From reviews to empathy: Natural language processing-driven automated empathy mapping and its methodological implications
Traditional empathy mapping (EM) in human–computer interaction suffers from subjectivity, limited scalability, and poor reproducibility. This study introduces a multi-layered natural language processing framework that automatically generates EMs from large-scale product reviews by integrating Think–Feel–Say–Do with customer journey mapping (CJM). A dataset of 4,845 Amazon robot vacuum reviews (30,642 sentences) was analyzed using zero-shot classification (e.g., BART-Large-MNLI and RoBERTa-Large-MNLI), interpretability (e.g., local interpretable model-agnostic explanations), aspect-based sentiment analysis (e.g., ABSAbank-RoBERTa, local context-focused-Bidirectional Encoder Representations from Transformers [BERT]), and CJM alignment (e.g., sentence-BERT). The findings highlight a predominance of Think (46.6%) and Do (42.6%), while Feel (9.4%) and Say (1.5%)—though less frequent—convey strong emotional polarity, with 56% of content at extremes. “Device experience” dominates as the key touchpoint (66%) and the CJM experience stage (80.7%). Aspect analysis emphasizes technical (73.2%) and commercial (24.7%) drivers, particularly cleaning performance, battery life, price, and warranty. Cluster analysis identifies three profiles: action-intensive, rational-evaluation, and narrative-emotion. The framework advances EM as scalable, reproducible, and evidence-based, supporting user experience optimization, persona design, and real-time monitoring.
- Simon H. The Sciences of the Artificial. Cambridge, MA: MIT Press; 1969.
- Cross N. Designerly ways of knowing. Design Studies. 1982;3(4):221-227. doi: 10.1016/0142-694X(82)90040-0
- Jones JC. Design Methods: Seeds of Human Futures. New York: John Wiley and Sons; 1970.
- Moore GT, Tuttle DP, Howell SC. Environmental Design Research Directions: Process and Prospects. New York: Praeger; 1985.
- Kouprie M, Sleeswijk Visser F. A framework for empathy in design: Stepping into and out of the user’s life. J Eng Des. 2009;20(5):437-448. doi: 10.1080/09544820902875033
- Mattelmäki T, Vaajakallio K, Koskinen I. What happened to empathic design? Design Issues. 2014;30(3):67-77. doi: 10.1162/DESI_a_00249
- Heylighen A, Dong A. To empathise or not to empathize? Empathy and its limits in design. Design Stud. 2019;65:107-124. doi: 10.1016/j.destud.2019.10.007
- Boehner K, DePaula R, Dourish P, Sengers P. How emotion is made and measured. Int J Hum Comput Stud. 2007;65(4):275-291. doi: 10.1016/j.ijhcs.2006.11.016
- Costanza-Chock S. Design Justice: Community-Led Practices to Build the Worlds We Need. Cambridge, MA: MIT Press; 2020.
- Matthews T, Judge TK, Whittaker S. How do Designers and User Experience Professionals Actually Perceive and Use Personas? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’12). Austin, TX. Association for Computing Machinery; 2012. p. 1219-1228. doi: 10.1145/2207676.2208573
- Higuera M, Macías JA. Automatic Generation of Empathy Maps. In: Proceedings of the XXIII International Conference on Human Computer Interaction (Interacción ’23). Ciudad Real, Spain: Association for Computing Machinery; 2023. p. 1-8.
- Ferreira B, Silva W, Oliveira EC, Conte T. Designing Personas with Empathy Map. In: Proceedings of the 27th International Conference on Software Engineering and Knowledge Engineering (SEKE ’15). Pittsburgh, PA: Knowledge Systems Institute Graduate School; 2015. p. 152-157. doi: 10.18293/seke2015-152
- Gonzalez-Bañales DL, Soto Ortíz LE. Empathy Map as a Tool to Analyze human-Computer Interaction in the Elderly. In: Proceedings of the 8th Latin American Conference on Human- Computer Interaction (CLIHC ’17). Antigua Guatemala, Guatemala. Association for Computing Machinery; 2017. p. 55. doi: 10.1145/3151470.3156642
- Azarpey A, Thomas J, Ring D, Franko O. Natural language processing of sentiments identified in patient comments associated with less than top-rated care. J Patient Exp. 2025;12:1-5. doi: 10.1177/23743735251323677
- Durgam R, Pamula NB, Dharani N, et al. AI-powered empathy: Sentiment analysis in personal care using RoBERTa and XLNet. J Theor Appl Inf Technol. 2025;103(8):3455-3470.
