AccScience Publishing / DP / Online First / DOI: 10.36922/DP025390041
ARTICLE

From reviews to empathy: Natural language processing-driven automated empathy mapping and its methodological implications

Serkan Güneş1*
Show Less
1 Department of Industrial Design, Faculty of Architecture, Gazi University, Ankara, Türkiye
Received: 22 September 2025 | Revised: 2 January 2026 | Accepted: 6 January 2026 | Published online: 4 February 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Traditional empathy mapping (EM) in human–computer interaction suffers from subjectivity, limited scalability, and poor reproducibility. This study introduces a multi-layered natural language processing framework that automatically generates EMs from large-scale product reviews by integrating Think–Feel–Say–Do with customer journey mapping (CJM). A dataset of 4,845 Amazon robot vacuum reviews (30,642 sentences) was analyzed using zero-shot classification (e.g., BART-Large-MNLI and RoBERTa-Large-MNLI), interpretability (e.g., local interpretable model-agnostic explanations), aspect-based sentiment analysis (e.g., ABSAbank-RoBERTa, local context-focused-Bidirectional Encoder Representations from Transformers [BERT]), and CJM alignment (e.g., sentence-BERT). The findings highlight a predominance of Think (46.6%) and Do (42.6%), while Feel (9.4%) and Say (1.5%)—though less frequent—convey strong emotional polarity, with 56% of content at extremes. “Device experience” dominates as the key touchpoint (66%) and the CJM experience stage (80.7%). Aspect analysis emphasizes technical (73.2%) and commercial (24.7%) drivers, particularly cleaning performance, battery life, price, and warranty. Cluster analysis identifies three profiles: action-intensive, rational-evaluation, and narrative-emotion. The framework advances EM as scalable, reproducible, and evidence-based, supporting user experience optimization, persona design, and real-time monitoring.

Keywords
Empathy mapping
Human–computer interaction
Natural language processing
Online product reviews
Transformer models
Customer journey mapping
Funding
None.
Conflict of interest
The author declares no conflict of interest.
References
  1. Simon H. The Sciences of the Artificial. Cambridge, MA: MIT Press; 1969.

 

  1. Cross N. Designerly ways of knowing. Design Studies. 1982;3(4):221-227. doi: 10.1016/0142-694X(82)90040-0

 

  1. Jones JC. Design Methods: Seeds of Human Futures. New York: John Wiley and Sons; 1970.

 

  1. Moore GT, Tuttle DP, Howell SC. Environmental Design Research Directions: Process and Prospects. New York: Praeger; 1985.

 

  1. Kouprie M, Sleeswijk Visser F. A framework for empathy in design: Stepping into and out of the user’s life. J Eng Des. 2009;20(5):437-448. doi: 10.1080/09544820902875033

 

  1. Mattelmäki T, Vaajakallio K, Koskinen I. What happened to empathic design? Design Issues. 2014;30(3):67-77. doi: 10.1162/DESI_a_00249

 

  1. Heylighen A, Dong A. To empathise or not to empathize? Empathy and its limits in design. Design Stud. 2019;65:107-124. doi: 10.1016/j.destud.2019.10.007

 

  1. Boehner K, DePaula R, Dourish P, Sengers P. How emotion is made and measured. Int J Hum Comput Stud. 2007;65(4):275-291. doi: 10.1016/j.ijhcs.2006.11.016

 

  1. Costanza-Chock S. Design Justice: Community-Led Practices to Build the Worlds We Need. Cambridge, MA: MIT Press; 2020.

 

  1. Matthews T, Judge TK, Whittaker S. How do Designers and User Experience Professionals Actually Perceive and Use Personas? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’12). Austin, TX. Association for Computing Machinery; 2012. p. 1219-1228. doi: 10.1145/2207676.2208573

 

  1. Higuera M, Macías JA. Automatic Generation of Empathy Maps. In: Proceedings of the XXIII International Conference on Human Computer Interaction (Interacción ’23). Ciudad Real, Spain: Association for Computing Machinery; 2023. p. 1-8.

