758-5090/8/1/013001
  10. Abaci A, Guvendiren M. Designing decellularized extracellular matrix-based bioinks for 3D bioprinting. Adv Healthc Mater. 2020;9:e2000734. doi: 10.1002/adhm.202000734
  11. Zhang Y, Haghiashtiani G, Hübscher T, et al. 3D extrusion bioprinting. Nat Rev Methods Primers. 2021;1:75. doi: 10.1038/s43586-021-00073-8
  12. Zhang T, Zhao W, Xiahou Z, Wang X, Zhang K, Yin J. Bioink design for extrusion-based bioprinting. Appl Mater Today. 2021;25:101227. doi: 10.1016/j.apmt.2021.101227
  13. Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34: 422-434. doi: 10.1016/j.biotechadv.2015.12.011
  14. Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater. 2017;6:1601118. doi: 10.1002/adhm.201601118
  15. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120:10793-10833. doi: 10.1021/acs.chemrev.0c00008
  16. Cui X, Li J, Hartanto Y, et al. Advances in extrusion 3D bioprinting: A focus on multicomponent hydrogel-based bioinks. Adv Healthc Mater. 2020;9:1901648. doi: 10.1002/adhm.201901648
  17. Hölzl K, Lin S, Tytgat L, Vlierberghe SV, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8:032002. doi: 10.1088/1758-5090/8/3/032002
  18. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater. 2018;3:144-156. doi: 10.1016/j.bioactmat.2017.11.008
  19. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773-785. doi: 10.1038/nbt.2958
  20. Xu K, Han Y, Huang Y, Wei P, Yin J, Jiang J.The application of 3D bioprinting in urological diseases. Mater Today Bio. 2022;16:100388. doi: 10.1016/j.mtbio.2022.100388
  21. Li M, Sun D, Zhang J, Wang Y, Wei Q, Wang Y. Application and development of 3D bioprinting in cartilage tissue engineering. Biomater Sci. 2022;10:5430-5458. doi: 10.1039/D2BM00709F
  22. Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv Mater. 2019;31:e1904209. doi: 10.1002/adma.201904209
  23. Bernal PN, Bouwmeester M, Madrid-Wolff J, et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv Mater. 2022;34:e2110054. doi: 10.1002/adma.202110054
  24. Rizzo R, Ruetsche D, Liu H, Zenobi-Wong M. Optimized photoclick (bio)resins for fast volumetric bioprinting. Adv Mater. 2021;33:e2102900. doi: 10.1002/adma.202102900
  25. Gehlen J, Qiu W, Schädli GN, Müller R, Qin X-H. Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds. Acta Biomater. 2023;156:49-60. doi: 10.1016/j.actbio.2022.06.020
  26. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8:035020. doi: 10.1088/1758-5090/8/3/035020
  27. Samandari M, Quint J, Rodríguez-delaRosa A, Pourquié O, Tamayol A. Bioinks and bioprinting strategies for skeletal muscle tissue engineering. Adv Mater. 2022;34:e2105883. doi: 10.1002/adma.202105883
  28. Beketov EE, Isaeva EV, Yakovleva ND, et al. Bioprinting of cartilage with bioink based on high-concentration collagen and chondrocytes. Int J Mol Sci. 2021;22:11351. doi: 10.3390/ijms222111351
  29. Hwangbo H, Lee H, Jin EJ, et al. Bio-printing of aligned GelMa-based cell-laden structure for muscle tissue regeneration. Bioact Mater. 2022;8:57-70. doi: 10.1016/j.bioactmat.2021.06.031
  30. Sonaye SY, Ertugral EG, Kothapalli CR, Sikder P. Extrusion 3D (bio)printing of alginate-gelatin-based composite scaffolds for skeletal muscle tissue engineering. Materials. 2022;15:7945. doi: 10.3390/ma15227945
  31. Fan T, Wang S, Jiang Z, et al. Controllable assembly of skeletal muscle-like bundles through 3D bioprinting. Biofabrication. 2021;14:015009. doi: 10.1088/1758-5090/ac3aca
  32. De Santis MM, Alsafadi HN, Tas S, et al. Extracellular-matrix-reinforced bioinks for 3D bioprinting human tissue. Adv Mater. 2021;33:e2005476. doi: 10.1002/adma.202005476
  33. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;83:195-201. doi: 10.1016/j.msec.2017.09.002
  34. de Melo BAG, Jodat YA, Cruz EM, Benincasa JC, Shin SR, Porcionatto MA. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater. 2020;117:60-76. doi: 10.1016/j.actbio.2020.09.024
  35. de Melo BAG, Jodat YA, Mehrotra S, et al. 3D printed cartilage-like tissue constructs with spatially controlled mechanical properties. Adv Funct Mater. 2019;29: 1906330. doi: 10.1002/adfm.201906330
  36. Li T, Hou J, Wang L, et al. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Acta Biomater. 2022;156:21-36. doi: 10.1016/j.actbio.2022.08.037
  37. Visscher DO, Lee H, van Zuijlen PPM, et al. A photo-crosslinkable cartilage-derived extracellular matrix bioink for auricular cartilage tissue engineering. Acta Biomater. 2021;121:193-203. doi: 10.1016/j.actbio.2020.11.029
  38. Sahranavard M, Sarkari S, Safavi S, Ghorbani F. Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: A systematic review. Biomater Transl. 2022;3:105-115. doi: 10.12336/biomatertransl.2022.02.004
