Balancing innovation and trust: Assessing artificial intelligence’s role in medical history taking and physician perspectives on patient care

This study explores the potential of artificial intelligence (AI) in medical history taking (anamnesis) and assesses its acceptance using technology acceptance models. Through nine expert interviews with physicians from diverse medical backgrounds, the study aims to understand concerns and anticipated benefits of AI in the doctor–patient relationship. To demonstrate AI’s applications, digital anamnesis surveys were conducted with two actual patients, and the resulting data were interpreted by AI and reviewed by physicians. Findings indicate that physicians view AI as potentially beneficial, expecting that AI can facilitate improvements in care quality, efficiency, and time savings. Despite initial concerns about AI’s ability to address individual patient needs and its impact on the doctor–patient relationship, there is significant interest in integrating AI tools into daily practice. Key issues include patient constitution, the effort-to-benefit ratio, and potential risks to patient trust. The study identifies six areas for further research: Economic impact and cost-benefit analysis, patient acceptance and trust, stress reduction and job satisfaction, effects on doctor–patient relationships, development of verification mechanisms, and ethical and legal considerations. These findings underscore the complexities of AI integration in health care, emphasizing the need to address concerns about patient individuality, data privacy, and interpersonal relationships while harnessing AI’s potential.

- Baier J, Kovács-Ondrejkovic O, Zimmermann T, et al. Changing Work Preferences in the Age of GenAI: Decoding Global Talent; 2024. Available online: https://www.bcg. com/publications/2024/how-work-preferences-are-shifting-in-the-age-of-genai?utm_campaign=digital-t r ans format i on&utm_content=202406&utm_ d e s c r i p t i o n = l e a d e r s h i p _ b y _ d e s i g n & utm_ geo=global&utm_medium=email&utm_source=esp&utm_ topi c = p eopl e _ on_ai&utm_us e r token=CRM_ cc19cfbd1c3fb5ee91ce7f5a0f0c073d5e53d4a9&mkt_ tok=nzk5lulpqi04odmaaagt-n0gxfowmluduzuippwsgc0e_1e4 ffu0clhb4rjo6kunnqhit8nr3lyjs1iqgrqgvti0h2bvsnn6yltbqio8r a5k60lmmexjdvw5g9paar-U [Last accessed on 2025 Mar 08].
- Golhar SP, Kekapure SS. Artificial intelligence in healthcare-a review. Int J Sci Res Sci Technol. 2022;9:381-387. doi: 10.32628/IJSRST229454
- Morrow E, Zidaru T, Ross F, et al. Artificial intelligence technologies and compassion in healthcare: A systematic scoping review. Front Psychol. 2022;13:971044. doi: 10.3389/fpsyg.2022.971044
- Singhal M, Gupta L, Hirani K. A comprehensive analysis and review of artificial intelligence in anaesthesia. Cureus. 2023;15:e45038. doi: 10.7759/cureus.45038
- Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology: Current techniques, clinical applications, and limitations. Anesthesiology. 2020;132:379-394. doi: 10.1097/ALN.0000000000002960.
- Zhou XY, Guo Y, Shen M, Yang GZ. Application of artificial intelligence in surgery. Front Med. 2020;14:417-430. doi: 10.1007/s11684-020-0770-0.
- Navarrete-Welton AJ, Hashimoto DA. Current applications of artificial intelligence for intraoperative decision support in surgery. Front Med. 2020;14:369-381. doi: 10.1007/s11684-020-0784-7.
- Shalev-Shwartz S, Ben-David S. Understanding Machine Learning: From Theory to Algorithms. Cambridge: Cambridge University Press; 2022.
