AccScience Publishing / AIH / Online First / DOI: 10.36922/AIH025320064
ORIGINAL RESEARCH ARTICLE

Evaluating the performance of large language models in diagnosing rare genodermatoses

Magda Wojtara1* Gaity Wahab2
Show Less
1 Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
2 Department of Medicine, Ross University School of Medicine, Barbados
Received: 6 August 2025 | Revised: 15 September 2025 | Accepted: 18 September 2025 | Published online: 13 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The integration of artificial intelligence (AI) into healthcare presents an unprecedented opportunity to improve access to quality care, particularly in fields facing workforce shortages and diagnostic complexity. Dermatology exemplifies this challenge, with stark disparities in specialist access both within high-income countries and globally. These inequities are especially pronounced for individuals with rare skin disorders, such as genodermatoses—genetic conditions with multisystem involvement that are frequently underdiagnosed, misdiagnosed, and undertreated. Large language models (LLMs), such as ChatGPT, have demonstrated growing capacity to generate medically relevant content and synthesize complex information rapidly. Their potential applications in rare diseases are promising, including support in diagnosis, patient education, and clinical decision-making. However, the utility of LLMs in dermatology, particularly for rare genetic conditions, remains underexplored. This paper highlights the intersection of AI, health equity, and rare disease care, emphasizing the urgent need for robust evaluation frameworks to assess LLM outputs for accuracy, safety, clarity, empathy, and trustworthiness. As global health efforts aim to meet the needs of millions living with rare diseases, rigorous validation of AI tools is critical to ensure they reduce, rather than reinforce, existing disparities.

Keywords
Artificial intelligence
Rare diseases
Language model
Dermatology
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Katwaroo AR, Adesh VS, Lowtan A, Umakanthan S. The diagnostic, therapeutic, and ethical impact of artificial intelligence in modern medicine. Postgrad Med J. 2024;100(1183):289-296. doi: 10.1093/postmj/qgad135

 

  1. Wojtara M, Rana E, Rahman T, Khanna P, Singh H. Artificial intelligence in rare disease diagnosis and treatment. Clin Transl Sci. 2023;16(11):2106-2111. doi: 10.1111/cts.13619

 

  1. Vaidya T, Zubritsky L, Alikhan A, Housholder A. Socioeconomic and geographic barriers to dermatology care in urban and rural US populations. J Am Acad Dermatol. 2018;78(2):406-408. doi: 10.1016/j.jaad.2017.07.050

 

  1. Glazer AM, Farberg AS, Winkelmann RR, Rigel DS. Analysis of trends in geographic distribution and density of us dermatologists. JAMA Dermatol. 2017;153(4):322-325. doi: 10.1001/jamadermatol.2016.5411

 

  1. Mosam A, Todd G. Dermatology training in africa: Successes and challenges. Dermatol Clin. 2021;39(1):57-71. doi: 10.1016/j.det.2020.08.006

 

  1. Mugisha N, Ghanem L, Komi OAI, et al. The screening and management of skin diseases in remote African regions: A narrative review. Postgrad Med J. 2025;101(1196):504-510. doi: 10.1093/postmj/qgae133

 

  1. Hay RJ, Johns NE, Williams HC, et al. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. J Invest Dermatol. 2014;134(6):1527-1534. doi: 10.1038/jid.2013.446

 

  1. The Lancet Global Health. The landscape for rare diseases in 2024. Lancet Glob Health. 2024;12(3):e341. doi: 10.1016/S2214-109X(24)00056-1

 

  1. Uptodate. Available from: https://www.uptodate.com/ contents/the-genodermatoses-an-overview [Last accessed on 2025 Aug 02].

 

  1. Krawitz PM. Artificial intelligence in the diagnosis of rare disorders: The development of phenotype analysis. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2022;65(11):1159-1163. doi: 10.1007/s00103-022-03602-2

 

  1. Hurvitz N, Azmanov H, Kesler A, Ilan Y. Establishing a second-generation artificial intelligence-based system for improving diagnosis, treatment, and monitoring of patients with rare diseases. Eur J Hum Genet. 2021;29(10):1485-1490. doi: 10.1038/s41431-021-00928-4

 

  1. Abbas S, Ahmed F, Khan WA, Ahmad M, Khan MA, Ghazal TM. Intelligent skin disease prediction system using transfer learning and explainable artificial intelligence. Sci Rep. 2025;15(1):1746. doi: 10.1038/s41598-024-83966-4

 

  1. Tam TYC, Sivarajkumar S, Kapoor S, et al. A framework for human evaluation of large language models in healthcare derived from literature review. NPJ Digit Med. 2024;7(1):258. doi: 10.1038/s41746-024-01258-7

 

  1. Sonar by Perplexity. Available from: https://sonar.perplexity. ai [Last accessed on 2025 Jul 05].

 

  1. Hello GPT-4o. Available from: https://openai.com/index/ hello-gpt-4o [Last accessed on 2025 Jul 05].

 

  1. Openevidence - About. OpenEvidence. Available from: https://www.openevidence.com [Lasy accessed on 2025 Jul 05].

 

  1. Park YJ, Pillai A, Deng J, et al. Assessing the research landscape and clinical utility of large language models: A scoping review. BMC Med Inform Decis Mak. 2024;24(1):72. doi: 10.1186/s12911-024-02459-6

 

  1. Fine JD, Bruckner-Tuderman L, Eady RA, et al. Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification. J Am Acad Dermatol. 2014;70(6):1103-1126. doi: 10.1016/j.jaad.2014.01.903

 

  1. Kühl T, Mezger M, Hausser I, et al. Gene therapy approaches for epidermolysis bullosa. Clin Dermatol. 2022;40(4):379-388. doi: 10.1016/j.clindermatol.2022.02.009

 

  1. Cunniff C, Bassetti JA, Ellis NA. Bloom’s syndrome: Clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol. 2017;8(1):4-23. doi: 10.1159/000452082

 

  1. Flanagan M, Cunniff CM. Bloom syndrome. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews®. Seattle: University of Washington; 1993.

 

  1. Bradford PT, Goldstein AM, Tamura D, et al. Cancer and neurologic degeneration in xeroderma pigmentosum: Long term follow-up characterises the role of DNA repair. J Med Genet. 2011;48(3):168-176. doi: 10.1136/jmg.2010.083022

 

  1. Lehmann J, Seebode C, Martens MC, Emmert S. Xeroderma pigmentosum - facts and perspectives. Anticancer Res. 2018;38(2):1159-1164. doi: 10.21873/anticanres.12335

 

  1. Akiyama M. ABCA12 mutations and autosomal recessive congenital ichthyosis: A review of genotype/phenotype correlations and of pathogenetic concepts. Hum Mutat. 2010;31(10):1090-1096. doi: 10.1002/humu.21326

 

  1. Rajpopat S, Moss C, Mellerio J, et al. Harlequin ichthyosis: A review of clinical and molecular findings in 45 cases. Arch Dermatol. 2011;147(6):681-686. doi: 10.1001/archdermatol.2011.9

 

  1. Clarke A, Phillips DI, Brown R, Harper PS. Clinical aspects of X-linked hypohidrotic ectodermal dysplasia. Arch Dis Child. 1987;62(10):989-996. doi: 10.1136/adc.62.10.989

 

  1. Schneider H, Hammersen J, Preisler-Adams S, et al. Mutational spectrum and genotype-phenotype correlations in patients with hypohidrotic ectodermal dysplasia. Clin Genet. 2018;93(1):110-118. doi: 10.1111/cge.13038

 

  1. Lamartine J. Towards a new classification of ectodermal dysplasias. Clin Exp Dermatol. 2003;28(4):351-355. doi: 10.1046/j.1365-2230.2003.01319.x

 

  1. Smith FJ, Morley SM, McLean WH. Novel mechanism of revertant mosaicism in Dowling-Meara epidermolysis bullosa simplex. J Invest Dermatol. 2004;122(1):73-77. doi: 10.1046/j.0022-202X.2003.22130.x

 

  1. Entius MM, Keller JJ, Westerman AM, et al. Molecular genetic alterations in sebaceous skin lesions from patients with Muir- Torre syndrome. Am J Pathol. 2001;158(3):881-885. doi: 10.1016/S0002-9440(10)64036-0

 

  1. South CD, Hampel H, Comeras I, Westman JA, Frankel WL, De la Chapelle A. The frequency of Muir-torre syndrome among lynch syndrome families. J Natl Cancer Inst. 2008;100(4):277-281. doi: 10.1093/jnci/djm291

 

  1. Jin XL, Wang ZH, Xiao XB, Huang LS, Zhao XY. Blue rubber bleb nevus syndrome: A case report and literature review. World J Gastroenterol. 2014;20(45):17254-17259. doi: 10.3748/wjg.v20.i45.17254

 

  1. Moodley S, Ramdial PK. Blue rubber bleb nevus syndrome: A case report and review of the literature. J Med Case Rep. 2013;7:162. doi: 10.1186/1752-1947-7-162

 

  1. Northrup H, Krueger DA, International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex diagnostic criteria update: Recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol. 2013;49(4):243-254. doi: 10.1016/j.pediatrneurol.2013.08.001

 

  1. Krueger DA, Northrup H, International Tuberous Sclerosis Complex Consensus Group. Tuberous sclerosis complex surveillance and management: Recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr Neurol. 2013;49(4):255-265. doi: 10.1016/j.pediatrneurol.2013.08.002

 

  1. Legius E, Messiaen L, Wolkenstein P, et al. Revised diagnostic criteria for neurofibromatosis type 1 and Legius syndrome: An international consensus recommendation. Genet Med. 2021;23(8):1506-1513. doi: 10.1038/s41436-021-01170-5

 

  1. Gross AM, Wolters PL, Dombi E, et al. Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med. 2020;382(15):1430-1442. doi: 10.1056/nejmoa1912735

 

  1. Krusche M, Callenberg C, Schröder M, et al. AI-based diagnostics and precision medicine in rare diseases. Lancet Digit Health. 2023;5(12):e876-e884. doi: 10.1016/S2589-7500(23)00177-4

 

  1. Topol EJ. High-performance medicine: The convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi: 10.1038/s41591-018-0300-7

 

  1. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat Med. 2019;25(1):30-36. doi: 10.1038/s41591-018-0307-0

 

  1. Meskó B, Topol EJ. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ Digit Med. 2023;6(1):120. doi: 10.1038/s41746-023-00873-0

 

  1. Wahl B, Cossy-Gantner A, Germann S, Schwalbe NR. Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings? BMJ Glob Health. 2018;3(4):e000798. doi: 10.1136/bmjgh-2018-000798
Share
Back to top
Artificial Intelligence in Health, Electronic ISSN: 3029-2387 Print ISSN: 3041-0894, Published by AccScience Publishing