  39. Kim BS, Das S, Jang J, Cho D-W. Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments. Chem Rev. 2020;120:10608-10661. doi: 10.1021/acs.chemrev.9b00808
  40. Lee J, Hong J, Kim W, Kim GH. Bone-derived dECM/ alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering. Carbohydr Polym. 2020;250:116914. doi: 10.1016/j.carbpol.2020.116914
  41. Yoncheva K, Calleja P, Agüeros M, et al. Stabilized micelles as delivery vehicles for paclitaxel. Int J Pharm. 2012;436:258- 264. doi: 10.1016/j.ijpharm.2012.06.030
  42. Shamma RN, Sayed RH, Madry H, El Sayed NS, Cucchiarini M. Triblock copolymer bioinks in hydrogel three-dimensional printing for regenerative medicine: A focus on pluronic f127. Tissue Eng Part B Rev. 2022;28:451-463. doi: 10.1089/ten.TEB.2021.0026
  43. Mozetic P, Giannitelli SM, Gori M, Trombetta M, Rainer A. Engineering muscle cell alignment through 3D bioprinting. J Biomed Mater Res A. 2017;105:2582-2588. doi: 10.1002/jbm.a.36117
  44. Shin YJ, Shafranek RT, Tsui JH, Walcott J, Nelson A, Kim D-H. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomater. 2021;119:75-88. doi: 10.1016/j.actbio.2020.11.006
  45. Ying GL, Jiang N, Maharjan S, et al. Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv Mater. 2018;30:e1805460. doi: 10.1002/adma.201805460
  46. Jia L, Hua Y, Zeng J, et al. Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix. Bioact Mater. 2022;16:66-81. doi: 10.1016/j.bioactmat.2022.02.032
  47. Zhang W, Wang N, Yang M, et al. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. J Orthop Translat. 2022;33: 41-54. doi: 10.1016/j.jot.2022.01.002
  48. Li Y, Pan Q, Xu J, et al. Overview of methods for enhancing bone regeneration in distraction osteogenesis: Potential roles of biometals. J Orthop Translat. 2021;27:110-118. doi: 10.1016/j.jot.2020.11.008
  49. Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev. 2015;94:53-62. doi: 10.1016/j.addr.2015.03.013
  50. Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143-162. doi: 10.1016/j.biomaterials.2018.07.017
  51. Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects. J Am Acad Orthop Surg. 2015;23:143-153. doi: 10.5435/jaaos-d-14-00018
  52. Tang H, Bi F, Chen G, et al. 3D-bioprinted recombination structure of Hertwig’s epithelial root sheath cells and dental papilla cells for alveolar bone regeneration. Int J Bioprint. 2022;8:512. doi: 10.18063/ijb.v8i3.512
  53. Nulty J, Freeman FE, Browe DC, et al. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Acta Biomater. 2021;126:154-169. doi: 10.1016/j.actbio.2021.03.003
  54. Shen M, Wang L, Gao Y, et al. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects. Mater Today Bio. 2022;16: 100382. doi: 10.1016/j.mtbio.2022.100382
  55. Moncal KK, Tigli Aydın RS, Godzik KP, et al. Controlled Co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats. Biomaterials. 2022;281:121333. doi: 10.1016/j.biomaterials.2021.121333
  56. Kim W, Jang CH, Kim G. Bone tissue engineering supported by bioprinted cell constructs with endothelial cell spheroids. Theranostics. 2022;12:5404-5417. doi: 10.7150/thno.74852
  57. Wang M, Li H, Yang Y, et al. A 3D-bioprinted scaffold with doxycycline-controlled BMP2-expressing cells for inducing bone regeneration and inhibiting bacterial infection. Bioact Mater. 2021;6:1318-1329. doi: 10.1016/j.bioactmat.2020.10.022
  58. Sun X, Ma Z, Zhao X, et al. Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus. Bioact Mater. 2021;6:757-769. doi: 10.1016/j.bioactmat.2020.08.030
  59. Zhu H, Monavari M, Zheng K, et al. 3D bioprinting of multifunctional dynamic nanocomposite bioinks incorporating Cu-doped mesoporous bioactive glass nanoparticles for bone tissue engineering. Small. 2022;18:e2104996. doi: 10.1002/smll.202104996
  60. Yu K, Huangfu H, Qin Q, et al. Application of bone marrow-derived macrophages combined with bone mesenchymal stem cells in dual-channel three-dimensional bioprinting scaffolds for early immune regulation and osteogenic induction in rat calvarial defects. ACS Appl Mater Interfaces. 2022;14:47052-47065. doi: 10.1021/acsami.2c13557
  61. Sun X, Jiao X, Yang X, et al. 3D bioprinting of osteon-mimetic scaffolds with hierarchical microchannels for vascularized bone tissue regeneration. Biofabrication. 2022;14:035008. doi: 10.1088/1758-5090/ac6700
  62. Pitacco P, Sadowska JM, O’Brien FJ, Kelly DJ. 3D bioprinting of cartilaginous templates for large bone defect healing. Acta Biomater. 2023;156:61-74. doi: 10.1016/j.actbio.2022.07.037
  63. Li Z, Li S, Yang J, et al. 3D bioprinted gelatin/gellan gum-based scaffold with double-crosslinking network for vascularized bone regeneration. Carbohydr Polym. 2022;290:119469. doi: 10.1016/j.carbpol.2022.119469