- Segato A, Marzullo A, Calimeri F, Momi E. Artificial intelligence for brain diseases: A systematic review. APL Bioeng. 2020;4:041503. doi: 10.1063/5.0011697
- Briganti G, Le Moine O. Artificial intelligence in medicine: Today and tomorrow. Front Med (Lausanne). 2020;7:27. doi: 10.3389/fmed.2020.00027
- Sun Y. Modelling methods of artificial intelligence in medical application. Appl Comput Eng. 2023;18:42-47. doi: 10.54254/2755-2721/18/20230962
- Zhu J, Valmianski I, Kannan A. Dialogue-contextualized re-ranking for medical history-taking. Proc Mach Learn Res. 2023;219:1-17.
- Maicher KR, Stiff A, Scholl M, et al. Artificial intelligence in virtual standardized patients: Combining natural language understanding and rule based dialogue management to improve conversational fidelity. Med Teach. 2022; 8:1-7. doi: 10.1080/0142159X.2022.2130216.
- Hong G, Smith M, Lin S. The AI will see you now: Feasibility and acceptability of a conversational AI medical interviewing system. JMIR Form Res. 2022;6:e37028. doi: 10.2196/37028
- IEEE. 2023 27th International Conference Information Visualisation (IV). Tampere, Finland: IEEE; 2023.
- Karpov OE, Pitsik EN, Kurkin SA, et al. Analysis of publication activity and research trends in the field of AI medical applications: Network approach. Int J Environ Res Public Health. 2023;20:5335. doi: 10.3390/ijerph20075335
- Cheng ECK, Wang T, Schlippe T, Beligiannis GN, editors. Artificial Intelligence in Education Technologies: New Development and Innovative Practices. Singapore: Springer Nature Singapore; 2023.
- Yokoi R, Eguchi Y, Fujita T, Nakayachi K. Artificial intelligence is trusted less than a doctor in medical treatment decisions: Influence of perceived care and value similarity. Int J Hum Comput Interact. 2021;37:981-990. doi: 10.1080/10447318.2020.1861763
- Grüne S. Medical history and physical examination. German Med Weeklies. 2016;141:24-27. doi: 10.1055/s-0041-106337
- Zuin M, Rigatelli G, Zuliani G, Faggian G, Roncon L. The secret of the questions: Medical interview in 21st century. Eur J Intern Med. 2016;35:e21-e22. doi: 10.1016/j.ejim.2016.06.032.
- Westrin CG. The reliability of auto-anamnesis. A study of statements regarding low back trouble. Scand J Soc Med. 1974;2:23-35. doi: 10.1177/140349487400200104
- Yang YC, Islam SU, Noor A, Khan S, Afsar W, Nazir S. Influential usage of big data and artificial intelligence in healthcare. Comput Math Methods Med. 2021;2021:5812499. doi: 10.1155/2021/5812499.
- Kardiologen Rostok. 1 Jahr Mit Idana. Available from: https://kardiologen-rostock.de/1-jahr-mit-idana [Last accessed on 2025 Mar 08].
- Heiß S, Rieser S. Digitale Innovationen im Praxistest. Available from: https://www.kbv.de/media/sp/kbv-zukunftspraxis_bericht_web.pdf [Last accessed on 2025 Mar 08].
- Finch J. The vignette technique in survey research. Sociology. 1987;21:105-114. doi: 10.1177/0038038587021001008
- Abdel-Karim B, Pfeuffer N, Carl KV, Hinz O. How AI-based systems can induce reflections: The case of AI-augmented diagnostic work. MIS Q. 2023;47:1395-1424. doi: 10.25300/MISQ/2022/16773
- Moser A, Korstjens I. Series: Practical guidance to qualitative research. Part 3: Sampling, data collection and analysis. Eur J Gen Pract. 2018;24:9-18. doi: 10.1080/13814788.2017.1375091
- Saunders B, Sim J, Kingstone T, Baker S, et al. Saturation in qualitative research: Exploring its conceptualization and operationalization. Qual Quant. 2018;52:1893-1907. doi: 10.1007/s11135-017-0574-8
- Chaddad A, Peng J, Xu J, Bouridane A. Survey of explainable AI techniques in healthcare. Sensors (Basel). 2023;23:634. doi: 10.3390/s23020634
- Dresing T, Pehl T, editors. Praxisbuch Interview, Transkription and Analyse: Anleitungen und Regelsysteme für Qualitativ Forschende. 6th ed. Marburg: Dr. Dresing und Pehl GmbH; 2015.
- Kuckartz U, Rädiker S. Qualitative Inhaltsanalyse. Methoden, Praxis, Computerunterstützung. 6th ed. Weinheim: Beltz Juventa; 2024.
- Kothgassner OD, Felnhofer A, Hauk N, Kastenhofer E, Gomm J, Kryspin-Exner I. Technology Usage Inventory (TUI): Manual. Available from: https://www.ffg.at/sites/ default/files/allgemeine_downloads/thematische%20 programme/programmdokumente/tui_manual.pdf [Last accessed on 2025 Mar 08].
- Czaja SJ, Charness N, Fisk AD, et al. Factors predicting the use of technology: Findings from the center for research and education on aging and technology enhancement (CREATE). Psychol Aging. 2006;21:333-352. doi: 10.1037/0882-7974.21.2.333.
- Arning K, Ziefle M. Understanding age differences in PDA acceptance and performance. Comput Hum Behav. 2007;23:2904-2927. doi: 10.1016/j.chb.2006.06.005
- Ye T, Xue J, He M, et al. Psychosocial factors affecting artificial intelligence adoption in health care in China: Cross-sectional study. J Med Internet Res. 2019;21:e14316. doi: 10.2196/14316
- Güsken SR, Frings K, Zafar F, Saltan T, Fuchs-Frohnhofen P, Bitter-Krahe J. Einflussfaktoren auf die nutzungsintention von pflegekräften zur verwendung digitaler technologien in der ambulanten pflege-fallstudie zur einführung eines sensortextils. Z Arb Wiss. 2021;75:470-490. doi: 10.1007/s41449-021-00277-4
- Gower JC. A general coefficient of similarity and some of its properties. Biometrics. 1971;27:857. doi: 10.2307/2528823
- Sezgin E. Artificial intelligence in healthcare: Complementing, not replacing, doctors and healthcare providers. Digital Health. 2023;9:20552076231186520. doi: 10.1177/20552076231186520
- Khanna, NN, Maindarkar MA, Viswanathan V, et al. Economics of artificial intelligence in healthcare: Diagnosis vs. treatment. Healthcare (Basel). 2022;10:2493. doi: 10.3390/healthcare10122493
- Alnasser B. A review of literature on the economic implications of implementing artificial intelligence in healthcare. E-Health Telecommun Syst Netw. 2023;12: 35-48. doi: 10.4236/etsn.2023.123003
- Esmaeilzadeh P, Mirzaei T, Dharanikota S. Patients’ perceptions toward human-artificial intelligence interaction in health care: Experimental study. J Med Internet Res. 2021;23:e25856. doi: 10.2196/25856.
- Karal E, Turan M. Artificial intelligence-powered disease detection expert assisting physicians in diagnosis. Eur J Sci Technol. 2021;26:100-116. doi: 10.31590/ejosat.945518
- Sauerbrei A, Kerasidou A, Lucivero F, Hallowell N. The impact of artificial intelligence on the person-centred, doctor-patient relationship: Some problems and solutions. BMC Med Inf Decis Mak. 2023;23:73. doi: 10.1186/s12911-023-02162-y
- Morley J, Machado CCV, Burr C, et al. The ethics of AI in health care: A mapping review. Soc Sci Med. 2020;260:113172. doi: 10.1016/j.socscimed.2020.113172
- Yann L, Joaquin Quiñonero C. Artificial Intelligence, Revealed. Available from: https://engineering.fb.com/2016/12/01/ ml-applications/artificial-intelligence-revealed [Last accessed on 2025 Mar 08].