Mapping medical specialty vulnerability to superintelligent AI: A competency-guided generative AI foresight framework

The evolution of artificial intelligence (AI) raises questions about the future roles of physicians. This study aimed to propose an exploratory foresight model for stratifying risk across medical specialties, using board-defined competencies and generative AI (genAI) evaluation as the assessment tool. We developed a heuristic framework, the Machine automat-ability, Diagnostic Ambiguity, Legal/ethical complexity, Interpersonal intensity, Knowledge codifiability, Evidence in data, Difficulty of procedures (MALIKED) score, to capture dimensions of displacement vulnerability for 27 board-recognized specialties. To minimize individual bias, ratings were generated by three genAI models (ChatGPT, DeepSeek, and Gemini). Data-centric fields—Clinical Pathology (30.3/35), Anatomic/Clinical Pathology (29.3/35), and both Anatomic Pathology and Radiology (28.0/35 each)—clustered in the highest-vulnerability tier. In contrast, procedurally intensive or patient-interaction-heavy specialties—including Psychiatry (11.0/35), Neurosurgery (11.7/35), Obstetrics/Gynecology (13.0/35), General Surgery (13.0/35), Pediatrics (14.3/35), Emergency Medicine (14.3/35), and Family Medicine (14.3/35)—formed the lowest-vulnerability tier. Between these extremes, mixed-mode specialties, such as Internal Medicine (17.0/35) and Neurology (17.0/35), along with Ophthalmology (19.3/35) and Anesthesiology (21.3/35), occupied an intermediate zone. Displacement risk was driven by knowledge codifiability and data-centricity, while procedural complexity and interpersonal interaction intensity exerted protective effects. This exploratory foresight framework suggests that the risk of displacement by advanced or potentially superintelligent AI is unevenly distributed across medical specialties. While data-driven fields appear most exposed, no specialty is categorically insulated, as multimodal AI and robotics continue to evolve. The MALIKED framework is not predictive but intended as a structured lens for debate, education, and workforce planning regarding the long-term implications of AI in medicine.

- Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc J. 2021;8(2):e188-e194. doi: 10.7861/fhj.2021-0095
- Maleki Varnosfaderani S, Forouzanfar M. The role of AI in hospitals and clinics: Transforming healthcare in the 21st century. Bioengineering (Basel). 2024;11(4):337. doi: 10.3390/bioengineering11040337
- Alrassi J, Katsufrakis PJ, Chandran L. Technology can augment, but not replace, critical human skills needed for patient care. Acad Med. 2021;96(1):37-43. doi: 10.1097/ACM.0000000000003733
- Kim J, Chen ML, Rezaei SJ, et al. Artificial intelligence tools in supporting healthcare professionals for tailored patient care. NPJ Digit Med. 2025;8(1):210. doi: 10.1038/s41746-025-01604-3
- Sallam M. ChatGPT utility in healthcare education, research, and practice: Systematic review on the promising perspectives and valid concerns. Healthcare (Basel). 2023;11(6):887. doi: 10.3390/healthcare11060887
- Patel SB, Lam K. ChatGPT: The future of discharge summaries? Lancet Digit Health. 2023;5(3):e107-e108. doi: 10.1016/s2589-7500(23)00021-3
- Reddy S. Generative AI in healthcare: An implementation science informed translational path on application, integration and governance. Implement Sci. 2024;19(1):27. doi: 10.1186/s13012-024-01357-9
- Rabbani SA, El-Tanani M, Sharma S, et al. Generative artificial intelligence in healthcare: Applications, implementation challenges, and future directions. BioMedInformatics. 2025;5(3):37. doi: 10.3390/biomedinformatics5030037
- Mennella C, Maniscalco U, De Pietro G, Esposito M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon. 2024;10(4):e26297. doi: 10.1016/j.heliyon.2024.e26297
- Sallam M, Beaini C, Mijwil MM, Sallam M. Microsoft AI diagnostic orchestrator (MAI-DxO) promises cost savings in diagnosis - but at what cost to the medical profession? Perspective. J Stud Med Sci. 2025;1(1):1515. doi: 10.20849/jsms.v1i1.1515
- Sallam M, Beaini C, Mijwil MM, Sallam M. AI at the crossroads of cost and care: A SWOT analysis of microsoft AI diagnostic orchestrator (MAI-DxO) in clinical diagnosis. J Clin Med Res. 2025;2(1):1-14. doi: 10.37155/3060-8708-02
- Nori H, Daswani M, Kelly C, et al. Sequential diagnosis with language models. arXiv. preprint; 2025. doi: 10.48550/arXiv.2506.22405
- Xiao X, Liu J, Wang Z, et al. Robot learning in the era of foundation models: A survey. Neurocomputing. 2025;638:129963. doi: 10.1016/j.neucom.2025.129963
- Wang J, Shi E, Hu H, et al. Large language models for robotics: Opportunities, challenges, and perspectives. J Automat Intell. 2025;4(1):52-64. doi: 10.1016/j.jai.2024.12.003
- Ye J, Tang H. Multimodal large language models for medicine: A comprehensive survey. arXiv. Preprint; 2025. doi: 10.48550/arXiv.2504.21051
- Kim K, Windle J, Christian M, et al. Framework for integrating large language models with a robotic health attendant for adaptive task execution in patient care. Appl Sci. 2024;14(21):9922. doi: 10.3390/app14219922
- Clusmann J, Kolbinger FR, Muti HS, et al. The future landscape of large language models in medicine. Commun Med (Lond). 2023;3(1):141. doi: 10.1038/s43856-023-00370-1
- Al Attrach R, Moreira P, Fani R, Umeton R, Celi L. Conversational LLMs Simplify Secure Clinical Data Access, Understanding, and Analysis. arXiv. Preprint; 2025. doi: 10.48550/arXiv.2507.01053
- Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge. Nature. 2023;620(7972):172-180. doi: 10.1038/s41586-023-06291-2
- Bicknell BT, Butler D, Whalen S, et al. ChatGPT-4 omni performance in USMLE disciplines and clinical skills: Comparative analysis. JMIR Med Educ. 2024;10:e63430. doi: 10.2196/63430
- Killock D. AI outperforms radiologists in mammographic screening. Nat Rev Clin Oncol. 2020;17(3):134-134. doi: 10.1038/s41571-020-0329-7
- Caldas FAA, Caldas HC, Henrique T, et al. Evaluating the performance of artificial intelligence and radiologists accuracy in breast cancer detection in screening mammography across breast densities. Eur J Radiol Artif Intell. 2025;2:100013. doi: 10.1016/j.ejrai.2025.100013
- Pham TC, Luong CM, Hoang VD, Doucet A. AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function. Sci Rep. 2021;11(1):17485. doi: 10.1038/s41598-021-96707-8
- Salinas MP, Sepúlveda J, Hidalgo L, et al. A systematic review and meta-analysis of artificial intelligence versus clinicians for skin cancer diagnosis. NPJ Digit Med. 2024;7(1):125. doi: 10.1038/s41746-024-01103-x
- Acemoglu D, Restrepo P. Automation and new tasks: How technology displaces and reinstates labor. J Econ Perspect. 2019;33:3-30. doi: 10.1257/jep.33.2.3
- Qiao D, Rui H, Xiong Q. AI and Jobs: Has the inflection point arrived? Evidence from an Online Labor Platform. SSRN Electronic Journal. Preprint; 2023. doi: 10.2139/ssrn.4656716
- Liu J, Xu X, Li Y, Tan Y. “Generate: The Future of Work through AI: Empirical Evidence from Online Labor Markets. SSRN Electronic Journal. Preprint; 2023. doi: 10.2139/ssrn.4529739
- Demirci O, Hannane J, Zhu X. Who is AI replacing? The impact of generative AI on online freelancing platforms. Manag Sci. 2025;71:8097-8108. doi: 10.1287/mnsc.2024.05420
- Teutloff O, Einsiedler J, Kässi O, Braesemann F, Mishkin P, del Rio-Chanona RM. Winners and losers of generative AI: Early evidence of shifts in freelancer demand. J Econ Behav Organ. 2025;235:106845. doi: 10.1016/j.jebo.2024.106845
- Zelesniack E, Oubaid V, Harendza S. Defining competence profiles of different medical specialties with the requirement-tracking questionnaire - a pilot study to provide a framework for medial students’ choice of postgraduate training. BMC Med Educ. 2021;21(1):46. doi: 10.1186/s12909-020-02479-6
- Mullola S, Hakulinen C, Presseau J, et al. Personality traits and career choices among physicians in Finland: Employment sector, clinical patient contact, specialty and change of specialty. BMC Med Educ. 2018;18(1):52. doi: 10.1186/s12909-018-1155-9
- Mirvis DM. Choosing a medical specialty: The difference between what students want and what society needs. Israel J Health Policy Res. 2013;2(1):18. doi: 10.1186/2045-4015-2-18
- Nensa F. The future of radiology: The path towards multimodal AI and superdiagnostics. Eur J Radiol Artif Intell. 2025;2:100014. doi: 10.1016/j.ejrai.2025.100014
- Gaffney H, Mirza KM. Pathology in the artificial intelligence era: Guiding innovation and implementation to preserve human insight. Acad Pathol. 2025;12(1):100166. doi: 10.1016/j.acpath.2025.100166
- Masoumian Hosseini M, Masoumian Hosseini ST, Qayumi K, Ahmady S, Koohestani HR. The aspects of running artificial intelligence in emergency care; a scoping review. Arch Acad Emerg Med. 2023;11(1):e38. doi: 10.22037/aaem.v11i1.1974
- Ahuja AS. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ. 2019;7:e7702. doi: 10.7717/peerj.7702
- Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23(1):689. doi: 10.1186/s12909-023-04698-z
- Fogo AB, Kronbichler A, Bajema IM. AI’s threat to the medical profession. JAMA. 2024;331(6):471-472. doi: 10.1001/jama.2024.0018
- Rony MKK, Parvin MR, Wahiduzzaman M, Debnath M, Bala SD, Kayesh I. “I wonder if my years of training and expertise will be devalued by machines”: Concerns about the replacement of medical professionals by artificial intelligence. SAGE Open Nurs. 2024;10:23779608241245220. doi: 10.1177/23779608241245220
- Karches KE. Against the iDoctor: Why artificial intelligence should not replace physician judgment. Theor Med Bioeth. 2018;39(2):91-110. doi: 10.1007/s11017-018-9442-3
- Shonhe L, Min Q. Mitigating AI-induced professional identity threat and fostering adoption in the workplace. AI Soc. 2025;40(5):4079-4092. doi: 10.1007/s00146-024-02170-0
- Sarwar S, Dent A, Faust K, et al. Physician perspectives on integration of artificial intelligence into diagnostic pathology. NPJ Digital Med. 2019;2(1):28. doi: 10.1038/s41746-019-0106-0
- Sallam M, Al-Mahzoum K, Almutairi YM, et al. Anxiety among medical students regarding generative artificial intelligence models: A pilot descriptive study. Int Med Educ. 2024;3(4):406-425. doi: 10.3390/ime3040031
- Sallam M, Al-Mahzoum K, Alaraji H, et al. Apprehension toward generative artificial intelligence in healthcare: A multinational study among health sciences students. Original Research. Front Educ. 2025;10:1542769. doi: 10.3389/feduc.2025.1542769
- The American Board of Medical Specialties (ABMS). Standards for Initial Certification. 14 August; 2025. Available from: https://www.abms.org/board-certification/board-certification-standards/standards-for-initial-certification [Last accessed on 2025 Aug 14].
- Andolsek KM, Jones MD Jr., Ibrahim H, Edgar L. Introduction to the milestones 2.0: Assessment, implementation, and clinical competency committees supplement. J Grad Med Educ. 2021;13(2 Suppl):1-4. doi: 10.4300/jgme-d-21-00298.1
- Edgar L, Roberts S, Holmboe E. Milestones 2.0: A step forward. J Grad Med Educ. 2018;10(3):367-369. doi: 10.4300/jgme-d-18-00372.1
- Day SH, Nasca TJ. ACGME international: The first 10 years. J Grad Med Educ. 2019;11(4 Suppl):5-9. doi: 10.4300/jgme-d-19-00432
- Ekpenyong A, Padmore JS, Hauer KE. The purpose, structure, and process of clinical competency committees: Guidance for members and program directors. J Grad Med Educ. 2021;13(2 Suppl):45-50. doi: 10.4300/jgme-d-20-00841.1
- Potts JR 3rd. Assessment of competence: The accreditation council for graduate medical education/residency review committee perspective. Surg Clin North Am. 2016;96(1):15-24. doi: 10.1016/j.suc.2015.08.008
- Filippi E, Bannò M, Trento S. Automation technologies and their impact on employment: A review, synthesis and future research agenda. Technol Forecast Soc Change. 2023;191:122448. doi: 10.1016/j.techfore.2023.122448
- Cattaneo MA, Gschwendt C, Wolter SC. How scary is the risk of automation? Evidence from a large-scale survey experiment. J Econ Behav Organ. 2025;235:107034. doi: 10.1016/j.jebo.2025.107034
- Khanna NN, Maindarkar MA, Viswanathan V, et al. Economics of artificial intelligence in healthcare: Diagnosis vs. treatment. Healthcare (Basel). 2022;10(12):2493. doi: 10.3390/healthcare10122493
- Hendrix N, Veenstra DL, Cheng M, Anderson NC, Verguet S. Assessing the economic value of clinical artificial intelligence: Challenges and opportunities. Value Health. 2022;25(3):331-339. doi: 10.1016/j.jval.2021.08.015
- The Accreditation Council for Graduate Medical Education (ACGME). ACGME Home: Specialties. ACGME; 2025. Available from: https://www.acgme.org/specialties [Last accessed on 2025 Aug 14].
- Englander R, Cameron T, Ballard AJ, Dodge J, Bull J, Aschenbrener CA. Toward a common taxonomy of competency domains for the health professions and competencies for physicians. Acad Med. 2013;88(8):1088-1094. doi: 10.1097/ACM.0b013e31829a3b2b
- General Medical Council. GMC Approved Postgraduate Curricula; 2025. Available from: https://www.gmc-uk.org/education/standards-guidance-and-curricula/curricula [Last accessed on 2025 Aug 18].
- European Union of Medical Specialists. Structure of the UEMS: Specialties Sections (and their Divisions); 2025. Available from: https://www.uems.eu/our-structure#Specialties-sections-%26-divisions [Last accessed on 2025 Aug 18].
- The Medical Board of Australia. List of Specialties, Fields of Specialty Practice and Related Specialist Title; 2025. Available from: https://www.medicalboard.gov.au/Registration/ Types/Specialist-Registration.aspx [Last accessed on 2025 Aug 18].
- Kupis R, Michalik B, Polak M, Kulbat M, Domagała A. Specialty choices among new generation of doctors - insights from a Polish survey study. Sci Rep. 2024;14(1):27855. doi: 10.1038/s41598-024-79079-7
- Borges NJ, Richard GV. Using the delphi method to classify medical specialties. Career Dev Q. 2018;66(1):85-90. doi: 10.1002/cdq.12124
- Heath JK, Dine CJ, Burke AE, Andolsek KM. Teaching the teachers with milestones: Using the ACGME milestones model for professional development. J Grad Med Educ. 2021;13(2 Suppl):124-126. doi: 10.4300/jgme-d-20-00891.1
- Porcel JM, Casademont J, Conthe P, Pinilla B, Pujol R, García-Alegría J. Core competencies in Internal Medicine. Eur J Intern Med. 2012;23(4):338-341. doi: 10.1016/j.ejim.2012.03.003
- Tapia NM, Milewicz A, Whitney SE, Liang MK, Braxton CC. Identifying and eliminating deficiencies in the general surgery resident core competency curriculum. JAMA Surg. 2014;149(6):514-518. doi: 10.1001/jamasurg.2013.4406
- Relyea-Chew A, Talner LB. A dedicated general competencies curriculum for radiology residents development and implementation. Acad Radiol. 2011;18(5):650-654. doi: 10.1016/j.acra.2010.12.016
- Popov TA, Ledford D, Lockey R, et al. Maintenance of skills, competencies, and performance in allergy and clinical immunology: Time to lay the foundation for a universal approach. World Allergy Organ J. 2012;5(4):45-51. doi: 10.1097/WOX.0b013e31825546b4
- Parker NW. Core clinical competencies in anesthesiology: A case based approach. Anesth Analg. 2011;112(6):1515. doi: 10.1213/ANE.0b013e318207b37f
- Zahid A, Rajan V, Hong J, Young CJ. Surgical competencies required in newly commencing colorectal surgeons: An educational and training spectrum. Med Sci Educ. 2020;30(3):1043-1047. doi: 10.1007/s40670-020-01005-z
- Kong Kam Wa I, Maule Y, Guerisse F. Key competencies in emergency medicine training in Belgium: A new criteria-based evaluation strategy. Cureus. 2024;16(10):e70772. doi: 10.7759/cureus.70772
- Massingham LJ, Nuñez S, Bernstein JA, et al. 2022 Association of Professors of Human and Medical Genetics (APHMG) consensus-based update of the core competencies for undergraduate medical education in genetics and genomics. Genet Med. 2022;24(10):2167-2179. doi: 10.1016/j.gim.2022.07.014
- Giannotta S. Gaining competence in neurological surgery: Is it enough? In: Agarwal N, Reddy V, editors. Surviving Neurosurgery: Vignettes of Resilience. Berlin: Springer International Publishing; 2021. p. 263-266.
- Jellinger K. Core competencies for neurologists. what clinicans need to know. Eur J Neurol. 2004;11:287-287. doi: 10.1046/j.1468-1331.2003.00760.x
- Arevalo-Perez J, Paris M, Graham MM, Osborne JR. A perspective of the future of nuclear medicine training and certification. Semin Nuclear Med. 2016;46(1):88-96. doi: 10.1053/j.semnuclmed.2015.10.003
- Hammond I, Karthigasu K. Training, assessment and competency in gynaecologic surgery. Best Pract Res Clin Obstet Gynaecol. 2006;20(1):173-187. doi: 10.1016/j.bpobgyn.2005.09.006
- Wentzell DD, Chung H, Hanson C, Gooi P. Competency-based medical education in ophthalmology residency training: A review. Can J Ophthalmol. 2020;55(1):12-19. doi: 10.1016/j.jcjo.2019.07.004
- Kellam J, Archibald D, Barber J, et al. The core competencies for general orthopaedic surgeons. J Bone Joint Surg. 2017;99:175-181. doi: 10.2106/JBJS.16.00761
- Wiet GJ, Stredney D, Wan D. Training and simulation in otolaryngology. Otolaryngol Clin North Am. 2011;44(6):1333-1350, viii-ix. doi: 10.1016/j.otc.2011.08.009
- Munson L, Craig LE, Miller MA, et al. Elements of good training in anatomic pathology. Vet Pathol. 2010;47(5):995-1002. doi: 10.1177/0300985810377725
- Smith BR, Wells A, Alexander CB, et al. Curriculum content and evaluation of resident competency in clinical pathology (laboratory medicine): A proposal. Am J Clin Pathol. 2006;125 Suppl: S3-37. doi: 10.1309/4u6x62r0rxbwe9kh
- McIntyre JS. Core competencies for psychiatric practice: What clinicians need to know (a report of the american board of psychiatry and neurology). Psychiatric Serv. 2005;56(1):114. doi: 10.1176/appi.ps.56.1.114
- Lutz K, Yazdani A, Ross D. From time-based to competency-based standards: Core transitional competencies in plastic surgery. J Surg Educ. 2015;72(2):228-34. doi: 10.1016/j.jsurg.2014.08.013
- Bethel EC, Marchetti KA, Hecklinski TM, et al. The LEGO™ exercise: An assessment of core competencies in urology residency interviews. J Surg Educ. 2021;78(6):2063-2069. doi: 10.1016/j.jsurg.2021.05.011
- Popa SL, Ismaiel A, Brata VD, et al. Artificial Intelligence and medical specialties: Support or substitution? Med Pharm Rep. 2024;97(4):409-418. doi: 10.15386/mpr-2696
- Shang Z, Chauhan V, Devi K, Patil S. Artificial intelligence, the digital surgeon: Unravelling its emerging footprint in healthcare - the narrative review. J Multidiscip Healthc. 2024;17:4011-4022. doi: 10.2147/jmdh.S482757
- Leivaditis V, Maniatopoulos AA, Lausberg H, et al. Artificial intelligence in thoracic surgery: A review bridging innovation and clinical practice for the next generation of surgical care. J Clin Med. 2025;14(8):2729. doi: 10.3390/jcm14082729
- Chevalier O, Dubey G, Benkabbou A, Majbar MA, Souadka A. Comprehensive overview of artificial intelligence in surgery: A systematic review and perspectives. Pflugers Arch. 2025;477(4):617-626. doi: 10.1007/s00424-025-03076-6
- Liu Y, Deng K, Zhang C, Yuan Z, Zhou J, Liu C. The rise of intelligent plastic surgery: A 10-year bibliometric journey through AI applications, challenges, and transformative potential. Aesthetic Plast Surg. 2025. doi: 10.1007/s00266-025-05068-4
- Lu MY, Chen B, Williamson DFK, et al. A multimodal generative AI copilot for human pathology. Nature. 2024;634(8033):466-473. doi: 10.1038/s41586-024-07618-3
- Zhang C, Liu S, Zhou X, et al. Examining the role of large language models in orthopedics: Systematic review. J Med Internet Res. 2024;26:e59607. doi: 10.2196/59607
- Harzing AW. Publish or Perish; 2024. Available from: https:// harzing.com/resources/publish-or-perish [Last accessed on 2024 Oct 01].
- Naeem M, Ozuem W, Howell K, Ranfagni S. A step-by-step process of thematic analysis to develop a conceptual model in qualitative research. Int J Qual Methods. 2023;22:16094069231205789. doi: 10.1177/16094069231205789
- Ugajin A. Automation in hospitals and health care. In: Nof SY, editor. Springer Handbook of Automation. Berlin: Springer International Publishing; 2023. p. 1209-1233.
- Munari E, Scarpa A, Cima L, et al. Cutting-edge technology and automation in the pathology laboratory. Virchows Arch. 2024;484(4):555-566. doi: 10.1007/s00428-023-03637-z
- Kalra A, Chakraborty A, Fine B, Reicher J. Machine learning for automation of radiology protocols for quality and efficiency improvement. J Am Coll Radiol. 2020;17(9):1149-1158. doi: 10.1016/j.jacr.2020.03.012
- Kazzazi F. The automation of doctors and machines: A classification for AI in medicine (ADAM framework). Future Healthc J. 2021;8(2):e257-e262. doi: 10.7861/fhj.2020-0189
- Rivero-Moreno Y, Rodriguez M, Losada-Muñoz P, et al. Autonomous robotic surgery: Has the future arrived? Cureus. 2024;16(1):e52243. doi: 10.7759/cureus.52243
- Frey CB, Osborne MA. The future of employment: How susceptible are jobs to computerisation? Technol Forecast Soc Change. 2017;114:254-280. doi: 10.1016/j.techfore.2016.08.019
- Spruit EN, Band GP, Hamming JF, Ridderinkhof KR. Optimal training design for procedural motor skills: A review and application to laparoscopic surgery. Psychol Res. 2014;78(6):878-891. doi: 10.1007/s00426-013-0525-5
- Ritter FE, Yeh MK, Yan Y, Siu KC, Oleynikov D. Effects of varied surgical simulation training schedules on motor-skill acquisition. Surg Innov. 2020;27(1):68-80. doi: 10.1177/1553350619881591
- Bould MD, Crabtree NA, Naik VN. Assessment of procedural skills in anaesthesia. Br J Anaesth. 2009;103(4):472-483. doi: 10.1093/bja/aep241
- Kantak SS, Winstein CJ. Learning-performance distinction and memory processes for motor skills: A focused review and perspective. Behav Brain Res. 2012;228(1):219-231. doi: 10.1016/j.bbr.2011.11.028
- Levy R, Dubrowski A, Amin H, Bismilla Z. Procedural skills in paediatric residency: Re-evaluating the competencies. Paediatr Child Health. 2014;19(4):180-184. doi: 10.1093/pch/19.4.180
- Cox CL, Miller BM, Kuhn I, Fritz Z. Diagnostic uncertainty in primary care: What is known about its communication, and what are the associated ethical issues? Fam Pract. 2021;38(5):654-668. doi: 10.1093/fampra/cmab023
- Scott IA, Doust JA, Keijzers GB, Wallis KA. Coping with uncertainty in clinical practice: A narrative review. Med J Aust. 2023;218(9):418-425. doi: 10.5694/mja2.51925
- Lockshin MD, Crow MK, Barbhaiya M. When a diagnosis has no name: Uncertainty and opportunity. ACR Open Rheumatol. 2022;4(3):197-201. doi: 10.1002/acr2.11368
- Kwan JL, Calder LA, Bowman CL, et al. Characteristics and contributing factors of diagnostic error in surgery: Analysis of closed medico-legal cases and complaints in Canada. Can J Surg. 2024;67(1):E58-E65. doi: 10.1503/cjs.003523
- Howick J, Moscrop A, Mebius A, et al. Effects of empathic and positive communication in healthcare consultations: A systematic review and meta-analysis. J R Soc Med. 2018;111(7):240-252. doi: 10.1177/0141076818769477
- van Offenbeek MAG, Roemeling OP, Burggraaf A. Exploring professionals’ experiences with secure messaging in Dutch outpatient clinics: Emerging differences in use frequencies and types across medical specialties. BMC Med Inform Decis Mak. 2025;25(1):245. doi: 10.1186/s12911-025-03081-w
- Lakdawala PD. Doctor-patient relationship in psychiatry. Mens Sana Monogr. 2015;13(1):82-90. doi: 10.4103/0973-1229.153308
- Dugdale DC, Epstein R, Pantilat SZ. Time and the patient-physician relationship. J Gen Intern Med. 1999;14 Suppl 1(Suppl 1):S34-S40. doi: 10.1046/j.1525-1497.1999.00263.x
- Batko K, Ślęzak A. The use of big data analytics in healthcare. J Big Data. 2022;9(1):3. doi: 10.1186/s40537-021-00553-4
- Kondylakis H, Kalokyri V, Sfakianakis S, et al. Data infrastructures for AI in medical imaging: A report on the experiences of five EU projects. Eur Radiol Exp. 2023;7(1):20. doi: 10.1186/s41747-023-00336-x
- Ganslandt T, Neumaier M. Digital networks for laboratory data: Potentials, barriers and current initiatives. Clin Chem Lab Med. 2018;57:336-342. doi: 10.1515/cclm-2018-1131
- Vincze M, Molnar B, Kozlovszky M. Real-time network video data streaming in digital medicine. Computers. 2023;12(11):234. doi: 10.3390/computers12110234
- Holman GT, Beasley JW, Karsh BT, Stone JA, Smith PD, Wetterneck TB. The myth of standardized workflow in primary care. J Am Med Inform Assoc. 2016;23(1):29-37. doi: 10.1093/jamia/ocv107
- Zayas-Cabán T, Okubo TH, Posnack S. Priorities to accelerate workflow automation in health care. J Am Med Inform Assoc. 2022;30(1):195-201. doi: 10.1093/jamia/ocac197
- Beauchemin M, Cohn E, Shelton RC. Implementation of clinical practice guidelines in the health care setting: A concept analysis. ANS Adv Nurs Sci. 2019;42(4):307-324. doi: 10.1097/ans.0000000000000263
- Pereira VC, Silva SN, Carvalho VKS, Zanghelini F, Barreto JOM. Strategies for the implementation of clinical practice guidelines in public health: An overview of systematic reviews. Health Res Policy Syst. 2022;20(1):13. doi: 10.1186/s12961-022-00815-4
- Qumseya B, Goddard A, Qumseya A, Estores D, Draganov PV, Forsmark C. Barriers to clinical practice guideline implementation among physicians: A physician survey. Int J Gen Med. 2021;14:7591-7598. doi: 10.2147/ijgm.S333501
- Thoonsen AC, van Schoten SM, Merten H, et al. Stimulating implementation of clinical practice guidelines in hospital care from a central guideline organization perspective: A systematic review. Health Policy. 2024;148:105135. doi: 10.1016/j.healthpol.2024.105135
- Varkey B. Principles of clinical ethics and their application to practice. Med Princ Pract. 2021;30(1):17-28. doi: 10.1159/000509119
- Raveesh BN, Nayak RB, Kumbar SF. Preventing medico-legal issues in clinical practice. Ann Indian Acad Neurol. 2016;19(Suppl 1):S15-S20. doi: 10.4103/0972-2327.192886
- Garcia JR, Allende F, Kogan M, Chahla J. When things go wrong: A guide to the medical, ethical, and legal dimensions of surgical complications. J Am Acad Orthop Surg Glob Res Rev. 2024;8(12):e24.00004. doi: 10.5435/JAAOSGlobal-D-24-00004
- Owen G, Kanaan R. The legal and ethical framework for psychiatry. Medicine. 2008;36:391-392. doi: 10.1016/j.mpmed.2008.05.010
- Waller L. Ethics, law and paediatric medicine. J Paediatr Child Health. 2011;47(9):620-623. doi: 10.1111/j.1440-1754.2011.02167.x
- Coulter C, McKay F, Hallowell N, et al. Understanding the ethical and legal considerations of Digital Pathology. J Pathol Clin Res. 2022;8(2):101-115. doi: 10.1002/cjp2.251
- Harvey-Lloyd JM. Operating within the legal and ethical framework to gain co-operation when imaging paediatric patients. Radiography. 2013;19(4):285-289. doi: 10.1016/j.radi.2013.07.010
- Sallam M, Barakat M, Sallam M. A preliminary checklist (METRICS) to standardize the design and reporting of studies on generative artificial intelligence-based models in health care education and practice: Development study involving a literature review. Interact J Med Res. 2024;13:e54704. doi: 10.2196/54704
- Najjar R. Redefining radiology: A review of artificial intelligence integration in medical imaging. Diagnostics (Basel). 2023;13(17):2760. doi: 10.3390/diagnostics13172760
- O’Brien AJ, Vrazas JI, Clements W. Current applications of algorithmic artificial intelligence in interventional radiology: A review of the literature. J Med Imaging Radiat Oncol. 2024;68(2):194-207. doi: 10.1111/1754-9485.13609
- Battaglia E, Boehm J, Zheng Y, Jamieson AR, Gahan J, Majewicz Fey A. Rethinking autonomous surgery: Focusing on enhancement over autonomy. Eur Urol Focus. 2021;7(4):696-705. doi: 10.1016/j.euf.2021.06.009
- Schmidgall S, Opfermann JD, Kim JW, Krieger A. Will your next surgeon be a robot? Autonomy and AI in robotic surgery. Sci Robot. 2025;10(104):eadt0187. doi: 10.1126/scirobotics.adt0187
- Eloy C, Fraggetta F, van Diest PJ, et al. Digital transformation of pathology - the European Society of Pathology expert opinion paper. Virch Archiv. 2025. doi: 10.1007/s00428-025-04090-w
- Khavandi S, Zaghloul F, Higham A, Lim E, de Pennington N, Celi LA. Investigating the impact of automation on the health care workforce through autonomous telemedicine in the cataract pathway: Protocol for a multicenter study. JMIR Res Protoc. 2023;12:e49374. doi: 10.2196/49374
- Hirani R, Noruzi K, Khuram H, et al. Artificial intelligence and healthcare: A journey through history, present innovations, and future possibilities. Life (Basel). 2024;14(5):557. doi: 10.3390/life14050557
- Schuitmaker L, Drogt J, Benders M, Jongsma K. Physicians’ required competencies in AI-assisted clinical settings: A systematic review. Br Med Bull. 2025;153(1):ldae025. doi: 10.1093/bmb/ldae025
- Schlemmer HP. Navigating the AI revolution: Will radiology sink or soar? Jpn J Radiol. 2025;43:1628–1633. doi: 10.1007/s11604-025-01810-9
- Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500-510. doi: 10.1038/s41568-018-0016-5
- Berbís MA, McClintock DS, Bychkov A, et al. Computational pathology in 2030: A Delphi study forecasting the role of AI in pathology within the next decade. EBioMedicine. 2023;88:104427. doi: 10.1016/j.ebiom.2022.104427
- Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019;16(11):703-715. doi: 10.1038/s41571-019-0252-y
- Pallua JD, Brunner A, Zelger B, Schirmer M, Haybaeck J. The future of pathology is digital. Pathol Res Pract. 2020;216:153040. doi: 10.1016/j.prp.2020.153040
- Atabansi CC, Nie J, Liu H, Song Q, Yan L, Zhou X. A survey of Transformer applications for histopathological image analysis: New developments and future directions. Biomed Eng Online. 2023;22(1):96. doi: 10.1186/s12938-023-01157-0
- Alsulimani A, Akhter N, Jameela F, et al. The impact of artificial intelligence on microbial diagnosis. Microorganisms. 2024;12(6):1051. doi: 10.3390/microorganisms12061051
- Li M, Jiang Y, Zhang Y, Zhu H. Medical image analysis using deep learning algorithms. Front Public Health. 2023;11:1273253. doi: 10.3389/fpubh.2023.1273253
- Vandenberg O, Durand G, Hallin M, et al. Consolidation of clinical microbiology laboratories and introduction of transformative technologies. Clin Microbiol Rev. 2020;33(2):e00057-19. doi: 10.1128/cmr.00057-19
- Sahu P, Kumar S, Kumar N, Prakash V. Total laboratory automation in clinical microbiology: A note on needs, challenges, and applications in a pandemic scenario. Appl Microbiol Theory Technol. 2024;5:64-71. doi: 10.37256/amtt.5120243753
- Spies NC, Rangel A, English P, Morrison M, O’Fallon B, Ng DP. Machine learning methods in clinical flow cytometry. Cancers (Basel). 2025;17(3):483. doi: 10.3390/cancers17030483
- de Almeida JG, Gudgin E, Besser M, et al. Computational analysis of peripheral blood smears detects disease-associated cytomorphologies. Nat Commun. 2023;14(1):4378. doi: 10.1038/s41467-023-39676-y
- Lin Y, Mensah IK, Doering M, Shean RC, Spies NC. Machine learning-based error detection in the clinical laboratory: A critical review. Crit Rev Clin Lab Sci. 2025:1-13. doi: 10.1080/10408363.2025.2512468
- Akinrinmade AO, Adebile TM, Ezuma-Ebong C, et al. Artificial intelligence in healthcare: Perception and reality. Cureus. 2023;15(9):e45594. doi: 10.7759/cureus.45594
- Blease C, Locher C, Leon-Carlyle M, Doraiswamy M. Artificial intelligence and the future of psychiatry: Qualitative findings from a global physician survey. Digit Health. 2020;6:2055207620968355. doi: 10.1177/2055207620968355
- Alarcón RD. Culture, cultural factors and psychiatric diagnosis: Review and projections. World Psychiatry. 2009;8(3):131-139. doi: 10.1002/j.2051-5545.2009.tb00233.x
- Ni Y, Jia F. A scoping review of AI-driven digital interventions in mental health care: Mapping applications across screening, support, monitoring, prevention, and clinical education. Healthcare (Basel). 2025;13(10):1205. doi: 10.3390/healthcare13101205
- Ficerai-Garland G, Groves P, Puccio EA, et al. Caregiver and pediatric clinician perspectives on artificial intelligence for language services. Acad Pediatr. 2025:102887. doi: 10.1016/j.acap.2025.102887
- Kurath-Koller S. Artificial intelligence in pediatrics: Promise, peril, and the path ahead. Front Pediatr. 2025;13:1631521. doi: 10.3389/fped.2025.1631521
- Katsakiori PF, Kagadis GC, Mulita F, Marangos M. Implementing artificial intelligence in family medicine: Challenges and limitations. Cureus. 2024;16(12):e75518. doi: 10.7759/cureus.75518
- Hanna K, Chartash D, Liaw W, et al. Family medicine must prepare for artificial intelligence. J Am Board Fam Med. 2024;37(4):520-524. doi: 10.3122/jabfm.2023.230360R1
- Ventres WB, Stone LA, Joslin TA, et al. Storylines of family medicine III: Core principles-primary care, systems and family. Fam Med Community Health. 2024;12(Suppl 3):e002790. doi: 10.1136/fmch-2024-002790
- Yu S, El Atrache R, Tang J, et al. Artificial intelligence-enhanced epileptic seizure detection by wearables. Epilepsia. 2023;64(12):3213-3226. doi: 10.1111/epi.17774
- Khalifa M, Albadawy M. AI in diagnostic imaging: Programs Biomed Update. 2024;5:100146. doi: 10.1016/j.cmpbup.2024.100146
- Kalani M, Anjankar A. Revolutionizing neurology: The role of artificial intelligence in advancing diagnosis and treatment. Cureus. 2024;16(6):e61706. doi: 10.7759/cureus.61706
- Shah U, Alzubaidi M, Mohsen F, Abd-alrazaq A, Alam T, Househ M. The role of artificial intelligence in decoding speech from EEG signals: A scoping review. Sensors (Basel). 2022;22(18):6975. doi: 10.3390/s22186975
- Olawade DB, Wada OJ, David-Olawade AC, Kunonga E, Abaire O, Ling J. Using artificial intelligence to improve public health: A narrative review. Front Public Health. 2023;11:1196397. doi: 10.3389/fpubh.2023.1196397
- Sallam M. The fragility of public health in the face of controversial leadership. BMJ Glob Health. 2025;10(7):e018536. doi: 10.1136/bmjgh-2024-018536
- Sumner J, Lim H, Chong W, Bundele A, Mukhopadhyay A, Kayambu G. Artificial intelligence in physical rehabilitation: A systematic review. Artif Intell Med. 2023;146:102693. doi: 10.1016/j.artmed.2023.102693
- MohammadNamdar M, Lowery Wilson M, Murtonen KP, Aartolahti E, Oduor M, Korniloff K. How AI-based digital rehabilitation improves end-user adherence: Rapid review. JMIR Rehabil Assist Technol. 2025;12:e69763. doi: 10.2196/69763
- Amin A, Cardoso SA, Suyambu J, et al. Future of artificial intelligence in surgery: A narrative review. Cureus. 2024;16(1):e51631. doi: 10.7759/cureus.51631
- Lee R, Ziehm A, Ullrich L, Stawicki S. Artificial Intelligence in Surgery, Surgical Subspecialties, and Related Disciplines. London: Intechopen; 2023.
- Shah M, Naik N, Somani BK, Hameed BMZ. Artificial intelligence (AI) in urology-Current use and future directions: An iTRUE study. Turk J Urol. 2020;46(Supp. 1):S27-S39. doi: 10.5152/tud.2020.20117
- Ghneim MH, O’Connor JV, Scalea TM. Damage control thoracic surgery: What you need to know. J Trauma Acute Care Surg. 2025;98(1):11-19. doi: 10.1097/ta.0000000000004458
- Zhou X, Chen Y, Miao G, Guo Y, Zhang Q, Bi J. Computer-aided robotics for applications in fracture reduction surgery: Advances, challenges, and opportunities. iScience. 2025;28(1):111509. doi: 10.1016/j.isci.2024.111509
- Choi J. Cosmetic surgery: Is it science or art? Arch Plast Surg. 2015;42:672-674. doi: 10.5999/aps.2015.42.5.672
- Patel DJ, Chaudhari K, Acharya N, Shrivastava D, Muneeba S. Artificial intelligence in obstetrics and gynecology: Transforming care and outcomes. Cureus. 2024;16(7):e64725. doi: 10.7759/cureus.64725
- Tangsrivimol JA, Schonfeld E, Zhang M, et al. Artificial intelligence in neurosurgery: A state-of-the-art review from past to future. Diagnostics (Basel). 2023;13(14):2429. doi: 10.3390/diagnostics13142429
- Berg M, Dahlin LB, Kjellman M. Overview of surgical training and assessment of surgical skills: A narrative review. Front Surg. 2025;12:1605495. doi: 10.3389/fsurg.2025.1605495
- Pakkasjärvi N, Anttila H, Pyhältö K. What are the learning objectives in surgical training – a systematic literature review of the surgical competence framework. BMC Med Educ. 2024;24(1):119. doi: 10.1186/s12909-024-05068-z
- Levkovich I. Is artificial intelligence the next copilot for primary care in diagnosing and recommending treatments for depression? Med Sci (Basel). 2025;13(1):8. doi: 10.3390/medsci13010008
- Behara K, Bhero E, Agee JT. AI in dermatology: A comprehensive review into skin cancer detection. PeerJ Comput Sci. 2024;10:e2530. doi: 10.7717/peerj-cs.2530
- Lim JI, Regillo CD, Sadda SR, et al. Artificial intelligence detection of diabetic retinopathy: Subgroup comparison of the eyeart system with ophthalmologists’ dilated examinations. Ophthalmol Sci. 2023;3(1):100228. doi: 10.1016/j.xops.2022.100228
- Li Z, Wang L, Wu X, et al. Artificial intelligence in ophthalmology: The path to the real-world clinic. Cell Rep Med. 2023;4(7):101095. doi: 10.1016/j.xcrm.2023.101095
- Amiot F, Potier B. Artificial intelligence (AI) and emergency medicine: Balancing opportunities and challenges. JMIR Med Inform. 2025;13:e70903. doi: 10.2196/70903
- Bellini V, Rafano Carnà E, Russo M, et al. Artificial intelligence and anesthesia: A narrative review. Ann Transl Med. 2022;10(9):528. doi: 10.21037/atm-21-7031
- Xiao N, Huang X, Wu Y, et al. Opportunities and challenges with artificial intelligence in allergy and immunology: A bibliometric study. Front Med (Lausanne). 2025;12:1523902. doi: 10.3389/fmed.2025.1523902
- MacMath D, Chen M, Khoury P. Artificial intelligence: Exploring the future of innovation in allergy immunology. Curr Allergy Asthma Rep. 2023;23(6):351-362. doi: 10.1007/s11882-023-01084-z
- Nair A, Ong W, Lee A, et al. Enhancing radiologist productivity with artificial intelligence in magnetic resonance imaging (MRI): A narrative review. Diagnostics (Basel). 2025;15(9):1146. doi: 10.3390/diagnostics15091146
- Korfiatis P, Kline TL, Meyer HM, et al. Implementing artificial intelligence algorithms in the radiology workflow: Challenges and considerations. Mayo Clin Proc Digit Health. 2025;3(1):100188. doi: 10.1016/j.mcpdig.2024.100188
- Hirata K, Sugimori H, Fujima N, Toyonaga T, Kudo K. Artificial intelligence for nuclear medicine in oncology. Ann Nuclear Med. 2022;36:123-132. doi: 10.1007/s12149-021-01693-6
- Odonkor B, Kaggwa S, Uwaoma P, Hassan A, Farayola O. The impact of AI on accounting practices: A review: Exploring how artificial intelligence is transforming traditional accounting methods and financial reporting. World J Adv Res Rev. 2024;21:172-188. doi: 10.30574/wjarr.2024.21.1.2721
- Khakpaki A. Advancements in artificial intelligence transforming medical education: A comprehensive overview. Med Educ Online. 2025;30(1):2542807. doi: 10.1080/10872981.2025.2542807
- Pauley K, Flin R, Yule S, Youngson G. Surgeons’ intraoperative decision making and risk management. Am J Surg. 2011;202(4):375-381. doi: 10.1016/j.amjsurg.2010.11.009
- Cristancho SM, Apramian T, Vanstone M, et al. Thinking like an expert: Surgical decision making as a cyclical process of being aware. Am J Surg. 2016;211(1):64-69. doi: 10.1016/j.amjsurg.2015.03.010
- Ardito RB, Rabellino D. Therapeutic alliance and outcome of psychotherapy: Historical excursus, measurements, and prospects for research. Front Psychol. 2011;2:270. doi: 10.3389/fpsyg.2011.00270
- Aramrat C, Choksomngam Y, Jiraporncharoen W, et al. Advancing multimorbidity management in primary care: A narrative review. Prim Health Care Res Dev. 2022;23:e36. doi: 10.1017/s1463423622000238
- Tekin M, Yurdal MO, Toraman Ç, Korkmaz G, Uysal İ. Is AI the future of evaluation in medical education?? AI vs. human evaluation in objective structured clinical examination. BMC Med Educ. 2025;25(1):641. doi: 10.1186/s12909-025-07241-4
- Cestonaro C, Delicati A, Marcante B, Caenazzo L, Tozzo P. Defining medical liability when artificial intelligence is applied on diagnostic algorithms: A systematic review. Front Med (Lausanne). 2023;10:1305756. doi: 10.3389/fmed.2023.1305756