  64. Zhang J, Eyisoylu H, Qin XH, Rubert M, Müller R. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Acta Biomater. 2021;121: 637-652. doi: 10.1016/j.actbio.2020.12.026
  65. Parthiban SP, Athirasala A, Tahayeri A, Abdelmoniem R, George A, Bertassoni LE. BoneMA-synthesis and characterization of a methacrylated bone-derived hydrogel for bioprinting of in-vitro vascularized tissue constructs. Biofabrication. 2021;13:035031. doi: 10.1088/1758-5090/abb11f
  66. Li L, Shi J, Ma K, et al. Robotic in situ 3D bio-printing technology for repairing large segmental bone defects. J Adv Res. 2021;30:75-84. doi: 10.1016/j.jare.2020.11.011
  67. Gehlen J, Qiu W, Schädli GN, Müller R, Qin X-H. Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds. Acta Biomater. 2022;156: 49-60. doi: 10.1016/j.actbio.2022.06.020
  68. Touya N, Devun M, Handschin C, et al. In vitro and in vivo characterization of a novel tricalcium silicate-based ink for bone regeneration using laser-assisted bioprinting. Biofabrication. 2022;14:024104. doi: 10.1088/1758-5090/ac584b
  69. Tao J, Zhu S, Liao X, et al. DLP-based bioprinting of void-forming hydrogels for enhanced stem-cell-mediated bone regeneration. Mater Today Bio. 2022;17:100487. doi: 10.1016/j.mtbio.2022.100487
  70. Rajput M, Mondal P, Yadav P, Chatterjee K. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. Int J Biol Macromol. 2022;202:644-656. doi: 10.1016/j.ijbiomac.2022.01.081
  71. Ryan EJ, Ryan AJ, González-Vázquez A, et al. Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials. 2019;197: 405-416. doi: 10.1016/j.biomaterials.2019.01.031
  72. Wang J, Wang H, Wang Y, et al. Endothelialized microvessels fabricated by microfluidics facilitate osteogenic differentiation and promote bone repair. Acta Biomater. 2022;142:85-98. doi: 10.1016/j.actbio.2022.01.055
  73. Amler AK, Thomas A, Tüzüner S, et al. 3D bioprinting of tissue-specific osteoblasts and endothelial cells to model the human jawbone. Sci Rep. 2021;11:4876. doi: 10.1038/s41598-021-84483-4
  74. Li J, Han F, Ma J, et al. Targeting endogenous hydrogen peroxide at bone defects promotes bone repair. Adv Funct Mater. 2022;32:2111208. doi: 10.1002/adfm.202111208
  75. Arciola CR, Campoccia D, Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16:397-409. doi: 10.1038/s41579-018-0019-y
  76. Josse J, Valour F, Maali Y, et al. Interaction between staphylococcal biofilm and bone: How does the presence of biofilm promote prosthesis loosening? Front Microbiol. 2019;10:1602. doi: 10.3389/fmicb.2019.01602
  77. Schon BS, Hooper GJ, Woodfield TBF. Modular tissue assembly strategies for biofabrication of engineered cartilage. Ann Biomed Eng. 2017;45:100-114. doi: 10.1007/s10439-016-1609-3
  78. Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater. 2021;6:4830-4855. doi: 10.1016/j.bioactmat.2021.05.011
  79. Borrelli J, Jr., Olson SA, Godbout C, Schemitsch EH, Stannard JP, Giannoudis PV. Understanding articular cartilage injury and potential treatments. J Orthop Trauma. 2019;33(Suppl 6):S6-S12. doi: 10.1097/bot.0000000000001472
  80. Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ. 3D bioprinting for cartilage and osteochondral tissue engineering. Adv Healthc Mater. 2017;6:1700298. doi: 10.1002/adhm.201700298
  81. Liu Y, Shah KM, Luo J. Strategies for articular cartilage repair and regeneration. Front Bioeng Biotechnol. 2021;9:770655. doi: 10.3389/fbioe.2021.770655
  82. Zhu S, Chen P, Chen Y, et al. 3D-printed extracellular matrix/polyethylene glycol diacrylate hydrogel incorporating the anti-inflammatory phytomolecule honokiol for regeneration of osteochondral defects. Am J Sports Med. 2020;48:2808-2818. doi: 10.1177/0363546520941842
  83. Hotham WE, Malviya A. A systematic review of surgical methods to restore articular cartilage in the hip. Bone Joint Res. 2018;7:336-342. doi: 10.1302/2046-3758.75.Bjr-2017-0331
  84. Hunziker EB. Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002;10:432-463. doi: 10.1053/joca.2002.0801
  85. Lim KS, Abinzano F, Bernal PN, et al. One-step photoactivation of a dual-functionalized bioink as cell carrier and cartilage-binding glue for chondral regeneration. Adv Healthc Mater. 2020;9:e1901792. doi: 10.1002/adhm.201901792
  86. Rathan S, Dejob L, Schipani R, Haffner B, Möbius ME, Kelly DJ. Fiber reinforced cartilage ECM functionalized bioinks for functional cartilage tissue engineering. Adv Healthc Mater. 2019;8:e1801501. doi: 10.1002/adhm.201801501
  87. Sun Y, You Y, Jiang W, Wang B, Wu Q, Dai K. 3D bioprinting dual-factor releasing and gradient-structured constructs ready to implant for anisotropic cartilage regeneration. Sci Adv. 2020;6:eaay1422. doi: 10.1126/sciadv.aay1422
