AccScience Publishing / AIH / Online First / DOI: 10.36922/AIH025330066
ORIGINAL RESEARCH ARTICLE

An interpretable decision tree model for prioritizing functional and cognitive assessments in early diagnosis of Alzheimer’s disease

Wollner Materko1,2*
Show Less
1 Department in Health Sciences, Federal University of Amapá, Macapá, Brazil
2 Department of Physical Education, Federal University of Amapá, Macapá, Brazil
Received: 14 August 2025 | Revised: 11 September 2025 | Accepted: 24 September 2025 | Published online: 10 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The extensive clinical implementation of machine learning models for diagnosing Alzheimer’s disease (AD) is often hindered by the fact that they are “black box” technologies. This lack of transparency undermines clinician trust. This study addressed this issue by developing and validating a high-performing, interpretable decision tree classifier. This model prioritizes features that are both statistically significant and clinically relevant for the early diagnosis of AD. The study used a publicly available dataset containing demographic, clinical, and cognitive data from 2,149 patients. A strategic feature selection process was implemented. The final model was meticulously trained and thoroughly evaluated using a separate test set. The evaluation revealed the model’s exceptional diagnostic capability, demonstrating an overall accuracy of 91.8% and an area under the curve of 0.94. The model also demonstrated high sensitivity (92.1%) and specificity (95.7%). Feature importance analysis revealed that predictions were primarily influenced by direct measures of cognitive and functional status. Specifically, the most significant factors were the mini-mental state examination score, the activities of daily living score, and the Functional Assessment score. These core features overshadowed the predictive influence of established risk factors such as family history. Despite their strong statistical association with the disease, the model assigned negligible importance to these risk factors in its final classification. This work demonstrates that an interpretable decision tree can accurately diagnose AD by transparently prioritizing functional and cognitive assessments. The model’s clarity and reliance on routine clinical data highlight its potential as a decision-support tool. It is ready to improve diagnostic pathways and promote further research in this area.

Keywords
Alzheimer’s disease
Machine learning
Decision tree
Cognitive assessment
Funding
None.
Conflict of interest
The author declares no conflict of interest.
References
  1. Monfared A, Byrnes M, White L, Zhang Q. Alzheimer’s disease: Epidemiology and clinical progression. Neurol Ther. 2022;11(1):553-569. doi: 10.1007/s40120-022-00338-8

 

  1. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet. 2011;377(9770): 1019-1031. doi: 10.1016/S0140-6736(10)61349-9

 

  1. Clifford K, Moreno M, Kloske C. Navigating late‐stage dementia: A perspective from the Alzheimer’s Association. Alzheimers Dement (Amst). 2024;16(1):e12530. doi: 10.1002/dad2.12530

 

  1. Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 2018;7:14506. doi: 10.12688/f1000research.14506.1

 

  1. Mehta R, Schneider J. What is ‘Alzheimer’s disease’? The neuropathological heterogeneity of clinically defined Alzheimer’s dementia. Curr Opin Neurol. 2021;34(2): 237-245. doi: 10.1097/WCO.0000000000000912

 

  1. Karantzoulis S, Galvin J. Distinguishing Alzheimer’s disease from other major forms of dementia. Expert Rev Neurother. 2011;11(11):1579-1591. doi: 10.1586/ern.11.155

 

  1. Bondi M, Edmonds E, Salmon D. Alzheimer’s disease: Past, present, and future. J Int Neuropsychol Soc. 2017;23(9- 10):818-831. doi: 10.1017/S135561771700100X

 

  1. Nasb M, Tao W, Chen N. Alzheimer’s disease puzzle: Delving into Pathogenesis hypotheses. Aging Dis. 2023;15(1):43-73. doi: 10.14336/AD.2023.0608

 

  1. Kim J, Jeong M, Stiles W, Choi H. Neuroimaging modalities in Alzheimer’s disease: Diagnosis and clinical features. Int J Mol Sci. 2022;23(11):6079. doi: 10.3390/ijms23116079

 

  1. Knopman D, Amièva H, Petersen R, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7(1):33. doi: 10.1038/s41572-021-00269-y

 

  1. Long J, Holtzman D. Alzheimer disease: An update on pathobiology and treatment strategies. Cell. 2019;179(2): 312-339. doi: 10.1016/j.cell.2019.09.001

 

  1. Krishnamurthy H, Jayaraman V, Krishna K, et al. An overview of the genes and biomarkers in Alzheimer’s disease. Ageing Res Rev. 2024;104:102599. doi: 10.1016/j.arr.2024.102599

 

  1. Varesi A, Carrara A, Pires V, et al. Blood-based biomarkers for Alzheimer’s disease diagnosis and progression: An overview. Cells. 2022;11(8):1367. doi: 10.3390/cells11081367

 

  1. Kamatham P, Shukla R, Khatri D, Vora L. Pathogenesis, diagnostics, and therapeutics for Alzheimer’s disease: Breaking the memory barrier. Ageing Res Rev. 2024;101:102481. doi: 10.1016/j.arr.2024.102481

 

  1. Du X, Wang X, Geng M. Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener. 2018;7(1):1-14. doi: 10.1186/s40035-018-0107-y

 

  1. Ashrafian H, Zadeh E, Khan R. Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol. 2020;164:1451-1463. doi: 10.1016/j.ijbiomac.2020.11.192

 

  1. Silva MVF, Loures CMG, Alves LCV, De Souza LC, Borges KBG, Carvalho MG. Alzheimer’s disease: Risk factors and potentially protective measures. J Biomed Sci. 2019;26(1):33. doi: 10.1186/s12929-019-0524-y

 

  1. Cortes-Canteli M, Iadecola C. Alzheimer’s disease and vascular aging: JACC Focus seminar. J Am Coll Cardiol. 2020;75(8):942-951. doi: 10.1016/j.jacc.2019.10.062

 

  1. Nordestgaard L, Christoffersen M, Frikke-Schmidt R. Shared risk factors between dementia and atherosclerotic cardiovascular disease. Int J Mol Sci. 2022;23(17):9777. doi: 10.3390/ijms23179777

 

  1. Masurkar A, Marsh K, Morgan B, Leitner D, Wisniewski T. Factors affecting resilience and prevention of Alzheimer’s disease and related dementias. Ann Neurol. 2024;96(1): 136-148. doi: 10.1002/ana.27055

 

  1. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25(1):59-70. doi: 10.1111/ene.13439

 

  1. Błaszczyk JW. Pathogenesis of dementia. Int J Mol Sci. 2022;24(1):543. doi: 10.3390/ijms24010543

 

  1. Oh E. Dementia. Ann Intern Med. 2024;177(1):ITC161- ITC176. doi: 10.7326/ANNALS-24-02207

 

  1. Materko W. Stratifying autonomic nervous system regulation patterns in healthy men: A machine learning approach. Artif Intell Health. 2025;2(4):025050006. doi: 10.36922/AIH025050006

 

  1. Materko W, Nascimento DGB, da Silva AS. Factor analysis of electrocardiographic findings, anthropometric measures, and age in patients with chronic kidney disease. Brain and Heart. 2025;3(2):5548. doi: 10.36922/bh.5548

 

  1. Zafar S, Mahmood T, Hoodbhoy Z, Hasan B. Pediatric patient hospital length of stay prediction: A comparative analysis of Bayesian inference and machine learning approaches. Artif Intell Health. 2025;2(4):025160030. doi: 10.36922/AIH025160030

 

  1. Kourmpanis N, Liaskos J, Zoulias E, Mantas J. Predicting mortality outcomes in individual COVID-19 patients using machine learning algorithms. Artif Intell Health. 2024;1(3):31-52. doi: 10.36922/aih.2591

 

  1. Rakhmetulayeva SB, Kulbayeva AK. Symptomatic assessment of diseases using decision trees and analysis of electronic medical records. Int J Inf Commun Technol. 2022;3(1):66-73. doi: 10.54309/ijict.2022.9.1.009

 

  1. Mienye ID, Jere N. A survey of decision trees: Concepts, algorithms, and applications. IEEE Access. 2024;12: 86716-86727. doi: 10.1109/ACCESS.2024.3416838

 

  1. Mienye ID, Sun Y, Wang Z. A survey of decision trees: Concepts, algorithms, and applications. IEEE Access. 2024;12:26867-26892. doi: 10.1109/ACCESS.2024.3368297

 

  1. Arunakumari BN, Poornima B, Shobha G. Enhancing the Quality and Efficiency of Mental Health Care using Decision Trees. In: 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT). 2023. p. 1-6. doi: 10.1109/ICCCNT56998.2023.10308215

 

  1. Venkatasubramaniam A, Wolfson J, Mitchell N, Barnes T, JaKa M, French S. Decision trees in epidemiological research. Emerg Themes Epidemiol. 2017;14(1):11. doi: 10.1186/s12982-017-0064-4

 

  1. Costa VG, Pedreira CE. Recent advances in decision trees: An updated survey. Artif Intell Rev. 2022;56:4765-4800. doi: 10.1007/s10462-022-10275-5

 

  1. Blockeel H, Fafalios P, Tzitzikas Y. Decision trees: From efficient prediction to responsible AI. Front Artif Intell. 2023;6:1202369. doi: 10.3389/frai.2023.1202369

 

  1. Kotsiantis SB. Decision trees: A recent overview. Artif Intell Rev. 2011;35(4):341-348. doi: 10.1007/s10462-010-9172-5

 

  1. Quinlan JR. Induction of decision trees. Mach Learn. 2004;1(1):81-106. doi: 10.1023/A:1022643204877

 

  1. Rokach L. Decision forest: Twenty years of research. Inf Fusion. 2016;27:111-125. doi: 10.1016/j.inffus.2015.06.004

 

  1. Hehn TM, Mumbach M, Payer M. End-to-end learning of decision trees and forests. Int J Comput Vis. 2019;127(10):1464-1477. doi: 10.1007/s11263-019-01237-6

 

  1. Tsang S, Kao B, Yip KY, Ho WS. Decision trees for uncertain data. IEEE Trans Knowl Data Eng. 2011;23(1):64-78. doi: 10.1109/TKDE.2010.45

 

  1. Karalis G. Decision trees and applications. In: Advances in Experimental Medicine and Biology. Vol. 1194. Cham: Springer; 2020. p. 223-230. doi: 10.1007/978-3-030-31764-5_15

 

  1. Nikita E, Smeral J. Data mining and decision trees. In: Orthopaedic Biomechanics. United States: Academic Press; 2020. p. 37-44. doi: 10.1016/B978-0-12-818451-8.00004-9

 

  1. Wang G, Estrella A, Hakim O, et al. Mini-mental state examination and montreal cognitive assessment as tools for following cognitive changes in Alzheimer’s disease neuroimaging initiative participants. J Alzheimers Dis. 2022;90(1):263-270. doi: 10.3233/JAD-220397

 

  1. Arévalo-Rodriguez I, Smailagic N, Roqué-Figuls M, et al. Mini-Mental State Examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2021;7(7):CD010783. doi: 10.1002/14651858.CD010783.pub3

 

  1. Çebi M, Babacan G, Tanör Ö, Gürvit H. Discrimination ability of the Short Test of Mental Status (STMS) compared to the Mini Mental State Examination (MMSE) in the spectrum of normal cognition, mild cognitive impairment, and probable Alzheimer’s disease dementia: The Turkish standardization study. J Clin Exp Neuropsychol. 2020;42(5):450-458. doi: 10.1080/13803395.2020.1758633

 

  1. Skorga P, Young C. Mini-mental state examination for the detection of Alzheimer disease and other dementias in people with mild cognitive impairment. Clin Nurse Spec. 2015;29(5):E1-E4. doi: 10.1097/NUR.0000000000000150

 

  1. Razani J, Wong JT, Dafaeeboini N, et al. Predicting everyday functional abilities of dementia patients with the mini-mental state examination. J Geriatr Psychiatry Neurol. 2009;22(1):62-70. doi: 10.1177/0891988708328217

 

  1. Márquez F, Yassa M. Neuroimaging biomarkers for Alzheimer’s disease. Mol Neurodegener. 2019;14(1):21. doi: 10.1186/s13024-019-0325-5

 

  1. Hansson O, Blennow K, Zetterberg H, Dage J. Blood biomarkers for Alzheimer’s disease in clinical practice and trials. Nat Aging. 2023;3(5):506-519. doi: 10.1038/s43587-023-00403-3

 

  1. Teunissen CE, Verberk IMW, Thijssen EH, et al. Blood-based biomarkers for Alzheimer’s disease: Towards clinical implementation. Lancet Neurol. 2021;21(1):66-77. doi: 10.1016/S1474-4422(21)00361-6

 

  1. Das D, Ito J, Kadowaki T, Tsuda K. An interpretable machine learning model for diagnosis of Alzheimer’s disease. PeerJ. 2019;7:e6543. doi: 10.7717/peerj.6543

 

  1. Ursin F, Timmermann C, Steger F. Ethical implications of Alzheimer’s disease prediction in asymptomatic individuals through artificial intelligence. Diagnostics (Basel). 2021;11(3):440. doi: 10.3390/diagnostics11030440

 

  1. Joshi G, Jain A, Araveeti S, et al. FDA-Approved artificial intelligence and machiine learning (AI/ML)-enabled medical devices: An updated landscape. Electronics. 2024;13(3):498. doi: 10.3390/electronics13030498
Share
Back to top
Artificial Intelligence in Health, Electronic ISSN: 3029-2387 Print ISSN: 3041-0894, Published by AccScience Publishing