- Vischer R. Über das optische Formgefühl: Ein Beitrag zur Ästhetik [On the optical sense of form: A contribution to aesthetics]. Leipzig, Germany: H. Credner; 1873.
- Lipps T. Ästhetik: Psychologie des Schönen und der Kunst [Aesthetics: Psychology of the beautiful and of art]. Leipzig, Germany: Engelmann; 1903.
- Titchener EB. Lectures on the Experimental Psychology of the Thought-Processes. New York: Macmillan; 1909.
- Hatfield E, Cacioppo JT, Rapson RL. Emotional contagion. Curr Dir Psychol Sci. 1993;2(3):96-100. doi: 10.1111/1467-8721.ep10770953
- Slote M. The Ethics of Care and Empathy. New York: Routledge; 2007.
- Zaki J. Empathy: A motivated account. Psychol Bull. 2014;140(6):1608-1647. doi: 10.1037/a0037679
- Coplan A. Understanding empathy: Its features and effects. In: Coplan A, Goldie P, editors. Empathy: Philosophical and Psychological Perspectives. Oxford, UK: Oxford University Press; 2011. p. 3-18.
- Leslie AM. Pretense and representation: The origins of “theory of mind”. Psychol Rev. 1987;94(4):412-426. doi: 10.1037/0033-295X.94.4.412
- Gordon RM. Simulation without introspection or inference from me to you. In: Davies M, Stone T, editors. Folk Psychology. Oxford, UK: Blackwell; 1995. p. 53-67.
- Stueber KR. Rediscovering Empathy: Agency, Folk Psychology, and the Human Sciences. Cambridge, MA: MIT Press; 2012.
- Blum L. Moral perception and particularity. Ethics. 1991;101(4):701-725.
- Cooper A. The inmates are running the asylum. In: Software- Ergonomie ’99: Design von Informationswelten. Stuttgart, Germany: BG. Teubner; 1999. p. 17.
- Shostack GL. Designing services that deliver. Harv Bus Rev. 1984;62(1):133-139.
- Carlzon J. Moments of Truth. Cambridge, MA: Ballinger Publishing Company; 1987.
- Leonard D, Rayport JF. Spark innovation through empathic design. Harv Bus Rev. 1997;75:102-115. doi: 10.1142/9789814295505_0016
- Gaver WW, Dunne A, Pacenti E. Design: Cultural probes. Interactions. 1999;6(1):21-29. doi: 10.1145/291224.291235
- Buchenau M, Fulton Suri J. Experience prototyping. In: Proceedings of the 3rd Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques (DIS ’00). New York: ACM; 2000. p. 424-433. doi: 10.1145/347642.347802
- Gray D, Brown S, Macanufo J. Gamestorming: A Playbook for Innovators, Rulebreakers, and Changemakers. Sebastopol, CA: O’Reilly Media; 2010.
- Osterwalder A, Pigneur Y, Bernarda G, Smith A. Value Proposition Design: How to Create Products and Services Customers Want. Hoboken, NJ: John Wiley and Sons; 2015.
- Eichbaum Q, Barbeau-Meunier CA, White M, Ravi R. Empathy across cultures-one size does not fit all: From the ego-logical to the eco-logical of relational empathy. Adv Health Sci Educ Theory Pract. 2023;28(2):643-657. doi: 10.1007/s10459-022-10158-8
- Benyon D, Turner P, Turner S. Designing Interactive Systems: People, Activities, Contexts, Technologies. Harlow, UK: Addison-Wesley Longman; 2005.
