AccScience Publishing / AN / Online First / DOI: 10.36922/an.3568
REVIEW

mTOR inhibition in epilepsy: A literature review

Lip-Yuen Teng1* Min Jung Chang2,3,4 Se Hee Kim5*
Show Less
1 Pediatric Neurology, Department of Pediatrics, Hospital Tuanku Ja’afar, Seremban, Malaysia
2 Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
3 Department of Pharmaceutical Medicine and Regulatory Sciences, Colleges of Medicine and Pharmacy, Yonsei University, Incheon, Republic of Korea
4 Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
5 Pediatric Neurology, Department of Pediatrics, Yonsei University College of Medicine, Epilepsy Research Institute, Severance Children’s Hospital, Seoul, Republic of Korea
Advanced Neurology 2024, 3(3), 3568 https://doi.org/10.36922/an.3568
Submitted: 3 May 2024 | Accepted: 19 June 2024 | Published: 29 August 2024
(This article belongs to the Special Issue Advances in the pathogenesis, diagnosis and treatment of epilepsy)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Hyperactivation of the mammalian target of the rapamycin (mTOR) pathway causes epilepsies, neurodevelopmental disorders, and malformations of cortical development, collectively known as mTORopathies. These conditions arise from loss-of-function variants in negative regulators or gain-of-function variants in positive regulators of the mTOR pathway. Conventional antiseizure medications mainly target downstream effectors such as ion channels or neurotransmitter activity to suppress seizures. On the contrary, extensive pre-clinical and clinical evidence has demonstrated that mTOR inhibitors have anti-epileptogenic or disease-modifying effects, potentially preventing epilepsy or slowing disease progression rather than merely controlling seizures. In general, mTOR inhibitors bind to mTOR protein, preventing its interactions with substrates and disrupting mTOR complex assembly, thereby suppressing downstream activities. In this review, we provide a comprehensive overview of the mTOR signaling pathway, outline the spectrum of mTORopathies and its subset (GATORopathies), and highlight the clinical applications of mTOR inhibitors, particularly everolimus, along with other potential mTOR-modulating agents.

Keywords
mTOR
Epilepsy
Tuberous sclerosis
Rapamycin
Everolimus
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Choi S, Bang KS. Health-related quality of life in children with epilepsy: A concept analysis. Child Health Nurs Res. 2023;29(1):84-95. doi: 10.4094/chnr.2023.29.1.84

 

  1. Corrales-Hernández MG, Villarroel-Hagemann SK, Mendoza-Rodelo IE, et al. Development of antiepileptic drugs throughout history: From serendipity to artificial intelligence. Biomedicines. 2023;11(6):1632. doi: 10.3390/biomedicines11061632

 

  1. Van Hugte EJH, Schubert D, Nadif Kasri N. Excitatory/ inhibitory balance in epilepsies and neurodevelopmental disorders: Depolarizing γ-aminobutyric acid as a common mechanism. Epilepsia. 2023;64(8):1975-1990. doi: 10.1111/epi.17651

 

  1. D’Antuono M, Köhling R, Ricalzone S, Gotman J, Biagini G, Avoli M. Antiepileptic drugs abolish ictal but not interictal epileptiform discharges in vitro. Epilepsia. 2010;51(3):423-431. doi: 10.1111/j.1528-1167.2009.02273.x

 

  1. Sun L, Zheng X, Liu C, Shi M, Lv Y. The detection of the negative effects of interictal epileptiform discharges on cognition: An event-related potential study. J Nerv Ment Dis. 2019;207(3):209-216. doi: 10.1097/NMD.0000000000000945

 

  1. Myers CT, Mefford HC. Advancing epilepsy genetics in the genomic era. Genome Med. 2015;7(1):91. doi: 10.1186/s13073-015-0214-7

 

  1. Sadowski K, Kotulska-Jóźwiak K, Jóźwiak S. Role of mTOR inhibitors in epilepsy treatment. Pharmacol Rep. 2015;67(3):636-646. doi: 10.1016/j.pharep.2014.12.017

 

  1. Hodges SL, Lugo JN. Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res. 2020;161:106282. doi:10.1016/j.eplepsyres.2020.106282

 

  1. National Center for Biotechnology Information (NCBI). Available from: https://pubmed.ncbi.nlm.nih. gov/?term=mtor&sort=date&size=100 [Last accessed on 2024 May 28].