  88. Zhang L, Tang H, Xiahou Z, et al. Solid multifunctional granular bioink for constructing chondroid basing on stem cell spheroids and chondrocytes. Biofabrication. 2022;14:035003. doi: 10.1088/1758-5090/ac63ee
  89. Bonifacio MA, Cometa S, Cochis A, et al. A bioprintable gellan gum/lignin hydrogel: A smart and sustainable route for cartilage regeneration. Int J Biol Macromol. 2022;216:336- 346. doi: 10.1016/j.ijbiomac.2022.07.002
  90. Wang B, Diaz-Payno PJ, Browe DC, et al. Affinity-bound growth factor within sulfated interpenetrating network bioinks for bioprinting cartilaginous tissues. Acta Biomater. 2021;128:130-142. doi: 10.1016/j.actbio.2021.04.016
  91. Shi W, Fang F, Kong Y, et al. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Biofabrication. 2021;14:014107. doi: 10.1088/1758-5090/ac42de
  92. Li Z, Zhang X, Yuan T, et al. Addition of platelet-rich plasma to silk fibroin hydrogel bioprinting for cartilage regeneration. Tissue Eng Part A. 2020;26:886-895. doi: 10.1089/ten.TEA.2019.0304
  93. İlhan GT, Irmak G, Gümüşderelioğlu M. Microwave assisted methacrylation of Kappa carrageenan: A bioink for cartilage tissue engineering. Int J Biol Macromol. 2020;164:3523-3534. doi: 10.1016/j.ijbiomac.2020.08.241
  94. Antich C, de Vicente J, Jiménez G, et al. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater. 2020;106:114-123. doi: 10.1016/j.actbio.2020.01.046
  95. Sun Y, You Y, Jiang W, Zhai Z, Dai K. 3D-bioprinting a genetically inspired cartilage scaffold with GDF5-conjugated BMSC-laden hydrogel and polymer for cartilage repair. Theranostics. 2019;9:6949-6961. doi: 10.7150/thno.38061
  96. Kosik-Kozioł A, Costantini M, Mróz A, et al. 3D bioprinted hydrogel model incorporating β-tricalcium phosphate for calcified cartilage tissue engineering. Biofabrication. 2019;11:035016. doi: 10.1088/1758-5090/ab15cb
  97. Galarraga JH, Kwon MY, Burdick JA. 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue. Sci Rep. 2019;9:19987. doi: 10.1038/s41598-019-56117-3
  98. Onofrillo C, Duchi S, O’Connell CD, et al. Biofabrication of human articular cartilage: A path towards the development of a clinical treatment. Biofabrication. 2018;10:045006. doi: 10.1088/1758-5090/aad8d9
  99. Huang Y, Meng X, Zhou Z, et al. A naringin-derived bioink enhances the shape fidelity of 3D bioprinting and efficiency of cartilage defect repair. J Mater Chem B. 2022;10:7030-7044. doi: 10.1039/d2tb01247b
  100. Lee AK, Lin YH, Tsai CH, Chang W-T, Lin T-L, Shie M-Y. Digital light processing bioprinted human chondrocyte-laden poly (γ-glutamic acid)/hyaluronic acid bio-ink towards cartilage tissue engineering. Biomedicines. 2021;9:714. doi: 10.3390/biomedicines9070714
  101. Lipskas J, Deep K, Yao W. Robotic-assisted 3D bio-printing for repairing bone and cartilage defects through a minimally invasive approach. Sci Rep. 2019;9:3746. doi: 10.1038/s41598-019-38972-2
  102. Ma K, Zhao T, Yang L, et al. Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: An in vivo study. J Adv Res. 2020;23:123-132. doi: 10.1016/j.jare.2020.01.010
  103. Zhu W, Cui H, Boualam B, et al. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Nanotechnology. 2018;29:185101. doi: 10.1088/1361-6528/aaafa1
  104. Cui X, Breitenkamp K, Finn MG, Martin Lotz, D’Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A. 2012;18:1304-1312. doi: 10.1089/ten.TEA.2011.0543
  105. Burdis R, Chariyev-Prinz F, Kelly DJ. Bioprinting of biomimetic self-organised cartilage with a supporting joint fixation device. Biofabrication. 2021;14:015008. doi: 10.1088/1758-5090/ac36be
  106. Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly DJ. 3D bioprinting of developmentally inspired templates for whole bone organ engineering. Adv Healthc Mater. 2016;5: 2352-2352. doi: 10.1002/adhm.201670100
  107. Critchley SE, Kelly DJ. Bioinks for bioprinting functional meniscus and articular cartilage. J 3D Print Med. 2017;1: 269-290. doi: 10.2217/3dp-2017-0012
  108. Kosik-Kozioł A, Costantini M, Bolek T, et al. PLA short sub-micron fiber reinforcement of 3D bioprinted alginate constructs for cartilage regeneration. Biofabrication. 2017;9:044105. doi: 10.1088/1758-5090/aa90d7
  109. Pei Z, Gao M, Xing J, et al. Experimental study on repair of cartilage defects in the rabbits with GelMA-MSCs scaffold prepared by three-dimensional bioprinting. Int J Bioprint. 2023;9. doi: 10.18063/ijb.v9i2.662
  110. Mancini IAD, Vindas Bolaños RA, Brommer H, et al. Fixation of hydrogel constructs for cartilage repair in the equine model: A challenging issue. Tissue Eng Part C Methods. 2017;23:804-814. doi: 10.1089/ten.TEC.2017.0200
  111. Ofek G, Athanasiou K. Micromechanical properties of chondrocytes and chondrons: Relevance to articular cartilage tissue engineering. J Mech Mater Struct. 2007;2:1059-1086. doi: 10.2140/jomms.2007.2.1059
  112. Idaszek J, Costantini M, Karlsen TA, et al. 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication. 2019;11:044101. doi: 10.1088/1758-5090/ab2622
  113. Wu Y, Ayan B, Moncal KK, et al. Hybrid bioprinting of zonally stratified human articular cartilage using scaffold-free tissue strands as building blocks. Adv Healthc Mater. 2020;9:e2001657. doi: 10.1002/adhm.202001657
  114. Dai W, Zhang L, Yu Y, et al. 3D bioprinting of heterogeneous constructs providing tissue-specific microenvironment based on host–guest modulated dynamic hydrogel bioink for osteochondral regeneration. Adv Funct Mater. 2022;32:2200710. doi: 10.1002/adfm.202200710
  115. Distler T, Solisito AA, Schneidereit D, Friedrich O, Detsch R, Boccaccini AR. 3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting. Biofabrication. 2020;12:045005. doi: 10.1088/1758-5090/ab98e4
  116. Liu J, Saul D, Böker KO, Ernst J, Lehman W, Schilling AF. Current methods for skeletal muscle tissue repair and regeneration. Biomed Res Int. 2018;2018:1984879. doi: 10.1155/2018/1984879
  117. Ostrovidov S, Salehi S, Costantini M, et al. 3D bioprinting in skeletal muscle tissue engineering. Small. 2019;15:e1805530. doi: 10.1002/smll.201805530
  118. Tidball JG. Mechanisms of muscle injury, repair, and regeneration. Compr Physiol. 2011;1:2029-2062. doi: 10.1002/cphy.c100092
  119. Corona BT, Rivera JC, Owens JG, Wenke JC, Rathbone CR. Volumetric muscle loss leads to permanent disability following extremity trauma. J Rehabil Res Dev. 2015;52:785-792. doi: 10.1682/JRRD.2014.07.0165
  120. Langridge B, Griffin M, Butler PE. Regenerative medicine for skeletal muscle loss: A review of current tissue engineering approaches. J Mater Sci Mater Med. 2021;32:15. doi: 10.1007/s10856-020-06476-5
  121. Lin CH, Lin YT, Yeh JT, Chen C-T. Free functioning muscle transfer for lower extremity posttraumatic composite structure and functional defect. Plast Reconstr Surg. 2007;119:2118-2126. doi: 10.1097/01.prs.0000260595.85557.41
  122. Aguilar CA, Greising SM, Watts A, et al. Multiscale analysis of a regenerative therapy for treatment of volumetric muscle loss injury. Cell Death Discov. 2018;4:33. doi: 10.1038/s41420-018-0027-8
  123. Choi YJ, Jun YJ, Kim DY, et al. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Biomaterials. 2019;206:160-169. doi: 10.1016/j.biomaterials.2019.03.036
  124. Behre A, Tashman JW, Dikyol C, et al. 3D bioprinted patient-specific extracellular matrix scaffolds for soft tissue defects. Adv Healthc Mater. 2022;11:e2200866. doi: 10.1002/adhm.202200866
  125. Luo Z, Tang G, Ravanbakhsh H, et al. Vertical extrusion cryo(bio)printing for anisotropic tissue manufacturing. Adv Mater. 2022;34:e2108931. doi: 10.1002/adma.202108931
  126. Mostafavi A, Samandari M, Karvar M, et al. Colloidal multiscale porous adhesive (bio)inks facilitate scaffold integration. Appl Phys Rev. 2021;8:041415. doi: 10.1063/5.0062823
  127. Kim JH, Kim I, Seol YJ, et al. Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat Commun. 2020;11:1025. doi: 10.1038/s41467-020-14930-9
  128. Christensen KW, Turner J, Coughenour K, et al. Assembled cell-decorated collagen (AC-DC) fiber bioprinted implants with musculoskeletal tissue properties promote functional recovery in volumetric muscle loss. Adv Healthc Mater. 2022;11:e2101357. doi: 10.1002/adhm.202101357
  129. Wang Y, Wang Q, Luo S, et al. 3D bioprinting of conductive hydrogel for enhanced myogenic differentiation. Regen Biomater. 2021;8:rbab035. doi: 10.1093/rb/rbab035
  130. Kim JH, Seol YJ, Ko IK, et al. 3D bioprinted human skeletal muscle constructs for muscle function restoration. Sci Rep. 2018;8:12307. doi: 10.1038/s41598-018-29968-5
  131. Yang GH, Kim W, Kim J, Kim GH. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting. Theranostics. 2021;11:48-63. doi: 10.7150/thno.50794
  132. Kim W, Jang CH, Kim GH. A myoblast-laden collagen bioink with fully aligned Au nanowires for muscle-tissue regeneration. Nano Lett. 2019;19:8612-8620. doi: 10.1021/acs.nanolett.9b03182
  133. Yeo M, Kim G. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation. Carbohydr Polym. 2021;272:118444. doi: 10.1016/j.carbpol.2021.118444
  134. Chen Y, Zhang J, Liu X, et al. Noninvasive in vivo 3D bioprinting. Sci Adv. 2020;6:eaba7406. doi: 10.1126/sciadv.aba7406
  135. Urciuolo A, Poli I, Brandolino L, et al. Intravital three-dimensional bioprinting. Nat Biomed Eng. 2020;4:901-915. doi: 10.1038/s41551-020-0568-z