- Hassenzahl M, Tractinsky N. User experience: Research agenda. Behav Inf Technol. 2006;25(2):91-97. doi: 10.1080/01449290500330331
- Hassenzahl M. User experience (UX): Towards an Experiential Perspective on product Quality. In: Proceedings of the 20th International Conference of the Association Francophone d’Interaction Homme-Machine (IHM ’08). Metz, France: Association for Computing Machinery; 2008. p. 11-15. doi: 10.1145/1512714.1512717
- Hassenzahl M. Experience Design: Technology for All the Right Reasons. San Rafael, CA: Morgan and Claypool; 2010.
- Meyer M, Wachter-Boettcher S. Technically Wrong: Sexist Apps, Biased Algorithms, and Other Threats of Toxic Tech. New York: W. W. Norton and Company; 2016.
- Maguire M. Methods to support human-centred design. Int J Hum Comput Stud. 2001;55(4):587-634. doi: 10.1006/ijhc.2001.0503
- Kalbach J. Mapping Experiences: A Complete Guide to Customer Alignment Through Journeys, Blueprints, and Diagrams. Sebastopol, CA: O’Reilly Media; 2016.
- Cuadra A, Wang M, Stein LA, et al. The illusion of empathy? Notes on displays of emotion in human-computer interaction. In: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems (CHI ’24). Honolulu, HI. Association for Computing Machinery; 2024:1-18.
- Sorin V, Brin D, Barash Y, et al. Large language models and empathy: Systematic review. J Med Internet Res. 2024;26:e52597. doi: 10.2196/52597
- Elagroudy P, Li J, Väänänen K, et al. Transforming HCI Research Cycles Using Generative AI and “Large Whatever Models” (LWMs). In: CHI EA ’24: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems. Honolulu, HI: Association for Computing Machinery; 2024. p. 1-5. doi: 10.1145/3613905.3643977
- Yeykelis L, Pichai K, Cummings JJ, Reeves B. Using Large language Models to Create AI Personas for Replication, Generalization and Prediction of Media Effects: An Empirical Test of 133 Published Experimental Research Findings. [Preprint]. doi: 10.48550/arXiv.2408.16073
- Güneş S. Extracting data-driven user segments and knowledge by using online product reviews. Gazi Univ J Sci Part B Art Humanit Des Plan. 2023;11(1):139-152.
- Salminen J, Santos JM, Jung SG, Jansen BJ. Picturing the fictitious person: An exploratory study on the effect of images on user perceptions of AI-generated personas. Comput Hum Behav Artif Humans. 2024;2(1):100052. doi: 10.1016/j.chbah.2023.100052
- Sun L, Qin T, Hu A, et al. Persona-L Has Entered the Chat: Leveraging LLM and Ability-Based Framework for Personas of People with Complex Needs. [Preprint]. doi: 10.48550/arXiv.2409.15604
- Al-Ansari N, Al-Thani D, Al-Mansoori RS. User-centered evaluation of explainable artificial intelligence (XAI): A systematic literature review. Hum Behav Emerg Technol. 2024;2024:4628855. doi: 10.1155/2024/4628855
- Rong Y, Leemann T, Nguyen T, et al. Towards human-centered explainable AI: A survey of user studies for model explanations. IEEE Trans Pattern Anal Mach Intell. 2024;46(4):2104-2122. doi: 10.1109/tpami.2023.3331846
- Alaqsam A, Sas C. Systematic Review of XAI Tools for AI-HCI Research. In: Proceedings of the 37th International BCS Human-Computer Interaction Conference (HCI ’24). Birmingham, UK. BCS Learning and Development; 2024. p. 47-59. doi: 10.14236/ewic/hci2024.5
- Ehsan U, Watkins EA, Wintersberger P, et al. Human- Centered Explainable AI (HCXAI): Reloading Explainability in the Era of Large Language Models (LLMs). In: CHI EA ’24: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems. Honolulu, HI. Association for Computing Machinery; 2024. p. 477. doi: 10.1145/3613905.3636311
- Zhu Q, Luo J. Toward Artificial Empathy for Human- Centered Design: A Framework. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2023). Boston, MA: American Society of Mechanical Engineers; 2023. doi: 10.1115/detc2023-87318
- Nguyen S, Beck D, Holtta-Otto K. Predicting Empathic Accuracy from User-Designer Interviews. In: Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association (ALTA 2023). Melbourne, Australia: Association for Computational Linguistics; 2023. p. 125-129.
- Hasan MR, Hossain MZ, Ghosh S, Krishna A, Gedeon T. Empathy detection from text, audiovisual, audio or physiological signals: A systematic review of task formulations and machine learning methods. In: IEEE Transactions on Affective Computing. Karnataka: IEEE; 2025. p. 1-20. doi: 10.1109/taffc.2025.3590107
- Lahnala A, Welch C, Jurgens D, Flek L. A Critical Reflection and Forward perspective on Empathy and Natural Language Processing. In: Findings of the Association for Computational Linguistics: EMNLP 2022. Abu Dhabi, United Arab Emirates: Association for Computational Linguistics; 2022. p. 2139-2158. doi: 10.18653/v1/2022.findings-emnlp.157
- He P, Liu X, Gao J, Chen W. DeBERTa: Decoding-Enhanced BERT with Disentangled Attention. [Preprint]; 2020. doi: 10.48550/arXiv.2006.03654
- Zhao H, Chen H, Yang F, et al. Explainability for large language models: A survey. ACM Trans Intell Syst Technol. 2024;15(2):36. doi: 10.1145/3639372
- Wang A, Singh A, Michael J, Hill F, Levy O, Bowman S. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Network. Brussels, Belgium: Association for Computational Linguistics; 2018. p. 353-355. doi: 10.18653/v1/w18-5446
- Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre- Training of Deep Bidirectional Transformers for Language Understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis, MN: Association for Computational Linguistics; 2019. p. 4171-4186. doi: 10.18653/v1/N19-1423
- Lewis M, Liu Y, Goyal N, et al. BART: Denoising Sequence-to-Sequence Pre-Training for Natural Language Generation, Translation, and Comprehension. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL ’20). Stroudsburg: Association for Computational Linguistics; 2020. p. 7871-7880. doi: 10.18653/v1/2020.acl-main.703
- Slack D, Hilgard S, Jia E, Singh S, Lakkaraju H. Fooling LIME and SHAP: Adversarial Attacks on Post Hoc explanation Methods. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES ’20). New York: Association for Computing Machinery; 2020. p. 180-186. doi: 10.1145/3375627.3375830
- Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”: Explaining the Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16); 2016. San Francisco, CA: Association for Computing Machinery; 2016. p. 1135-1144. doi: 10.1145/2939672.2939778
- Zhang ML, Zhou ZH. A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng. 2014;26(8):1819-1837. doi: 10.1109/tkde.2013.39
- Aho AV, Corasick MJ. Efficient string matching: An aid to bibliographic search. Commun ACM. 1975;18(6):333-340. doi: 10.1145/360825.360855
- PyABSA. PyABSA: Open-Source Aspect-Based Sentiment Analysis Library. GitHub. Available from: https://github. com/yangheng95/pyabsa [Last accessed on 2025 Sep 19].
- Reimers N, Gurevych I. Sentence-BERT: Sentence Embeddings Using Siamese BERT-Networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP ’19). Hong Kong, China: Association for Computational Linguistics; 2019. p. 3982-3992. doi: 10.18653/v1/D19-1410
- Yin W, Hay J, Roth D. Benchmarking Zero-Shot Text Classification: Datasets, Evaluation and Entailment Approach. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP ’19). Hong Kong, China: Association for Computational Linguistics; 2019. p. 3914-3923. doi: 10.18653/v1/d19-1404
- Molnar C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Leanpub; 2019. Available from: https://leanpub.com/interpretable-machine-learning [Last accessed on 2025 Sep 19].
