Experimental and numerical analysis of 3D-printed objects based on oriented anisotropic cells

The use of additive manufacturing technology has grown significantly in recent years, creating new challenges for product designers. Complex designs are rarely fully described in traditional drawings or design specifications. This research aimed to address this gap by developing specifications based on the mechanical characterization of fused deposition modeling objects, focusing on their anisotropic behavior as influenced by cell structures. We used experimental design, analytical research using finite element methods, statistical analysis, and simplified numerical models to investigate the relationship between mechanical characteristics and manufacturing factors. The main effects of building attributes were examined in addition to formulating failure mechanisms and generalized elasticity. The findings allowed the creation of a simplified model to describe mechanical behavior by demonstrating the relationship between infill methods and mechanical strength.
- Cunico MWM. Study of Fdm Process Parameter for Deposition of Fillament in Area with no Support Material. In: Presented At: 17th European Forum on Rapid Prototyping and Manufacturing. Paris; 2012.
- Cunico MWM. Impressoras 3D: O Novo Meio Produtivo. Paraná: Concep3d Pesquisas Científicas; 2015. p. 175.
- Chen Y, Scarpa F, Liu Y, Leng J. Elasticity of anti-tetrachiral anisotropic lattices. Int J Solids Struct. 2013;50(6):996-1004. doi: 10.1016/j.ijsolstr.2012.12.004
- Guessasma S, Belhabib S, Nouri H, Hassana OB. Anisotropic damage inferred to 3D printed polymers using fused deposition modelling and subject to severe compression. Eur Polym J. 2016;85:324-340. doi: 10.1016/j.eurpolymj.2016.10.030
- Ahn S, Montero M, Odell D, Roundy S, Wright P. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J. 2002;8(4):248-257. doi: 10.1108/13552540210441166
- Domingo-Espin M, Puigoriol-Forcada JM, Garcia- Granada A-A, Llumà J, Borros S, Reyes G. Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts. Mater Des. 2015;83:670-677. doi: 10.1016/j.matdes.2015.06.074
- Guessasma S, Belhabib S. What matters the most in 3D printing is to be connected: Proof from the simulation. Paper presented at the International Conference on Computational Methods, Berkeley,USA, 2016.
- Hambali RH, Celik H, Smith P, Rennie A, Ucar M. Effect of Build Orientation on FDM Parts: A Case Study for Validation of Deformation Behaviour by FEA. In: Proceedings of IDECON 2010-International Conference on Design and Concurrent Engineering. Melaka: Universiti Teknikal Malaysia Melaka; 2010.
- Liu X, Shapiro V. Homogenization of material properties in additively manufactured structures. Comput Aided Des. 2016;78:71-82. doi: 10.1016/j.cad.2016.05.017
- Villalpando Rosas LF. Characterization of Parametric Internal Structures for Components Built by Fused Deposition Modeling. Electronic Theses and Dissertations. Canada: University of Windsor; 2013. p. 224.
- Agarwala MK, Jamalabad VR, Langrana NA, Safari A, Whalen PJ, Danforth SC. Structural quality of parts processed by fused deposition. Rapid Prototyp J. 1996;2(4):4-19. doi: 10.1108/13552549610732034
- Anitha R, Arunachalam S, Radhakrishnan P. Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Process Technol. 2001;118(1):385-388. doi: 10.1016/S0924-0136(01)00980-3
- Bakar NSA, Alkahari MR, Boejang H. Analysis on fused deposition modelling performance. J Zhejiang Univ Sci A. 2010;11(12):972-977. doi: 10.1631/jzus.A1001365
- Bertoldi M, Yardimci MA, Pistor CM, GUyeri SI, Sala G. Mechanical Characterization of Parts Processed Via Fused Deposition. In: Proceedings of the 1998 Solid Freeform Fabrication Symposium; 1998.
- Es-Said OS, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger BA. Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf Processes. 2000;15(1):107-122. doi: 10.1080/10426910008912976
- Lee B, Abdullah J, Khan Z. Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol. 2005;169(1):54-61. doi: 10.1016/j.jmatprotec.2005.02.259
- Montero M, Roundy S, Odell D, Ahn SH, Wright PK. Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments. In: Proceedings of Rapid Prototyping and Manufacturing Conference. United States: SME; 2001.
- Rodríguez JF, Thomas JP, Renaud JE. Mechanical behavior of acrylonitrile butadiene styrene fused deposition materials modeling. Rapid Prototyp J. 2003;9(4):219-230. doi: 10.1108/13552540310489604
- Sood A, Ohdar R, Mahapatra S. Parametric appraisal of fused deposition modelling process using the grey Taguchi method. Proc Inst Mech Eng B J Eng Manuf. 2010;224(1):135-145. doi: 10.1243/09544054JEM1565
- Sood AK, Ohdar R, Mahapatra S. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des. 2010;31(1):287-295. doi: 10.1016/j.matdes.2009.06.016
- Too,MH, Leong KF, Chua CK, et al. Investigation of 3D nonrandom porous structures by fused deposition modelling. Int J Adv Manuf Technol. 2002;19(3):217-223. doi: 10.1007/s001700200016
- Li T, Wang L. Bending behavior of sandwich composite structures with tunable 3D-printed core materials. Compos Struct. 2017;175:46-57. doi: 10.1016/j.compstruct.2017.05.001
- Ziemian C, Sharma M, Ziemian S. Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling. In: Mechanical Engineering. London: IntechOpen; 2012.
- Chacón JM, Caminero MA, García-Plaza E, Núñez PJ. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater Des. 2017;124:143-157. doi: 10.1016/j.matdes.2017.03.065
- Edgar. Stock Chart - Stratasys. Stratasys Investors. 2011. Available from: https://www.stratasys.com [Last accessed on 2025 Jan 10].