 

  1. Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol. 2005;16(4):525-537. doi: 10.1093/annonc/mdi113

 

  1. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994;78(1):35-43. doi: 10.1016/0092-8674(94)90570-3

 

  1. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274-293. doi: 10.1016/j.cell.2012.03.017

 

  1. Weber JD, Gutmann DH. Deconvoluting mTOR biology. Cell Cycle. 2012;11(2):236-248. doi: 10.4161/cc.11.2.19022

 

  1. Ostendorf AP, Wong M. mTOR inhibition in epilepsy: Rationale and clinical perspectives. CNS Drugs. 2015;29(2):91-99. doi: 10.1007/s40263-014-0223-x

 

  1. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926-1945. doi: 10.1101/gad.1212704

 

  1. Moloney PB, Cavalleri GL, Delanty N. Epilepsy in the mTORopathies: Opportunities for precision medicine. Brain Commun. 2021;3(4):fcab222. doi: 10.1093/braincomms/fcab222

 

  1. Sabatini DM. Twenty-five years of mTOR: Uncovering the link from nutrients to growth. Proc Natl Acad Sci U S A. 2017;114(45):11818-11825. doi: 10.1073/pnas.1716173114

 

  1. Rouillard AD, Gundersen GW, Fernandez NF, et al. The harmonizome: A collection of processed datasets gathered to serve and mine knowledge about genes and proteins- MTOR signaling pathway gene set. Database (Oxford). 2016;2016:baw100. doi: 10.1093/database/baw100

 

  1. Iffland PH 2nd, Carson V, Bordey A, Crino PB. GATORopathies: The role of amino acid regulatory gene mutations in epilepsy and cortical malformations. Epilepsia. 2019;60(11):2163-2173. doi: 10.1111/epi.16370

 

  1. Wong M. A critical review of mTOR inhibitors and epilepsy: From basic science to clinical trials. Expert Rev Neurother. 2013;13(6):657-669. doi: 10.1586/ern.13.48

 

  1. Lim JS, Kim WI, Kang HC, et al. Brain somatic mutations in MTOR cause focal cortical dysplasia type II leading to intractable epilepsy. Nat Med. 2015;21(4):395-400. doi: 10.1038/nm.3824

 

  1. Lee WS, Stephenson SE, Pope K, et al. Genetic characterization identifies bottom-of-sulcus dysplasia as an mTORopathy. Neurology. 2020;95(18):e2542-e2551. doi: 10.1212/WNL.0000000000010670

 

  1. Baldassari S, Ribierre T, Marsan E, et al. Dissecting the genetic basis of focal cortical dysplasia: A large cohort study. Acta Neuropathol. 2019;138(6):885-900. doi: 10.1007/s00401-019-02061-5

 

  1. Gordo G, Tenorio J, Arias P, et al. mTOR mutations in Smith-Kingsmore syndrome: Four additional patients and a review. Clin Genet. 2018;93(4):762-775. doi: 10.1111/cge.13135

 

  1. Bi W, Glass IA, Muzny DM, et al. Whole exome sequencing the first STRADA point mutation in a patient with polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome (PMSE). Am J Med Genet A. 2016;170(8):2181-2185. doi: 10.1002/ajmg.a.37727

 

  1. Dang LT, Glanowska KM, Iffland Ii PH, et al. Multimodal analysis of STRADA function in brain development. Front Cell Neurosci. 2020;14:122. doi: 10.3389/fncel.2020.00122

 

  1. Canaud G, Hammill AM, Adams D, Vikkula M, Keppler- Noreuil KM. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. Orphanet J Rare Dis. 2021;16(1):306. doi: 10.1186/s13023-021-01929-8

 

  1. Rivière JB, Mirzaa GM, O’Roak BJ, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 2012;44(8):934-940. doi: 10.1038/ng.2331

 

  1. Lindhurst MJ, Sapp JC, Teer JK, et al. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med. 2011;365(7):611-619. doi: 10.1056/NEJMoa1104017

 

  1. Hendriks YM, Verhallen JT, Van der Smagt JJ, et al. Bannayan-Riley-Ruvalcaba syndrome: Further delineation of the phenotype and management of PTEN mutation-positive cases. Fam Cancer. 2003;2(2):79-85. doi: 10.1023/a:1025713815924

 

  1. Dragoo DD, Taher A, Wong VK, et al. PTEN hamartoma tumor syndrome/cowden syndrome: Genomics, oncogenesis, and imaging review for associated lesions and malignancy. Cancers (Basel). 2021;13(13):3120. doi: 10.3390/cancers13133120

 

  1. Alfaiz AA, Micale L, Mandriani B, et al. TBC1D7 mutations are associated with intellectual disability, macrocrania, patellar dislocation, and celiac disease. Hum Mutat. 2014;35(4):447-451. doi: 10.1002/humu.22529

 

  1. Baldassari S, Picard F, Verbeek NE, et al. The landscape of epilepsy-related GATOR1 variants. Genet Med. 2019;21(2):398-408. doi: 10.1038/s41436-018-0060-2

 

  1. Zhao W, Xie C, Zhang X, Liu J, Liu J, Xia Z. Advances in the mTOR signaling pathway and its inhibitor rapamycin in epilepsy. Brain Behav. 2023;13(6):e2995. doi: 10.1002/brb3.2995

 

  1. Abs E, Goorden SM, Schreiber J, et al. TORC1-dependent epilepsy caused by acute biallelic Tsc1 deletion in adult mice. Ann Neurol. 2013;74(4):569-579. doi: 10.1002/ana.23943

 

  1. Sosanya NM, Brager DH, Wolfe S, Niere F, Raab-Graham KF. Rapamycin reveals an mTOR-independent repression of Kv1.1 expression during epileptogenesis. Neurobiol Dis. 2015;73:96-105. doi: 10.1016/j.nbd.2014.09.011

 

  1. Hsieh LS, Wen JH, Nguyen LH, et al. Ectopic HCN4 expression drives mTOR-dependent epilepsy in mice. Sci Transl Med. 2020;12(570):eabc1492. doi: 10.1126/scitranslmed.abc1492

 

  1. Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci. 2005;8(12):1727-1734. doi: 10.1038/nn1566

 

  1. Cho CH. Frontier of epilepsy research-mTOR signaling pathway. Exp Mol Med. 2011;43(5):231-274. doi: 10.3858/emm.2011.43.5.032

 

  1. Nguyen LH, Bordey A. Convergent and divergent mechanisms of epileptogenesis in mTORopathies. Front Neuroanat. 2021;15:664695. doi: 10.3389/fnana.2021.664695

 

  1. Meikle L, Pollizzi K, Egnor A, et al. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: Effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci. 2008;28(21):5422-5432. doi: 10.1523/JNEUROSCI.0955-08.2008

 

  1. Zeng LH, Xu L, Gutmann DH, Wong M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol. 2008;63(4):444-453. doi: 10.1002/ana.21331

 

  1. Ljungberg MC, Sunnen CN, Lugo JN, Anderson AE, D’Arcangelo G. Rapamycin suppresses seizures and neuronal hypertrophy in a mouse model of cortical dysplasia. Dis Model Mech. 2009;2(7-8):389-398. doi: 10.1242/dmm.002386

 

  1. Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci. 2009;29(21):6964-6972. doi: 10.1523/JNEUROSCI.0066-09.2009

 

  1. Buckmaster PS, Lew FH. Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J Neurosci. 2011;31(6):2337-2347. doi: 10.1523/JNEUROSCI.4852-10.2011

 

  1. Sliwa A, Plucinska G, Bednarczyk J, Lukasiuk K. Post-treatment with rapamycin does not prevent epileptogenesis in the amygdala stimulation model of temporal lobe epilepsy. Neurosci Lett. 2012;509(2):105-109. doi: 10.1016/j.neulet.2011.12.051

 

  1. Talos DM, Sun H, Zhou X, et al. The interaction between early life epilepsy and autistic-like behavioral consequences: A role for the mammalian target of rapamycin (mTOR) pathway. PLoS One. 2012;7(5):e35885. doi: 10.1371/journal.pone.0035885

 

  1. Guo D, Zeng L, Brody DL, Wong M. Rapamycin attenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury. PLoS One. 2013;8(5):e64078. doi: 10.1371/journal.pone.0064078

 

  1. Hartman AL, Santos P, Dolce A, Hardwick JM. The mTOR inhibitor rapamycin has limited acute anticonvulsant effects in mice. PLoS One. 2012;7(9):e45156. doi: 10.1371/journal.pone.0045156

 

  1. Huang X, McMahon J, Yang J, Shin D, Huang Y. Rapamycin down-regulates KCC2 expression and increases seizure susceptibility to convulsants in immature rats. Neuroscience. 2012;219:33-47. doi: 10.1016/j.neuroscience.2012.05.003

 

  1. U.S. Food and Drug Administration. Rapamune (Sirolimus)- Highlights of Prescribing Information. Silver Spring: U.S. Food and Drug Administration; 2017. Available from: https:// www.accessdata.fda.gov/drugsatfda_docs/label/2017/02108 3s059,021110s076lb.pdf [Last accessed on 2023 Jan 19].

 

  1. U.S. Food and Drug Administration. Everolimus (Zortress). Silver Spring: U.S. Food and Drug Administration; 2010. Available from: https://www.accessdata.fda.gov/drugsatfda_ docs/label/2010/021560s000lbl.pdf [Last accessed on 2023 Jan 19].

 

  1. U.S. Food and Drug Administration. Afinitor (Everolimus) Tablets for Oral Administration-Highlights of Prescribing Information. Silver Spring: U.S. Food and Drug Administration; 2012. Available from: https://www.accessdata.fda.gov/ drugsatfda_docs/label/2012/022334s016lbl.pdf [Last accessed on 2023 Jan 19].

 

  1. U.S. Food and Drug Administration. Everolimus (Afinitor/ Afinitor Disperz). Silver Spring: U.S. Food and Drug Administration; 2018. Available from: https://www. accessdata.fda.gov/drugsatfda_docs/label/2018/022334s040 ,203985s013lbl.pdf [Last accessed on 2023 Jan 19].

 

  1. U.S. Food and Drug Administration. Temsirolimus (Torisel Kit) Injection, for Intravenous Infusion Only-Highlights of Prescribing Information. Silver Spring: U.S. Food and Drug Administration; 2021. Available from: https://www.accessdata. fda.gov/drugsatfda_docs/label/2018/022088s021s023lbl.pdf [Last accessed on 2023 Jan 19].

 

  1. Vézina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28(10):721-726. doi: 10.7164/antibiotics.28.721

 

  1. Oshiro N, Yoshino K, Hidayat S, et al. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells. 2004;9(4):359-366. doi: 10.1111/j.1356-9597.2004.00727.x

 

  1. Zhou H, Luo Y, Huang S. Updates of mTOR inhibitors. Anticancer Agents Med Chem. 2010;10(7):571-581. doi: 10.2174/187152010793498663

 

  1. Mao B, Zhang Q, Ma L, Zhao DS, Zhao P, Yan P. Overview of research into mTOR inhibitors. Molecules. 2022;27(16):5295. doi: 10.3390/molecules27165295

 

  1. Toschi A, Lee E, Xu L, Garcia A, Gadir N, Foster DA. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: Competition with rapamycin. Mol Cell Biol. 2009;29(6):1411-1420. doi: 10.1128/MCB.00782-08

 

  1. Foster DA, Toschi A. Targeting mTOR with rapamycin: One dose does not fit all. Cell Cycle. 2009;8(7):1026-1029. doi: 10.4161/cc.8.7.8044

 

  1. Franz DN, Leonard J, Tudor C, et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol. 2006;59(3):490-498. doi: 10.1002/ana.20784

 

  1. Cardamone M, Flanagan D, Mowat D, Kennedy SE, Chopra M, Lawson JA. Mammalian target of rapamycin inhibitors for intractable epilepsy and subependymal giant cell astrocytomas in tuberous sclerosis complex. J Pediatr. 2014;164(5):1195-1200. doi: 10.1016/j.jpeds.2013.12.053

 

  1. Franz DN, Lawson JA, Yapici Z, et al. Everolimus for treatment-refractory seizures in TSC: Extension of a randomized controlled trial. Neurol Clin Pract. 2018;8(5):412-420. doi: 10.1212/CPJ.0000000000000514

 

  1. Krueger DA, Care MM, Holland K, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med. 2010;363(19):1801-1811. doi: 10.1056/NEJMoa1001671

 

  1. Franz DN, Belousova E, Sparagana S, et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): A multicentre, randomised, placebo-controlled phase 3 trial [published correction appears in Lancet. 2013;381(9861):116]. Lancet. 2013;381(9861):125-132. doi: 10.1016/S0140-6736(12)61134-9

 

  1. Krueger DA, Wilfong AA, Holland-Bouley K, et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol. 2013;74(5):679-687. doi: 10.1002/ana.23960

 

  1. Franz DN, Belousova E, Sparagana S, et al. Everolimus for subependymal giant cell astrocytoma in patients with tuberous sclerosis complex: 2-year open-label extension of the randomised EXIST-1 study. Lancet Oncol. 2014;15(13):1513-1520. doi: 10.1016/S1470-2045(14)70489-9

 

  1. French JA, Lawson JA, Yapici Z, et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): A phase 3, randomised, double-blind, placebo-controlled study. Lancet. 2016;388(10056):2153-2163. doi: 10.1016/S0140-6736(16)31419-2

 

  1. Franz DN, Lawson JA, Yapici Z, et al. Adjunctive everolimus therapy for tuberous sclerosis complex-associated refractory seizures: Results from the postextension phase of EXIST-3. Epilepsia. 2021;62(12):3029-3041. doi: 10.1111/epi.17099

 

  1. Curatolo P, Franz DN, Lawson JA, et al. Adjunctive everolimus for children and adolescents with treatment-refractory seizures associated with tuberous sclerosis complex: Post-hoc analysis of the phase 3 EXIST-3 trial. Lancet Child Adolesc Health. 2018;2(7):495-504. doi: 10.1016/S2352-4642(18)30099-3

 

  1. Taboada RG, Riechelmann RP, Mauro C, et al. Everolimus-induced pneumonitis in patients with neuroendocrine neoplasms: Real-world study on risk factors and outcomes. Oncologist. 2022;27(2):97-103. doi: 10.1093/oncolo/oyab024

 

  1. Franz DN, Krueger DA. mTOR inhibitor therapy as a disease modifying therapy for tuberous sclerosis complex. Am J Med Genet C Semin Med Genet. 2018;178(3):365-373. doi: 10.1002/ajmg.c.31655

 

  1. Baas MC, Gerdes VE, Ten Berge IJ, et al. Treatment with everolimus is associated with a procoagulant state. Thromb Res. 2013;132(2):307-311. doi: 10.1016/j.thromres.2013.07.004

 

  1. Duerr M, Glander P, Diekmann F, Dragun D, Neumayer HH, Budde K. Increased incidence of angioedema with ACE inhibitors in combination with mTOR inhibitors in kidney transplant recipients. Clin J Am Soc Nephrol. 2010;5(4):703-708. doi: 10.2215/CJN.07371009

 

  1. Chandra A, Rao NS, Malhotra KP, Rastogi M, Khurana R. Everolimus-associated acute kidney injury in patients with metastatic breast cancer. Indian J Nephrol. 2017;27(5):406-409. doi: 10.4103/ijn.IJN_304_16

 

  1. Davies M, Saxena A, Kingswood JC. Management of everolimus-associated adverse events in patients with tuberous sclerosis complex: A practical guide. Orphanet J Rare Dis. 2017;12(1):35. doi: 10.1186/s13023-017-0581-9

 

  1. Küper MA, Schölzl N, Traub F, et al. Everolimus interferes with the inflammatory phase of healing in experimental colonic anastomoses. J Surg Res. 2011;167(1):158-165. doi: 10.1016/j.jss.2009.07.013

 

  1. Curatolo P, Bjørnvold M, Dill PE, et al. The role of mTOR inhibitors in the treatment of patients with tuberous sclerosis complex: Evidence-based and expert opinions. Drugs. 2016;76(5):551-565. doi: 10.1007/s40265-016-0552-9

 

  1. Parker WE, Orlova KA, Parker WH, et al. Rapamycin prevents seizures after depletion of STRADA in a rare neurodevelopmental disorder. Sci Transl Med. 2013;5(182):182ra53. doi: 10.1126/scitranslmed.3005271

 

  1. Xu Q, Uliel-Sibony S, Dunham C, et al. mTOR inhibitors as a new therapeutic strategy in treatment resistant epilepsy in hemimegalencephaly: A case report. J Child Neurol. 2019;34(3):132-138. doi: 10.1177/0883073818813238

 

  1. Hadouiri N, Darmency V, Guibaud L, et al. Compassionate use of everolimus for refractory epilepsy in a patient with MTOR mosaic mutation. Eur J Med Genet. 2020;63(11):104036. doi: 10.1016/j.ejmg.2020.104036

 

  1. Leitner DF, Kanshin E, Askenazi M, et al. Pilot study evaluating everolimus molecular mechanisms in tuberous sclerosis complex and focal cortical dysplasia. PLoS One. 2022;17(5):e0268597. doi: 10.1371/journal.pone.0268597

 

  1. Shiraishi H, Teramoto T, Yokoshiki S, et al. Efficacy of sirolimus for epileptic seizures in childhood associated with focal cortical dysplasia type II. Brain Dev. 2023;45(6):343-347. doi: 10.1016/j.braindev.2023.02.005

 

  1. Kato M, Kada A, Shiraishi H, et al. Sirolimus for epileptic seizures associated with focal cortical dysplasia type II. Ann Clin Transl Neurol. 2022;9(2):181-192. doi: 10.1002/acn3.51505

 

  1. Park J, Kim SH, Hahn J, et al. Population pharmacokinetics of everolimus in patients with seizures associated with focal cortical dysplasia. Front Pharmacol. 2023;14:1197549. doi: 10.3389/fphar.2023.1197549

 

  1. Yonsei University. A Study Investigating the Anti-epileptic Efficacy of Afinitor (Everolimus) in Patients with Refractory Seizures Who Have Focal Cortical Dysplasia Type II (FCD II); 2021. Available from: https://clinicaltrials.gov/study/ NCT03198949 [Last accessed on 2024 May 30].

 

  1. Myers KA, Scheffer IE. DEPDC5 as a potential therapeutic target for epilepsy. Expert Opin Ther Targets. 2017;21(6):591-600. doi: 10.1080/14728222.2017.1316715

 

  1. Kearney H, Doyle M, Moloney P. Everolimus as a Precision Medicine for Epilepsy Due to Pathogenic Variants in DEPDC5. American Epilepsy Society; 2020. Available from: https:// aesnet.org/abstractslisting/everolimus-as-a-precision-medicine-for-epilepsy-due-to-pathogenic-variants-in-depdc5 [Last accessed on 2024 Apr 29].

 

  1. Moloney PB, Kearney H, Benson KA, et al. Everolimus precision therapy for the GATOR1-related epilepsies: A case series. Eur J Neurol. 2023;30(10):3341-3346. doi: 10.1111/ene.15975

 

  1. Sánchez-Espino LF, Ivars M, Antoñanzas J, Baselga E. Sturge- Weber syndrome: A review of pathophysiology, genetics, clinical features, and current management approach. Appl Clin Genet. 2023;16:63-81. doi: 10.2147/TACG.S363685

 

  1. Triana Junco PE, Sánchez-Carpintero I, López-Gutiérrez JC. Preventive treatment with oral sirolimus and aspirin in a newborn with severe Sturge-Weber syndrome. Pediatr Dermatol. 2019;36(4):524-527. doi: 10.1111/pde.13841

 

  1. Sun B, Han T, Wang Y, Gao Q, Cui J, Shen W. Sirolimus as a potential treatment for Sturge-weber syndrome. J Craniofac Surg. 2021;32(1):257-260. doi: 10.1097/SCS.0000000000007034

 

  1. Sebold AJ, Day AM, Ewen J, et al. Sirolimus treatment in Sturge-weber syndrome. Pediatr Neurol. 2021;115:29-40. doi: 10.1016/j.pediatrneurol.2020.10.013

 

  1. Kalafut KC, Mitchell SJ, MacArthur MR, Mitchell JR. Short-term ketogenic diet induces a molecular response that is distinct from dietary protein restriction. Front Nutr. 2022;9:839341. doi: 10.3389/fnut.2022.839341

 

  1. Kossoff EH, Thiele EA, Pfeifer HH, McGrogan JR, Freeman JM. Tuberous sclerosis complex and the ketogenic diet. Epilepsia. 2005;46(10):1684-1686. doi: 10.1111/j.1528-1167.2005.00266.x

 

  1. Kossoff EH, Zupec-Kania BA, Auvin S, et al. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the international Ketogenic diet study group. Epilepsia Open. 2018;3(2):175-192. doi: 10.1002/epi4.12225

 

  1. Zhang B, McDaniel SS, Rensing NR, Wong M. Vigabatrin inhibits seizures and mTOR pathway activation in a mouse model of tuberous sclerosis complex. PLoS One. 2013;8(2):e57445. doi: 10.1371/journal.pone.0057445

 

  1. Bombardieri R, Pinci M, Moavero R, Cerminara C, Curatolo P. Early control of seizures improves long-term outcome in children with tuberous sclerosis complex. Eur J Paediatr Neurol. 2010;14(2):146-149. doi: 10.1016/j.ejpn.2009.03.003

 

  1. Jóźwiak S, Kotulska K, Domańska-Pakieła D, et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur J Paediatr Neurol. 2011;15(5):424-431. doi: 10.1016/j.ejpn.2011.03.010

 

  1. Kotulska K, Kwiatkowski DJ, Curatolo P, et al. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP trial. Ann Neurol. 2021;89(2):304-314. doi: 10.1002/ana.25956

 

  1. Bebin EM, Peters JM, Porter BE, et al. Early treatment with vigabatrin does not decrease focal seizures or improve cognition in tuberous sclerosis complex: The PREVeNT trial. Ann Neurol. 2023;95:15-26. doi: 10.1002/ana.26778

 

  1. Krueger D. Stopping TSC Onset and Progression 2B: Sirolimus TSC Epilepsy Prevention Study (TSC-STEPS); 2023. Available from: https://clinicaltrials.gov/study/NCT05104983 [Last accessed on 2024 Apr 29].

 

  1. Kotulska K. Efficacy and Safety of Rapamycin Versus Vigabatrin in the Prevention of Tuberous Sclerosis Complex Symptoms in Infants (ViRap); 2024. Available from: https:// clinicaltrials.gov/study/NCT04987463 [Last accessed on 2024 May 29].

 

  1. Amin S, Lux A, O’Callaghan F. The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth. Br J Clin Pharmacol. 2019;85(1):37-46. doi: 10.1111/bcp.13780

 

  1. Amin S, Mallick AA, Edwards H, et al. The metformin in tuberous sclerosis (MiTS) study: A randomised double-blind placebo-controlled trial. EClinicalMedicine. 2021;32:100715. doi: 10.1016/j.eclinm.2020.100715

 

  1. Kotulska K, Chmielewski D, Borkowska J, et al. Long-term effect of everolimus on epilepsy and growth in children under 3 years of age treated for subependymal giant cell astrocytoma associated with tuberous sclerosis complex. Eur J Paediatr Neurol. 2013;17(5):479-485. doi: 10.1016/j.ejpn.2013.03.002

 

  1. Wiegand G, May TW, Ostertag P, Boor R, Stephani U, Franz DN. Everolimus in tuberous sclerosis patients with intractable epilepsy: A treatment option? Eur J Paediatr Neurol. 2013;17(6):631-638. doi: 10.1016/j.ejpn.2013.06.002

 

  1. Krueger DA, Wilfong AA, Mays M, et al. Long-term treatment of epilepsy with everolimus in tuberous sclerosis. Neurology. 2016;87(23):2408-2415. doi: 10.1212/WNL.0000000000003400

 

  1. Samueli S, Abraham K, Dressler A, et al. Efficacy and safety of Everolimus in children with TSC-associated epilepsy-pilot data from an open single-center prospective study. Orphanet J Rare Dis. 2016;11(1):145. doi: 10.1186/s13023-016-0530-z

 

  1. Mizuguchi M, Ikeda H, Kagitani-Shimono K, et al. Everolimus for epilepsy and autism spectrum disorder in tuberous sclerosis complex: EXIST-3 substudy in Japan. Brain Dev. 2019;41(1):1-10. doi: 10.1016/j.braindev.2018.07.003

 

  1. Stockinger J, Strzelczyk A, Nemecek A, et al. Everolimus in adult tuberous sclerosis complex patients with epilepsy: Too late for success? A retrospective study. Epilepsia. 2021;62(3):785-794. doi: 10.1111/epi.16829
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing