AccScience Publishing / AIH / Online First / DOI: 10.36922/AIH025280060
REVIEW ARTICLE

An artificial intelligence-assisted comprehensive clinical decision-making guide for total knee arthroplasty

Puja Ravi1 Rahul Kumar2* Kyle Sporn3 Nasif Zaman4 Alireza Tavakkoli4
Show Less
1 Department of Biology, University of Michigan, Ann Arbor, Michigan, United States of America
2 Department of Medicine, T.H. Chan School of Medicine, University of Massachusetts, Worcester, Massachusetts, United States of America
3 Department of Medicine, SUNY Upstate Medical University, Norton College of Medicine, Syracuse, New York, United States of America
4 Human–Machine Perception Laboratory, Department of Computer Science and Engineering, College of Engineering, University of Nevada, Reno, Nevada, United States of America
Received: 8 July 2025 | Revised: 30 August 2025 | Accepted: 11 September 2025 | Published online: 14 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

With the demand for total knee arthroplasty (TKA) projected to reach 3.48 million surgeries annually by 2030, leveraging artificial intelligence (AI) is crucial for optimizing outcomes and healthcare efficiency. Hence, we present a systematic approach for integrating AI and machine learning approaches into clinical decision-making for TKAand other orthopedic interventions. This guide outlines evidence-based protocols for various scenarios, from comprehensive pre-operative assessment and risk stratification using natural language processing and biomarker analysis, to intraoperative decision support with computer vision for optimal component positioning. It also covers the detection of early osteoarthritis in athletes through molecular biomarkers and advanced imaging, as well as systematic post-operative monitoring for complication prevention. This guide encompasses chronic pain management, population health screening for early osteoarthritis, acute knee injury assessment in the emergency room, and complex revision TKA planning. Essential technological integrations include ResNet for imaging analysis, Claude 3 for complex reasoning, OpenCV/MediaPipe for biomechanical evaluation, and GPT-4 Turbo for documentation. For the safe, ethical, and efficient application of AI—and ultimately for the improvement of individualized orthopedic care—this framework places a strong emphasis on thorough clinical validation, regulatory compliance, bias mitigation, and economic considerations.

Graphical abstract
Keywords
Total knee arthroplasty
Artificial intelligence
Machine learning
Clinical decision-making
Orthopedic interventions
Risk stratification
Post-operative monitoring
Personalized orthopedic care
Funding
None.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Pressman SM, Borna S, Gomez Cabello CA, Haider SA, Haider CR, Forte AJ. Clinical and surgical applications of large language models: A systematic review. J Clin Med. 2024;13(11):3041. doi: 10.3390/jcm13113041

 

  1. Chatterjee S, Bhattacharya M, Pal S, Lee SS, Chakraborty C. ChatGPT and large language models in orthopedics: From education and surgery to research. J Exp Orthop. 2023;10(1):128. doi: 10.1186/s40634-023-00700-1

 

  1. Clark P, Kim J, Aphinyanaphongs Y. Marketing and us food and drug administration clearance of artificial intelligence and machine learning enabled software in and as medical devices: A systematic review. JAMA Netw Open. 2023;6(7):e2321792. doi: 10.1001/jamanetworkopen.2023.21792

 

  1. Chouffani El Fassi S, Abdullah A, Fang Y, et al. Not all AI health tools with regulatory authorization are clinically validated. Nat Med. 2024;30(10):2718-2720. doi: 10.1038/s41591-024-03203-3

 

  1. Amorim-Barbosa T, Pereira C, Catelas D, et al. Risk factors for cage subsidence and clinical outcomes after transforaminal and posterior lumbar interbody fusion. Eur J Orthop Surg Traumatol. 2022;32(7):1291-1299. doi: 10.1007/s00590-021-03103-z

 

  1. Aydin S, Karabacak M, Vlachos V, Margetis K. Large language models in patient education: A scoping review of applications in medicine. Front Med (Lausanne). 2024;11:1477898. doi: 10.3389/fmed.2024.1477898

 

  1. Janssen BV, Kazemier G, Besselink MG. The use of ChatGPT and other large language models in surgical science. BJS Open. 2023;7(2):zrad032. doi: 10.1093/bjsopen/zrad032

 

  1. Kung JE, Marshall C, Gauthier C, Gonzalez TA, Jackson JB 3rd. Evaluating ChatGPT performance on the orthopaedic in-training examination. JB JS Open Access. 2023;8(3):e23.00056. doi: 10.2106/JBJS.OA.23.00056

 

  1. Aliferis C, Simon G, editors. Overfitting, underfitting and general model overconfidence and under-performance pitfalls and best practices in machine learning and AI. In: Artificial Intelligence and Machine Learning in Health Care and Medical Sciences: Best Practices and Pitfalls. Cham (CH): Springer; 2024. p. 477-524.

 

  1. Krantz T, Jonker A, McGrath A. Shadow AI; 2024. Available from: https://www.ibm.com/think/topics/shadow-ai [Last accessed on 2025 Jun 01].

 

  1. U.S. Food and Drug Administration. Software as a Medical Device (SaMD). FDA; 2018. Available from: https:// www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd [Last accessed on 2025 Jun 01].

 

  1. Elhaddad M, Hamam S. AI-driven clinical decision support systems: An ongoing pursuit of potential. Cureus. 2024;16(4):e57728. doi: 10.7759/cureus.57728

 

  1. Price WN 2nd, Gerke S, Cohen IG. Liability for use of artificial intelligence in medicine. In: Solaiman B, Cohen IG, editors. Research Handbook on Health, AI and the Law. Cheltenham, UK: Edward Elgar Publishing Ltd.; 2024. p. 150-166.

 

  1. Liu Y, Ko CY, Hall BL, Cohen ME. American College of Surgeons NSQIP Risk calculator accuracy using a machine learning algorithm compared with regression. J Am Coll Surg. 2023;236(5):1024-1030. doi: 10.1097/XCS.0000000000000556

 

  1. McDermott KW, Liang L. Overview of major ambulatory surgeries performed in hospital-owned facilities, 2019. In: Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD): Agency for Healthcare Research and Quality (US); 2021.

 

  1. Daltroy LH, Cats-Baril WL, Katz JN, Fossel AH, Liang MH. The North American spine society lumbar spine outcome assessment Instrument: reliability and validity tests. Spine (Phila Pa 1976). 1996;21(6):741-749. doi: 10.1097/00007632-199603150-00017

 

  1. Epstein NE. Lower complication and reoperation rates for laminectomy rather than MI TLIF/other fusions for degenerative lumbar disease/spondylolisthesis: A review. Surg Neurol Int. 2018;9:55. doi: 10.4103/sni.sni_26_18

 

  1. U.S. Food and Drug Administration. Step 3: Pathway to Approval. FDA; 2018. Available from: https://www.fda. gov/patients/device-development-process/step-3-pathway-approval [Last accessed on 2025 Jun 01].

 

  1. Tormenti MJ, Maserati MB, Bonfield CM, et al. Perioperative surgical complications of transforaminal lumbar interbody fusion: A single-center experience. J Neurosurg Spine. 2012;16(1):44-50. doi: 10.3171/2011.9.SPINE11373

 

  1. Kurra S, Lavelle WF, Silverstein MP, Savage JW, Orr RD. Long-term outcomes of transforaminal lumbar interbody fusion in patients with spinal stenosis and degenerative scoliosis. Spine J. 2018;18(6):1014-1021. doi: 10.1016/j.spinee.2017.10.063

 

  1. Mehren C, Ostendorff N, Schmeiser G, Papavero L, Kothe R. Do TLIF and PLIF techniques differ in perioperative complications? - Comparison of complications rates of two high volume centers. Global Spine J. 2025;15(1):84-93. doi: 10.1177/21925682241248095

 

  1. Huang J, Rabin EE, Stricsek GP, Swong KN. Outcomes and complications of minimally invasive transforaminal lumbar interbody fusion in the elderly: A systematic review and meta-analysis. J Neurosurg Spine. 2021;36(5):741-752. doi: 10.3171/2021.7.SPINE21829

 

  1. Poppenborg P, Liljenqvist U, Gosheger G, et al. Complications in TLIF spondylodesis-do they influence the outcome for patients? A prospective two-center study. Eur Spine J. 2021;30(5):1320-1328. doi: 10.1007/s00586-020-06689-w

 

  1. Patel J, Kundnani V, Raut S, Meena M, Ruparel S. Perioperative complications of minimally invasive transforaminal lumbar interbody fusion (MI-TLIF): 10 years of experience with MI-TLIF. Global Spine J. 2021;11(5):733-739. doi: 10.1177/2192568220941460

 

  1. Chen H, Zheng G, Bian Z, et al. Comparison of minimally invasive transforaminal lumbar interbody fusion and endoscopic lumbar interbody fusion for lumbar degenerative diseases: A retrospective observational study. J Orthop Surg Res. 2023;18(1):389. doi: 10.1186/s13018-023-03875-6

 

  1. Weininger S, Jaffe MB, Robkin M, Rausch T, Arney D, Goldman JM. The importance of state and context in safe interoperable medical systems. IEEE J Transl Eng Health Med. 2016;4:2800110. doi: 10.1109/JTEHM.2016.2596283

 

  1. Zhang G, Pan L, Zhang X, et al. Feasibility and safety evaluation of remote robotic surgery under high latency conditions based on satellite communication. Intell Surg. 2025;8:45-52. doi: 10.1016/j.isurg.2025.05.001

 

  1. Dohler M, Saikali S, Gamal A, Moschovas MC, Patel V. The crucial role of 5G, 6G, and fiber in robotic telesurgery. J Robot Surg. 2024;19(1):4. doi: 10.1007/s11701-024-02164-6

 

  1. Khan IS, Huang E, Maeder-York W, et al. Racial disparities in outcomes after spine surgery: A systematic review and meta-analysis. World Neurosurg. 2022;157:e232-e244. doi: 10.1016/j.wneu.2021.09.140

 

  1. Mo K, Ikwuezunma I, Mun F, et al. Racial disparities in spine surgery: A systematic review. Clin Spine Surg. 2023;36(6):243-252. doi: 10.1097/BSD.0000000000001383

 

  1. Qureshi S. TLIF Surgery: Transforaminal Lumbar Interbody Fusion. Hospital for Special Surgery; 2023. Available from: https://www.hss.edu/health-library/conditions-and-treatments/tlif-surgery [Last accessed on 2025 Jun 01].

 

  1. D’Souza M, Gendreau J, Feng A, Kim LH, Ho AL, Veeravagu A. Robotic-assisted spine surgery: History, efficacy, cost, and future trends. Robot Surg. 2019;6:9-23. doi: 10.2147/RSRR.S190720

 

  1. Vardiman AB, Wallace DJ, Crawford NR, Riggleman JR, Ahrendtsen LA, Ledonio CG. Pedicle screw accuracy in clinical utilization of minimally invasive navigated robot-assisted spine surgery. J Robot Surg. 2020;14(3):409-413. doi: 10.1007/s11701-019-00994-3

 

  1. Shi L, Wang H, Shea GK. The application of artificial intelligence in spine surgery: A scoping review. J Am Acad Orthop Surg Glob Res Rev. 2025;9(4):e24.00405. doi: 10.5435/JAAOSGlobal-D-24-00405

 

  1. Khan MM, Chaurasia B. Artificial intelligence and its use in spine surgery and preparation of predictive models: A systematic review. Ann Med Surg (Lond). 2025;87(1):171-176. doi: 10.1097/MS9.0000000000002782

 

  1. Ibrahim MT, Milliron E, Yu E. Artificial intelligence in spinal imaging - a narrative review. Artif Intell Surg. 2025;5(1):139-149. doi: 10.20517/ais.2024.41

 

  1. Copay AG, Glassman SD, Subach BR, Berven S, Schuler TC, Carreon LY. Minimum clinically important difference in lumbar spine surgery patients: A choice of methods using the oswestry disability index, medical outcomes study questionnaire short form 36, and pain scales. Spine J. 2008;8(6):968-974. doi: 10.1016/j.spinee.2007.11.006

 

  1. Gao Z, Zhang X, Xu Z, et al. Mazor X robot-assisted upper and lower cervical pedicle screw fixation: A case report and literature review. BMC Geriatr. 2024;24(1):916. doi: 10.1186/s12877-024-05447-7

 

  1. Lee NJ, Zuckerman SL, Buchanan IA, et al. Is there a difference in screw accuracy, robot time per screw, robot abandonment, and radiation exposure between the Mazor X and the renaissance? A propensity-matched analysis of 1179 robot-assisted screws. Global Spine J. 2023;13(5):1286-1292. doi: 10.1177/21925682211029867

 

  1. Wandvik C, Greil ME, Colby S, Gautam D, Mazur MD. Limitations of current robot-assisted pedicle screw insertion systems. Neurosurg Focus. 2024;57(6):E14. doi: 10.3171/2024.9.FOCUS24545

 

  1. Lee NJ, Leung E, Buchanan IA, et al. A multicenter study of the 5-year trends in robot-assisted spine surgery outcomes and complications. J Spine Surg. 2022;8(1):9-20. doi: 10.21037/jss-21-102

 

  1. Khalifeh K, Brown NJ, Pennington Z, Pham MH. Spinal robotics in adult spinal deformity surgery: A systematic review. Neurospine. 2024;21(1):20-29. doi: 10.14245/ns.2347138.569

 

  1. Schwab F, Ungar B, Blondel B, et al. Scoliosis research society-schwab adult spinal deformity classification: A validation study. Spine (Phila Pa 1976). 2012;37(12):1077-1082. doi: 10.1097/BRS.0b013e31823e15e2

 

  1. Asghar J, Patel AI, Osorio JA, et al. Mismatch between pelvic incidence and lumbar lordosis after personalized interbody fusion: The importance of preoperative planning and alignment in degenerative spine diseases. Int J Spine Surg. 2024;18(S1):S24-S31. doi: 10.14444/8638

 

  1. American Medical Association. Code of Medical Ethics Opinion 9.2.2; 2023. Available from: https://code-medical-ethics.ama-assn.org [Last accessed on 2025 Jun 01].

 

  1. Brooke J. SUS -- a Quick and Dirty Usability Scale. ResearchGate; 1996. p. 189-194. Available from: https://www.researchgate.net/publication/319394819_SUS_--_a_quick_ and_dirty_usability_scale#fullTextFileContent [Last accessed on 2025 Jun 01].

 

  1. U.S. Department of Health and Human Services. HIPAA Privacy Rule. 45 CFR Part 164. Available from: https://www. ecfr.gov/current/title-45/subtitle-A/subchapter-C/part- 164?toc=1 [Last accessed on 2025 Jun 01].

 

  1. European Union. Regulation (EU) 2016/679 of The European Parliament and of the Council; 2016. Available from: https:// eur-lex.europa.eu/eli/reg/2016/679/oj/eng [Last accessed on 2025 Jun 01].

 

  1. Ross R, Pillitteri V, Dempsey K, Riddle M, Guissanie G. Protecting Controlled Unclassified Information in Nonfederal Systems and Organizations NIST SP 800-171; 2021. Available from: https://csrc.nist.gov/pubs/sp/800/171/r2/upd1/final [Last accessed on 2025 Jun 01].

 

  1. Consumer Attorneys of California. California Medical Injury Compensation Reform Act (MICRA). Available from: https:// www.caoc.org/?pg=issmicra [Last accessed on 2025 Jun 01].

 

  1. California Health & Safety Code ’24173. Available from: https://oag.ca.gov/sites/all/files/agweb/pdfs/research/ safety_24173.pdf [Last accessed on 2025 Jun 01].

 

  1. WHO. Ethics and Governance of Artificial Intelligence for Health; 2021. Available from: https://www.who.int/ publications/i/item/9789240029200 [Last accessed on 2025 Jun 01].

 

  1. Lekadir K, Frangi AF, Porras AR, et al. FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare. BMJ. 2025;388:e081554. doi: 10.1136/bmj-2024-081554
Share
Back to top
Artificial Intelligence in Health, Electronic ISSN: 3029-2387 Print ISSN: 3041-0894, Published by AccScience Publishing