 

  1. Ferreira B, Silva W, Oliveira EC, Conte T. Designing Personas with Empathy Map. In: Proceedings of the 27th International Conference on Software Engineering and Knowledge Engineering (SEKE ’15). Pittsburgh, PA: Knowledge Systems Institute Graduate School; 2015. p. 152-157. doi: 10.18293/seke2015-152

 

  1. Gonzalez-Bañales DL, Soto Ortíz LE. Empathy Map as a Tool to Analyze human-Computer Interaction in the Elderly. In: Proceedings of the 8th Latin American Conference on Human- Computer Interaction (CLIHC ’17). Antigua Guatemala, Guatemala. Association for Computing Machinery; 2017. p. 55. doi: 10.1145/3151470.3156642

 

  1. Azarpey A, Thomas J, Ring D, Franko O. Natural language processing of sentiments identified in patient comments associated with less than top-rated care. J Patient Exp. 2025;12:1-5. doi: 10.1177/23743735251323677

 

  1. Durgam R, Pamula NB, Dharani N, et al. AI-powered empathy: Sentiment analysis in personal care using RoBERTa and XLNet. J Theor Appl Inf Technol. 2025;103(8):3455-3470.

 

  1. Vischer R. Über das optische Formgefühl: Ein Beitrag zur Ästhetik [On the optical sense of form: A contribution to aesthetics]. Leipzig, Germany: H. Credner; 1873.

 

  1. Lipps T. Ästhetik: Psychologie des Schönen und der Kunst [Aesthetics: Psychology of the beautiful and of art]. Leipzig, Germany: Engelmann; 1903.

 

  1. Titchener EB. Lectures on the Experimental Psychology of the Thought-Processes. New York: Macmillan; 1909.

 

  1. Hatfield E, Cacioppo JT, Rapson RL. Emotional contagion. Curr Dir Psychol Sci. 1993;2(3):96-100. doi: 10.1111/1467-8721.ep10770953

 

  1. Slote M. The Ethics of Care and Empathy. New York: Routledge; 2007.

 

  1. Zaki J. Empathy: A motivated account. Psychol Bull. 2014;140(6):1608-1647. doi: 10.1037/a0037679

 

  1. Coplan A. Understanding empathy: Its features and effects. In: Coplan A, Goldie P, editors. Empathy: Philosophical and Psychological Perspectives. Oxford, UK: Oxford University Press; 2011. p. 3-18.

 

  1. Leslie AM. Pretense and representation: The origins of “theory of mind”. Psychol Rev. 1987;94(4):412-426. doi: 10.1037/0033-295X.94.4.412

 

  1. Gordon RM. Simulation without introspection or inference from me to you. In: Davies M, Stone T, editors. Folk Psychology. Oxford, UK: Blackwell; 1995. p. 53-67.

 

  1. Stueber KR. Rediscovering Empathy: Agency, Folk Psychology, and the Human Sciences. Cambridge, MA: MIT Press; 2012.

 

  1. Blum L. Moral perception and particularity. Ethics. 1991;101(4):701-725.

 

  1. Cooper A. The inmates are running the asylum. In: Software- Ergonomie ’99: Design von Informationswelten. Stuttgart, Germany: BG. Teubner; 1999. p. 17.

 

  1. Shostack GL. Designing services that deliver. Harv Bus Rev. 1984;62(1):133-139.

 

  1. Carlzon J. Moments of Truth. Cambridge, MA: Ballinger Publishing Company; 1987.

 

  1. Leonard D, Rayport JF. Spark innovation through empathic design. Harv Bus Rev. 1997;75:102-115. doi: 10.1142/9789814295505_0016

 

  1. Gaver WW, Dunne A, Pacenti E. Design: Cultural probes. Interactions. 1999;6(1):21-29. doi: 10.1145/291224.291235

 

  1. Buchenau M, Fulton Suri J. Experience prototyping. In: Proceedings of the 3rd Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques (DIS ’00). New York: ACM; 2000. p. 424-433. doi: 10.1145/347642.347802

 

  1. Gray D, Brown S, Macanufo J. Gamestorming: A Playbook for Innovators, Rulebreakers, and Changemakers. Sebastopol, CA: O’Reilly Media; 2010.

 

  1. Osterwalder A, Pigneur Y, Bernarda G, Smith A. Value Proposition Design: How to Create Products and Services Customers Want. Hoboken, NJ: John Wiley and Sons; 2015.

 

  1. Eichbaum Q, Barbeau-Meunier CA, White M, Ravi R. Empathy across cultures-one size does not fit all: From the ego-logical to the eco-logical of relational empathy. Adv Health Sci Educ Theory Pract. 2023;28(2):643-657. doi: 10.1007/s10459-022-10158-8

 

  1. Benyon D, Turner P, Turner S. Designing Interactive Systems: People, Activities, Contexts, Technologies. Harlow, UK: Addison-Wesley Longman; 2005.

 

  1. Hassenzahl M, Tractinsky N. User experience: Research agenda. Behav Inf Technol. 2006;25(2):91-97. doi: 10.1080/01449290500330331

 

  1. Hassenzahl M. User experience (UX): Towards an Experiential Perspective on product Quality. In: Proceedings of the 20th International Conference of the Association Francophone d’Interaction Homme-Machine (IHM ’08). Metz, France: Association for Computing Machinery; 2008. p. 11-15. doi: 10.1145/1512714.1512717

 

  1. Hassenzahl M. Experience Design: Technology for All the Right Reasons. San Rafael, CA: Morgan and Claypool; 2010.

 

  1. Meyer M, Wachter-Boettcher S. Technically Wrong: Sexist Apps, Biased Algorithms, and Other Threats of Toxic Tech. New York: W. W. Norton and Company; 2016.

 

  1. Maguire M. Methods to support human-centred design. Int J Hum Comput Stud. 2001;55(4):587-634. doi: 10.1006/ijhc.2001.0503

 

  1. Kalbach J. Mapping Experiences: A Complete Guide to Customer Alignment Through Journeys, Blueprints, and Diagrams. Sebastopol, CA: O’Reilly Media; 2016.

 

  1. Cuadra A, Wang M, Stein LA, et al. The illusion of empathy? Notes on displays of emotion in human-computer interaction. In: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems (CHI ’24). Honolulu, HI. Association for Computing Machinery; 2024:1-18.

 

  1. Sorin V, Brin D, Barash Y, et al. Large language models and empathy: Systematic review. J Med Internet Res. 2024;26:e52597. doi: 10.2196/52597

 

  1. Elagroudy P, Li J, Väänänen K, et al. Transforming HCI Research Cycles Using Generative AI and “Large Whatever Models” (LWMs). In: CHI EA ’24: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems. Honolulu, HI: Association for Computing Machinery; 2024. p. 1-5. doi: 10.1145/3613905.3643977

 

  1. Yeykelis L, Pichai K, Cummings JJ, Reeves B. Using Large language Models to Create AI Personas for Replication, Generalization and Prediction of Media Effects: An Empirical Test of 133 Published Experimental Research Findings. [Preprint]. doi: 10.48550/arXiv.2408.16073

 

  1. Güneş S. Extracting data-driven user segments and knowledge by using online product reviews. Gazi Univ J Sci Part B Art Humanit Des Plan. 2023;11(1):139-152.

 

  1. Salminen J, Santos JM, Jung SG, Jansen BJ. Picturing the fictitious person: An exploratory study on the effect of images on user perceptions of AI-generated personas. Comput Hum Behav Artif Humans. 2024;2(1):100052. doi: 10.1016/j.chbah.2023.100052

 

  1. Sun L, Qin T, Hu A, et al. Persona-L Has Entered the Chat: Leveraging LLM and Ability-Based Framework for Personas of People with Complex Needs. [Preprint]. doi: 10.48550/arXiv.2409.15604

 

  1. Al-Ansari N, Al-Thani D, Al-Mansoori RS. User-centered evaluation of explainable artificial intelligence (XAI): A systematic literature review. Hum Behav Emerg Technol. 2024;2024:4628855. doi: 10.1155/2024/4628855

 

  1. Rong Y, Leemann T, Nguyen T, et al. Towards human-centered explainable AI: A survey of user studies for model explanations. IEEE Trans Pattern Anal Mach Intell. 2024;46(4):2104-2122. doi: 10.1109/tpami.2023.3331846

 

  1. Alaqsam A, Sas C. Systematic Review of XAI Tools for AI-HCI Research. In: Proceedings of the 37th International BCS Human-Computer Interaction Conference (HCI ’24). Birmingham, UK. BCS Learning and Development; 2024. p. 47-59. doi: 10.14236/ewic/hci2024.5

 

  1. Ehsan U, Watkins EA, Wintersberger P, et al. Human- Centered Explainable AI (HCXAI): Reloading Explainability in the Era of Large Language Models (LLMs). In: CHI EA ’24: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems. Honolulu, HI. Association for Computing Machinery; 2024. p. 477. doi: 10.1145/3613905.3636311

 

  1. Zhu Q, Luo J. Toward Artificial Empathy for Human- Centered Design: A Framework. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2023). Boston, MA: American Society of Mechanical Engineers; 2023. doi: 10.1115/detc2023-87318

 

  1. Nguyen S, Beck D, Holtta-Otto K. Predicting Empathic Accuracy from User-Designer Interviews. In: Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association (ALTA 2023). Melbourne, Australia: Association for Computational Linguistics; 2023. p. 125-129.

 

  1. Hasan MR, Hossain MZ, Ghosh S, Krishna A, Gedeon T. Empathy detection from text, audiovisual, audio or physiological signals: A systematic review of task formulations and machine learning methods. In: IEEE Transactions on Affective Computing. Karnataka: IEEE; 2025. p. 1-20. doi: 10.1109/taffc.2025.3590107

 

  1. Lahnala A, Welch C, Jurgens D, Flek L. A Critical Reflection and Forward perspective on Empathy and Natural Language Processing. In: Findings of the Association for Computational Linguistics: EMNLP 2022. Abu Dhabi, United Arab Emirates: Association for Computational Linguistics; 2022. p. 2139-2158. doi: 10.18653/v1/2022.findings-emnlp.157

 

  1. He P, Liu X, Gao J, Chen W. DeBERTa: Decoding-Enhanced BERT with Disentangled Attention. [Preprint]; 2020. doi: 10.48550/arXiv.2006.03654

 

  1. Zhao H, Chen H, Yang F, et al. Explainability for large language models: A survey. ACM Trans Intell Syst Technol. 2024;15(2):36. doi: 10.1145/3639372

 

  1. Wang A, Singh A, Michael J, Hill F, Levy O, Bowman S. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Network. Brussels, Belgium: Association for Computational Linguistics; 2018. p. 353-355. doi: 10.18653/v1/w18-5446

 

  1. Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre- Training of Deep Bidirectional Transformers for Language Understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis, MN: Association for Computational Linguistics; 2019. p. 4171-4186. doi: 10.18653/v1/N19-1423

 

  1. Lewis M, Liu Y, Goyal N, et al. BART: Denoising Sequence-to-Sequence Pre-Training for Natural Language Generation, Translation, and Comprehension. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL ’20). Stroudsburg: Association for Computational Linguistics; 2020. p. 7871-7880. doi: 10.18653/v1/2020.acl-main.703

 

  1. Slack D, Hilgard S, Jia E, Singh S, Lakkaraju H. Fooling LIME and SHAP: Adversarial Attacks on Post Hoc explanation Methods. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES ’20). New York: Association for Computing Machinery; 2020. p. 180-186. doi: 10.1145/3375627.3375830

 

  1. Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”: Explaining the Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16); 2016. San Francisco, CA: Association for Computing Machinery; 2016. p. 1135-1144. doi: 10.1145/2939672.2939778

 

  1. Zhang ML, Zhou ZH. A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng. 2014;26(8):1819-1837. doi: 10.1109/tkde.2013.39

 

  1. Aho AV, Corasick MJ. Efficient string matching: An aid to bibliographic search. Commun ACM. 1975;18(6):333-340. doi: 10.1145/360825.360855

 

  1. PyABSA. PyABSA: Open-Source Aspect-Based Sentiment Analysis Library. GitHub. Available from: https://github. com/yangheng95/pyabsa [Last accessed on 2025 Sep 19].

 

  1. Reimers N, Gurevych I. Sentence-BERT: Sentence Embeddings Using Siamese BERT-Networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP ’19). Hong Kong, China: Association for Computational Linguistics; 2019. p. 3982-3992. doi: 10.18653/v1/D19-1410

 

  1. Yin W, Hay J, Roth D. Benchmarking Zero-Shot Text Classification: Datasets, Evaluation and Entailment Approach. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP ’19). Hong Kong, China: Association for Computational Linguistics; 2019. p. 3914-3923. doi: 10.18653/v1/d19-1404

 

  1. Molnar C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Leanpub; 2019. Available from: https://leanpub.com/interpretable-machine-learning [Last accessed on 2025 Sep 19].
Share
Back to top
Design+, Electronic ISSN: 3060-8953 Published by AccScience Publishing