  136. Jana S, Levengood SK, Zhang M. Anisotropic materials for skeletal-muscle-tissue engineering. Adv Mater. 2016;28:10588-10612. doi: 10.1002/adma.201600240
  137. Zhang Y, Zhang Z, Wang Y, Su Y, Chen M. 3D myotube guidance on hierarchically organized anisotropic and conductive fibers for skeletal muscle tissue engineering. Mater Sci Eng C Mater Biol Appl. 2020;116:111070. doi: 10.1016/j.msec.2020.111070
  138. Ostrovidov S, Hosseini V, Ahadian S, et al. Skeletal muscle tissue engineering: Methods to form skeletal myotubes and their applications. Tissue Eng Part B Rev. 2014;20:403-436. doi: 10.1089/ten.TEB.2013.0534
  139. Yeo M, Kim G. Three-dimensional microfibrous bundle structure fabricated using an electric field-assisted/cell printing process for muscle tissue regeneration. ACS Biomater Sci Eng. 2018;4:728-738. doi: 10.1021/acsbiomaterials.7b00983
  140. Bilgen B, Jayasuriya CT, Owens BD. Current concepts in meniscus tissue engineering and repair. Adv Healthc Mater. 2018;7:1701407. doi: 10.1002/adhm.201701407
  141. Chae S, Lee SS, Choi YJ, et al. 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink. Biomaterials. 2021;267:120466. doi: 10.1016/j.biomaterials.2020.120466
  142. Kwon H, Brown WE, Lee CA, et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol. 2019;15:550-570. doi: 10.1038/s41584-019-0255-1
  143. Roemer FW, Kwoh CK, Hannon MJ, et al. Partial meniscectomy is associated with increased risk of incident radiographic osteoarthritis and worsening cartilage damage in the following year. Eur Radiol. 2017;27:404-413. doi: 10.1007/s00330-016-4361-z
  144. Noyes FR, Barber-Westin SD. Long-term survivorship and function of meniscus transplantation. Am J Sports Med. 2016; 44:2330-2338. doi: 10.1177/0363546516646375
  145. Rosso F, Bisicchia S, Bonasia DE, Amendola A. Meniscal allograft transplantation: A systematic review. Am J Sports Med. 2015;43:998-1007. doi: 10.1177/0363546514536021
  146. Jiang D, Ao YF, Gong X, Wang Y-J, Zheng Z-Z, Yu J-K. Comparative study on immediate versus delayed meniscus allograft transplantation: 4- to 6-year follow-up. Am J Sports Med. 2014;42:2329-2337. doi: 10.1177/0363546514541653
  147. Costa JB, Park J, Jorgensen AM, et al. 3D bioprinted highly elastic hybrid constructs for advanced fibrocartilaginous tissue regeneration. Chem Mater. 2020;32: 8733-8746. doi: 10.1021/acs.chemmater.0c03556
  148. Jian Z, Zhuang T, Qinyu T, et al. 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact Mater. 2021;6:1711-1726. doi: 10.1016/j.bioactmat.2020.11.027
  149. Stocco TD, Moreira Silva MC, Corat MAF, AO L. Towards bioinspired meniscus-regenerative scaffolds: Engineering a novel 3D bioprinted patient-specific construct reinforced by biomimetically aligned nanofibers. Int J Nanomed. 2022;17:1111-1124. doi: 10.2147/ijn.S353937
  150. Terpstra ML, Li J, Mensinga A, et al. Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Biofabrication. 2022;14:034104. doi: 10.1088/1758-5090/ac6282
  151. Sathish PB, Gayathri S, Priyanka J, et al. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold. Int J Biol Macromol. 2022;195:179-189. doi: 10.1016/j.ijbiomac.2021.11.184
  152. Sun Y, Zhang Y, Wu Q, et al. 3D-bioprinting ready-to-implant anisotropic menisci recapitulate healthy meniscus phenotype and prevent secondary joint degeneration. Theranostics. 2021;11:5160-5173. doi: 10.7150/thno.54864
  153. Lan X, Ma Z, Szojka ARA, et al. TEMPO-oxidized cellulose nanofiber-alginate hydrogel as a bioink for human meniscus tissue engineering. Front Bioeng Biotechnol. 2021;9: 766399. doi: 10.3389/fbioe.2021.766399
  154. Hao L, Tianyuan Z, Zhen Y, et al. Biofabrication of cell-free dual drug-releasing biomimetic scaffolds for meniscal regeneration. Biofabrication. 2021;14:015001. doi: 10.1088/1758-5090/ac2cd7
  155. Filardo G, Petretta M, Cavallo C, et al. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Joint Res. 2019;8:101-106. doi: 10.1302/2046-3758.82.Bjr-2018-0134.R1
  156. Chansoria P, Narayanan LK, Schuchard K, Shirwaiker R. Ultrasound-assisted biofabrication and bioprinting of preferentially aligned three-dimensional cellular constructs. Biofabrication. 2019;11:035015. doi: 10.1088/1758-5090/ab15cf
  157. Ali AM, Newman SDS, Hooper PA, Davies CM, Cobb JP. The effect of implant position on bone strain following lateral unicompartmental knee arthroplasty: A biomechanical model using digital image correlation. Bone Joint Res. 2017;6: 522-529. doi: 10.1302/2046-3758.68.Bjr-2017-0067.R1
  158. Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007;28:3587-3593. doi: 10.1016/j.biomaterials.2007.04.043
  159. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123:4195-4200. doi: 10.1242/jcs.023820
  160. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: Structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32:7411-7431. doi: 10.1016/j.biomaterials.2011.06.037
  161. Narayanan LK, Huebner P, Fisher MB, Spang JT, Starly B, Shirwaiker RA. 3D-bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng. 2016;2:1732-1742. doi: 10.1021/acsbiomaterials.6b00196
  162. MacBarb RF, Chen AL, Hu JC, Athanasiou KA. Engineering functional anisotropy in fibrocartilage neotissues. Biomaterials. 2013;34:9980-9989. doi: 10.1016/j.biomaterials.2013.09.026
  163. Bonnet CS, Walsh DA. Osteoarthritis, angiogenesis and inflammation. Rheumatology. 2005;44:7-16. doi: 10.1093/rheumatology/keh344
  164. Mapp PI, Walsh DA. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 2012;8:390-398. doi: 10.1038/nrrheum.2012.80
  165. Ashraf S, Wibberley H, Mapp PI, Hill R, Wilson D, Walsh DA. Increased vascular penetration and nerve growth in the meniscus: A potential source of pain in osteoarthritis. Ann Rheum Dis. 2011;70:523-529. doi: 10.1136/ard.2010.137844
  166. Freemont AJ, Watkins A, Le Maitre C, et al. Nerve growth factor expression and innervation of the painful intervertebral disc. J Pathol. 2002;197:286-292. doi: 10.1002/path.1108
  167. Ohnishi T, Iwasaki N, Sudo H. Causes of and molecular targets for the treatment of intervertebral disc degeneration: A review. Cells. 2022;11:394. doi: 10.3390/cells11030394
  168. Peng Y, Qing X, Shu H, et al. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. Biomater Transl. 2021;2:91-142. doi: 10.12336/biomatertransl.2021.02.003
  169. Feng Y, Egan B, Wang J. Genetic factors in intervertebral disc degeneration. Genes Dis. 2016;3:178-185. doi: 10.1016/j.gendis.2016.04.005
  170. Wu D, Li G, Zhou X, Zhang W. Repair strategies and bioactive functional materials for intervertebral disc. Adv Funct Mater. 2022;32:2209471. doi: 10.1002/adfm.202209471
  171. van Uden S, Silva-Correia J, Oliveira JM, Reis RL. Current strategies for treatment of intervertebral disc degeneration: Substitution and regeneration possibilities. Biomater Res. 2017;21:22. doi: 10.1186/s40824-017-0106-6
  172. JT M, AH M, JA C, et al. Translation of an engineered nanofibrous disc-like angle-ply structure for intervertebral disc replacement in a small animal model. Acta Biomater. 2014;10:2473-2481. doi: 10.1016/j.actbio.2014.02.024
  173. Yang J, Wang L, Zhang W, et al. Reverse reconstruction and bioprinting of bacterial cellulose-based functional total intervertebral disc for therapeutic implantation. Small. 2018;14:1702582. doi: 10.1002/smll.201702582
  174. Gullbrand SE, Kim DH, Bonnevie E, et al. Towards the scale up of tissue engineered intervertebral discs for clinical application. Acta Biomater. 2018;70:154-164. doi: 10.1016/j.actbio.2018.01.050
  175. Yang J, Yang X, Wang L, et al. Biomimetic nanofibers can construct effective tissue-engineered intervertebral discs for therapeutic implantation. Nanoscale. 2017;9:13095. doi: 10.1039/c7nr03944a
  176. Bhunia BK, Dey S, Bandyopadhyay A, Mandal BB. 3D printing of annulus fibrosus anatomical equivalents recapitulating angle-ply architecture for intervertebral disc replacement. Appl Mater Today. 2021;23:101031. doi: 10.1016/j.apmt.2021.101031
  177. Liu Z, Wang H, Yuan Z, et al. High-resolution 3D printing of angle-ply annulus fibrosus scaffolds for intervertebral disc regeneration. Biofabrication. 2022;15:015015. doi: 10.1088/1758-5090/aca71f
  178. Hu D, Wu D, Huang L, et al. 3D bioprinting of cell-laden scaffolds for intervertebral disc regeneration. Mater Lett. 2018;223:219-222. doi: 10.1016/j.matlet.2018.03.204
  179. Parker KK, Healy K, Bursac N. Tissue-engineered disease models. Nat Biomed Eng. 2018;2:879-880. doi: 10.1038/s41551-018-0339-2
  180. Moran CJ, Ramesh A, Brama PA, O’Byrne JM, O’Brien FJ, Levingstone TJ. The benefits and limitations of animal models for translational research in cartilage repair. J Exp Orthop. 2016;3:1. doi: 10.1186/s40634-015-0037-x
  181. Benam KH, Dauth S, Hassell B, et al. Engineered in vitro disease models. Annu Rev Pathol. 2015;10:195-262. doi: 10.1146/annurev-pathol-012414-040418
  182. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-676. doi: 10.1016/j.cell.2006.07.024
  183. Vandana JJ, Manrique C, Lacko LA, Chen S. Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation. Cell Stem Cell. 2023;30:571-591. doi: 10.1016/j.stem.2023.04.011
  184. Corsini NS, Knoblich JA. Human organoids: New strategies and methods for analyzing human development and disease. Cell. 2022;185:2756-2769. doi: 10.1016/j.cell.2022.06.051
  185. Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From tissue and organ development to in vitro models. Chem Rev. 2020;120:10547-10607. doi: 10.1021/acs.chemrev.9b00789
  186. Kurian AG, Singh RK, Patel KD, Lee J-H, Kim H-W. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater. 2022;8:267-295. doi: 10.1016/j.bioactmat.2021.06.027
  187. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34: 312-319. doi: 10.1038/nbt.3413
  188. Kim BS, Ahn M, Cho WW, Gao G, Jang J, Cho D-W. Engineering of diseased human skin equivalent using 3D cell printing for representing pathophysiological hallmarks of type 2 diabetes in vitro. Biomaterials. 2021;272: 120776. doi: 10.1016/j.biomaterials.2021.120776
  189. Bin Y, Dongzhen Z, Xiaoli C, et al. Modeling human hypertrophic scars with 3D preformed cellular aggregates bioprinting. Bioact Mater. 2022;10:247-254. doi: 10.1016/j.bioactmat.2021.09.004
  190. Neufeld L, Yeini E, Pozzi S, Satchi-Fainaro R. 3D bioprinted cancer models: From basic biology to drug development. Nat Rev Cancer. 2022;22:679-692. doi: 10.1038/s41568-022-00514-w
  191. Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials. 2022;287:121639. doi: 10.1016/j.biomaterials.2022.121639
  192. Han J, Jeon S, Kim MK, Jeong W, Yoo JJ, Kang H-W. In vitro breast cancer model with patient-specific morphological features for personalized medicine. Biofabrication. 2022;14:034102. doi: 10.1088/1758-5090/ac6127
  193. Neufeld L, Yeini E, Reisman N, et al. Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment. Sci Adv. 2021;7:eabi9119. doi: 10.1126/sciadv.abi9119
  194. Hakobyan D, Médina C, Dusserre N, et al. Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study. Biofabrication. 2020;12:035001. doi: 10.1088/1758-5090/ab7cb8
  195. Tang M, Rich JN, Chen S. Biomaterials and 3D bioprinting strategies to model glioblastoma and the blood-brain barrier. Adv Mater. 2021;33:e2004776. doi: 10.1002/adma.202004776
  196. Gao Y, Fu Z, Guan J, Liu X, Zhang Q. The role of Notch signaling pathway in metabolic bone diseases. Biochem Pharmacol. 2023;207:115377. doi: 10.1016/j.bcp.2022.115377
  197. Greenblatt MB, Tsai JN, Wein MN. Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem. 2017;63:464-474. doi: 10.1373/clinchem.2016.259085
  198. Breathwaite E, Weaver J, Odanga J, dela Pena-Ponce M, Lee JB. 3D bioprinted osteogenic tissue models for in vitro drug screening. Molecules. 2020;25:3442. doi: 10.3390/molecules25153442
  199. Breathwaite EK, Weaver JR, Murchison AC, Treadwell ML, Odanga JJ, Lee JB. Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology. Biomed Mater. 2019;14:065010. doi: 10.1088/1748-605X/ab4243
  200. Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072. doi: 10.1038/nrdp.2016.72
  201. Singh YP, Moses JC, Bandyopadhyay A, Mandal BB. 3D bioprinted silk-based in vitro osteochondral model for osteoarthritis therapeutics. Adv Healthc Mater. 2022;11:2200209. doi: 10.1002/adhm.202200209
  202. Furrer R, Handschin C. Muscle wasting diseases: Novel targets and treatments. Annu Rev Pharmacol Toxicol. 2019;59:315-339. doi: 10.1146/annurev-pharmtox-010818-021041
  203. Alave Reyes-Furrer A, De Andrade S, Bachmann D, et al. Matrigel 3D bioprinting of contractile human skeletal muscle models recapitulating exercise and pharmacological responses. Commun Biol. 2021;4:1183. doi: 10.1038/s42003-021-02691-0
  204. Datta P, Wu Y, Yu Y, Moncal KK, Ozbolat IT. A scaffold free 3D bioprinted cartilage model for in vitro toxicology. Methods Mol Biol. 2021;2147:175-183. doi: 10.1007/978-1-0716-0611-7_15
  205. Ouyang L. Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting. Trends Biotechnol. 2022;40:891-902. doi: 10.1016/j.tibtech.2022.01.001
  206. Ouyang L, Armstrong JPK, Lin Y, et al. Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci Adv. 2020;6:eabc5529. doi: 10.1126/sciadv.abc5529
  207. Chimene D, Peak CW, Gentry JL, et al. Nanoengineered ionic– covalent entanglement (nice) bioinks for 3D bioprinting. ACS Appl Mater Interfaces. 2018;10:9957-9968. doi: 10.1021/acsami.7b19808
  208. Dubey N, Ferreira JA, Daghrery A, et al. Highly tunable bioactive fiber-reinforced hydrogel for guided bone regeneration. Acta Biomater. 2020;113:164-176. doi: 10.1016/j.actbio.2020.06.011
  209. Shao L, Gao Q, Xie C, Fu J, Xiang M, He Y. Synchronous 3D bioprinting of large-scale cell-laden constructs with nutrient networks. Adv Healthc Mater. 2020;9:e1901142. doi: 10.1002/adhm.201901142
  210. Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat Mater. 2021;20:22-29. doi: 10.1038/s41563-020-00803-5
Conflict of interest
The authors declare no conflict of interests.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing