AccScience Publishing / MSAM / Volume 5 / Issue 2 / DOI: 10.36922/MSAM025420100
ORIGINAL RESEARCH ARTICLE

Effect of rotational speed on the microstructure and corrosion resistance of 2219 aluminum alloy manufactured by additive friction stir deposition

Zikang Wang1,2,3 Hongchang Qian1,3* Qian Qiao4 Min Zhou5 Zhixiong Zhu6 Yongyong Lin6 Dawei Guo4 Dawei Zhang1,2,3* Chi Tat Kwok5 Lap Mou Tam4,5
Show Less
1 National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China
2 School of Advanced Materials Innovation, University of Science and Technology Beijing, Beijing, China
3 Belt and Road Initiative Southeast Asia Network for Corrosion and Protection (MOE), Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, China
4 IDQ Science and Technology Development (Hengqin, Guangdong) Co., Ltd., Zhuhai, Guangdong, China
5 Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, China
6 Aerospace Engineering Equipment (Suzhou) Co., Ltd., Suzhou, Jiangsu, China
MSAM 2026, 5(2), 025420100 https://doi.org/10.36922/MSAM025420100
Received: 17 October 2025 | Accepted: 19 November 2025 | Published online: 12 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The 2219 aluminum alloy is widely utilized in critical structural components owing to its superior overall performance, while additive friction stir deposition (AFSD) exhibits potential for large-scale manufacturing. However, research on the corrosion behavior of AFSD-fabricated materials remains limited, and the influence of process parameters on corrosion mechanisms requires further exploration. This study compares the microstructure and corrosion resistance of different deposition layers in 2219 aluminum alloy fabricated by AFSD at rotational speeds of 400 rpm and 700 rpm. Higher rotational speed (700 rpm) generated greater thermal input and plastic deformation, promoting dynamic recrystallization and leading to larger grain sizes (bottom layer: 3.40 μm [400 rpm] vs. 3.83 μm [700 rpm]; top layer: 2.50 μm [400 rpm] vs. 3.01 μm [700 rpm]) and increased high-angle grain boundaries (bottom layer: 71.5% [400 rpm] vs. 75.2% [700 rpm], top layer: 57.3% [400 rpm] vs. 63.0% [700 rpm]). The bottom layer, experiencing more thermal cycles, showed further grain growth and resulted in larger grain sizes. At 700 rpm, greater precipitation of the Al2Cu phase increased the number of micro-galvanic couples between precipitates and the aluminum matrix, accelerating corrosion. Conversely, greater thermal input in the bottom layer promoted Cu dissolution and reduced precipitate formation, improving corrosion resistance compared to the top layer. Consequently, the bottom layer processed at 400 rpm exhibited the optimal corrosion resistance, with the highest Rct value of 4.17 × 103 Ω·cm2. As the rotational speed decreased, the corrosion resistance was enhanced.

Graphical abstract
Keywords
Rotational speed
Microstructure
Corrosion
Additive friction stir deposition
Funding
This work was supported by the National Key R&D Program of China (2023YFE0205300), the Guangdong Basic and Applied Basic Research Foundation (2021B1515130009), and the Fundamental Research Funds for the Central Universities (FRF-BD-25-044), and the National Natural Science Foundation of China (No. 52201062).
Conflict of interest
Qian Qiao, Dawei Guo, and Lap Mou Tam are employees of IDQ Science and Technology Development (Hengqin, Guangdong) Co., Ltd., while Zhixiong Zhu and Yongyong Lin are employees of Aerospace Engineering Equipment (Suzhou) Co., Ltd.; however, they were not involved in any activities that could constitute a conflict of interest in relation to this study. Other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Ghalandari MA, Mirsalehi SE, Kiani S. Production of nanocomposite parts using AA6061-T6 consumable rods via friction stir method: A novel approach of solid-state additive manufacturing of CNT-reinforced aluminum matrix nanocomposites. Mater Today Commun. 2025;42:111435. doi: 10.1016/j.mtcomm.2024.111435
  2. Sahraei A, Mirsalehi SE. An investigation on application of friction stir additive manufacturing (FSAM) for the production of AA6061/TiC-graphene hybrid nanocomposite in the shape of multi-layer cylindrical part. J Mater Res Technol. 2024;30:6737-6752. doi: 10.1016/j.jmrt.2024.05.043
  3. Li F, Zhang W, Kooi BJ, Pei Y. Eutectic aluminum alloys fabricated by additive manufacturing: A comprehensive review. J Mater Sci Technol. 2026;250:123-164. doi: 10.1016/j.jmst.2025.06.016
  4. Tao H, Cai Q, Chen M, Zhang W, Cao G, Zhang H. Effect of heat treatment on the microstructure and corrosion performance of 2219 Al alloy cold sprayed coatings. Corros Sci. 2024;241:112526. doi: 10.1016/j.corsci.2024.112526
  5. He H, Yi Y, Huang S, Zhang Y. An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties. J Mater Sci Technol. 2019;35:55-63. doi: 10.1016/j.jmst.2018.09.007
  6. Han F, Li C, Wang Y, et al. Comparative study on corrosion property of 2219 aluminum alloy sheet and additively manufactured 2319 aluminum alloy. J Mater Res Technol. 2024;30:3178-3785. doi: 10.1016/j.jmrt.2024.04.036
  7. Grilli R, Baker MA, Castle JE, Dunn B, Watts JF. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution. Corros Sci. 2010;52:2855-2866. doi: 10.1016/j.corsci.2010.04.035
  8. Mao X, Yi Y, He H, Huang S, Guo W. Second phase particles and mechanical properties of 2219 aluminum alloys processed by an improved ring manufacturing process. Mater Sci Eng A. 2020;781:139226. doi: 10.1016/j.msea.2020.139226
  9. Qiao Q, Gong X, Guo D, et al. Influence of tool head geometry on in situ monitoring of temperature, force, and torque during additive friction deposition of aluminum alloy 2219. Mater Sci Addit Manuf. 2025;4:025280060. doi: 10.36922/MSAM025280060
  10. Chang W, Gao J, Qian H, et al. Microbiologically influenced corrosion of friction-surfaced 630 stainless steel coating in the presence of Pseudomonas aeruginosa. Corros Sci. 2025;245:112708. doi: 10.1016/j.corsci.2025.112708
  11. Zhao Y, Jin Z, Xu B, et al. Effect of surface cleaning on interface bonding performance for 316H stainless steel joints manufactured by additive forging. Mater Des. 2021;210:110025. doi: 10.1016/j.matdes.2021.110025
  12. Qiao Q, Zhou M, Gong X, et al. In-situ monitoring of additive friction stir deposition of AA6061: Effect of layer thickness on the microstructure and mechanical properties. Addit Manuf. 2024;84:104141. doi: 10.1016/j.addma.2024.104141
  13. Deng R, Wei R, Liang J, et al. Microstructure and wear characteristics of austenitic stainless steel coatings fabricated through various directed energy deposition. Mater Sci Addit Manuf. 2024;3:4974. doi: 10.36922/msam.4974
  14. Marchal V, Zhang Y, Labed N, Lachat R, Peyraut F. Fast layer fiber orientation optimization method for continuous fiber-reinforced material extrusion process. Mater Sci Addit Manuf. 2023;2:49. doi: 10.36922/msam.49
  15. Petram R, Wisdom C, Montelione A, et al. On the surface integrity resulting from laser powder bed fusion of Ti6Al4V: Improvements by cavitation abrasive surface finishing. Mater Sci Addit Manuf. 2025;5:025280062. doi: 10.36922/MSAM025280062
  16. Korgancı M, Bozkurt Y. Recent developments in additive friction stir deposition (AFSD). J Mater Res Technol. 2024;30:4572-4583. doi: 10.1016/j.jmrt.2024.04.179
  17. Tuncer N, Bose A. Solid-state metal additive manufacturing: A review. JOM. 2020;72:3090-3111. doi: 10.1007/s11837-020-04260-y
  18. Khodabakhshi F, Gerlich AP. Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review. J Manuf Processes. 2018;36:77-92. doi: 10.1016/j.jmapro.2018.09.030
  19. Shao J, Samaei A, Xue T, et al. Additive friction stir deposition of metallic materials: Process, structure and properties. Mater Des. 2023;234:112356. doi: 10.1016/j.matdes.2023.112356
  20. Yasa E, Poyraz O, Molyneux A, Sharman A, Bilgin GM, Hughes J. Systematic review on additive friction stir deposition: Materials, processes, monitoring and modelling. Inventions. 2024;9:116. doi: 10.3390/inventions9060116
  21. Khan AS. Advanced Solid-State Dissimilar Material Joining and Additive Manufacturing for Enabling Multi-Material Lightweight Structures. Thesis; 2024. doi: 10.7302/23746
  22. Anderson-Wedge K, Avery DZ, Daniewicz SR, et al. Characterization of the fatigue behavior of additive friction stir-deposition AA2219. Int J Fatigue. 2021;142:105951. doi: 10.1016/j.ijfatigue.2020.105951
  23. Zhang M, Ye X, Li Y, Wang H, Lai R, Li Y. Effect of heat treatment states of feedstock on the microstructure and mechanical properties of AA2219 layers deposited by additive friction stir deposition. Materials. 2023;16:7591. doi: 10.3390/ma16247591
  24. Rivera OG, Allison PG, Brewer LN, et al. Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition. Mater Sci Eng A. 2018;724:547-558. doi: 10.1016/j.msea.2018.03.088
  25. Wang Z, Qian H, Chang W, et al. Microstructure and localized corrosion properties of 2219 aluminum alloy manufactured by additive friction stir deposition. Corros Sci. 2024;240:112508. doi: 10.1016/j.corsci.2024.112508
  26. Elshaghoul YGY, El-Sayed Seleman MM, Bakkar A, et al. Additive friction stir deposition of AA7075-T6 alloy: Impact of process parameters on the microstructures and properties of the continuously deposited multilayered parts. Appl Sci. 2023;13:10255. doi: 10.3390/app131810255
  27. Qiao Q, Wang L, Tam CW, et al. In-situ monitoring of additive friction stir deposition of AA6061: Effect of rotation speed on the microstructure and mechanical properties. Mater Sci Eng A. 2024;902:146620. doi: 10.1016/j.msea.2024.146620
  28. Chen G, Wu K, Wang Y, Zhu Z, Nie P, Hu F. Effect of rotational speed and feed rate on microstructure and mechanical properties of 6061 aluminum alloy manufactured by additive friction stir deposition. Int J Adv Manuf Technol. 2023;127:1165-1176. doi: 10.1007/s00170-023-11527-6.
  29. Prabhakar DAP, Shettigar AK, Herbert MA, et al. A comprehensive review of friction stir techniques in structural materials and alloys: Challenges and trends. J Mater Res Technol. 2022;20:3025-3060. doi: 10.1016/j.jmrt.2022.08.034
  30. Qiao Q, Tam CW, Lam WI, et al. Hybrid heat-source solid-state additive manufacturing: A method to fabricate high performance AA6061 deposition. J Mater Sci Technol. 2025;228:107-124. doi: 10.1016/j.jmst.2024.11.079
  31. Garcia D. Investigation of the Processing History During Additive Friction Stir Deposition Using in-Process Monitoring Techniques. Doctoral Dissertations. Virginia Tech; 2021. Available from: https://hdl.handle.net/10919/111376
  32. Ambrosio D, Wagner V, Dessein G, Vivas J, Cahuc O. Machine learning tools for flow-related defects detection in friction stir welding. J Manuf Sci Eng. 2023;145:101005. doi: 10.1115/1.4062457
  33. Bourgeois L, Zhang Y, Zhang Z, Chen Y, Medhekar NV. Transforming solid-state precipitates via excess vacancies. Nat Commun. 2020;11:1248. doi: 10.1038/s41467-020-15087-1
  34. Krasnikov VS, Mayer AE, Pogorelko VV, Gazizov MR. Influence of θ’ phase cutting on precipitate hardening of Al-Cu alloy during prolonged plastic deformation: Molecular dynamics and continuum modeling. Appl Sci. 2021;11:4906. doi: 10.3390/app11114906
  35. Straumal BB, Kulagin R, Klinger L, et al. Structure refinement and fragmentation of precipitates under severe plastic deformation: A review. Materials (Basel). 2022;15:601. doi: 10.3390/ma15020601
  36. Xu D, Jiang M, Meng L, Zhu M, Liu Y, Zhang X. Interfacial characteristics, interfacial oxide evolution and bonding mechanism of 2219 aluminum alloy joints manufactured by hot-compression bonding. J Mater Res Technol. 2024;30:3036-3051. doi: 10.1016/j.jmrt.2024.04.080
  37. Tang W, Yang X, Tian C, Xu Y. Interfacial grain structure, texture and tensile behavior of multilayer deformation-based additively manufactured Al 6061 alloy. Mater Charact. 2023;196:112646. doi: 10.1016/j.matchar.2023.112646
  38. Li H, Lin J, Dean TA, Wen SW, Bannister AC. Modelling mechanical property recovery of a linepipe steel in annealing process. Int J Plast. 2009;25:1049-1065. doi: 10.1016/j.ijplas.2008.09.001
  39. Rizi MS, Minouei H, Lee BJ, Pouraliakbar H, Toroghinejad MR, Hong SI. Data supporting the hierarchically activated deformation mechanisms to form ultra-fine grain microstructure in carbon containing FeMnCoCr twinning induced plasticity high entropy alloy. Data Brief. 2022;42:108052. doi: 10.1016/j.dib.2022.108052
  40. Pouraliakbar H, Howells A, Gallerneault M, Fallah V. Fracture behavior of a rapidly solidified thin-strip continuous cast AA5182 Al-Mg alloy with the Portevin-Le Chatelier effect under varying strain rates. J Alloys Compd.2024;971:172810. doi: 10.1016/j.jallcom.2023.172810
  41. Doherty RD. The deformed state and nucleation of recrystallization. Met Sci. 1974;8:132-142. doi: 10.1179/msc.1974.8.1.132
  42. Hadadzadeh A, Mokdad F, Wells MA, Chen DL. A new grain orientation spread approach to analyze the dynamic recrystallization behavior of a cast-homogenized Mg-Zn-Zr alloy using electron backscattered diffraction. Mater Sci Eng A. 2018;709:285-289. doi: 10.1016/j.msea.2017.10.062
  43. Ayad A, Allain-Bonasso N, Rouag N, Wagner F. Grain orientation spread values in if steels after plastic deformation and recrystallization. Mater Sci Forum. 2012;702-703:269-272. doi: 10.4028/www.scientific.net/MSF.702-703.269
  44. Sprouster DJ, Streit Cunningham W, Halada GP, et al. Dislocation microstructure and its influence on corrosion behavior in laser additively manufactured 316L stainless steel. Addit Manuf. 2021;47:102263. doi: 10.1016/j.addma.2021.102263
  45. Chang W, Wang X, Qian H, et al. Effect of Sn addition on microstructure, hardness and corrosion behavior of CoCrFeNiSnx high entropy alloys in chloride environment. Corros Sci. 2024;227:111808. doi: 10.1016/j.corsci.2023.111808
  46. Lou Y, Chang W, Cui T, Qian H, Hao X, Zhang D. Microbiologically influenced corrosion inhibition induced by S. putriefaciens mineralization under extracellular polymeric substance regulation via FlrA and FlhG genes. Corros Sci. 2023;221:111350. doi: 10.1016/j.corsci.2023.111350
  47. Zhang HH, Liu YW, Bian H, et al. Electrodeposition of silane/ reduced graphene oxide nanocomposite on AA2024-T3 alloy with enhanced corrosion protection, chemical and mechanical stability. J Alloys Compd. 2022;911:165058. doi: 10.1016/j.jallcom.2022.165058
  48. Ameer MA, Fekry AM, Heakal FET. Electrochemical behaviour of passive films on molybdenum-containing austenitic stainless steels in aqueous solutions. Electrochim Acta. 2004;50:43-49. doi: 10.1016/j.electacta.2004.07.011
  49. Jorcin JB, Orazem ME, Pébère N, Tribollet B. CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta. 2006;51:1473-1479. doi: 10.1016/j.electacta.2005.02.128
  50. Cui T, Qian H, Chang W, et al. Towards understanding Shewanella algae-induced degradation of passive film of stainless steel based on electrochemical, XPS and multi-mode AFM analyses. Corros Sci. 2023;218:111174. doi: 10.1016/j.corsci.2023.111174
  51. Zhao L, Qian H, Chang W, et al. Effect of aging heat treatment on microbiologically influenced corrosion of 17-4PH stainless steel by Pseudomonas aeruginosa. Corros Sci. 2024;227:111739. doi: 10.1016/j.corsci.2023.111739
  52. Shoar Abouzari MR, Berkemeier F, Schmitz G, Wilmer D. On the physical interpretation of constant phase elements. Solid State Ionics. 2009;180:922-927. doi: 10.1016/j.ssi.2009.04.002
  53. Huang Y, Shih H, Mansfeld F. Concerning the use of constant phase elements (CPEs) in the analysis of impedance data. Mater Corros. 2010;61:302-305. doi: 10.1002/maco.200905385
  54. Wang B, Zhang L, Su Y, Mou X, Xiao Y, Liu J. Investigation on the corrosion behavior of aluminum alloys 3A21 and 7A09 in chloride aqueous solution. Mater Des. 2013;50:15-21. doi: 10.1016/j.matdes.2013.02.080
  55. Babu AP, Choudhary S, Griffith JC, Huang A, Birbilis N. On the corrosion of a high solute Al-Zn-Mg alloy produced by laser powder bed fusion. Corros Sci. 2021;189:109626. doi: 10.1016/j.corsci.2021.109626
  56. McCafferty E. Sequence of steps in the pitting of aluminum by chloride ions. Corros Sci. 2003;45:1421-1438. doi: 10.1016/S0010-938X(02)00231-7
  57. Li P, Du M. Effect of chloride ion content on pitting corrosion of dispersion-strengthened-high-strength steel. Corros Commun. 2022;7:23-34. doi: 10.1016/j.corcom.2022.03.005
  58. Bockris JO, Minevski LV. On the mechanism of the passivity of aluminum and aluminum alloys. J Electroanal Chem. 1993;349:375-414. doi: 10.1016/0022-0728(93)80186-L
  59. Abbasi-Nahr M, Mirsalehi SE. Additive friction stir deposition of AA5083/MoS2-diamond hybrid nanocomposites: Investigating their metallurgical, mechanical, tribological, and electrochemical characteristics, and process-structure-property relationships. J Alloys Compd. 2025;1013:178553. doi: 10.1016/j.jallcom.2025.178553
  60. Kiani S, Mirsalehi SE. Friction stir additive manufacturing of B4C and graphene reinforced aluminum matrix hybrid nanocomposites using consumable pins. J Mater Res Technol. 2024;28:1094-1110. doi: 10.1016/j.jmrt.2023.12.065
  61. Kiani S, Mirsalehi SE, Sahraei A. Linear and cylindrical friction stir additive manufacturing (FSAM) of AA6061-T6 by consumable rods: Metallurgical structure, wear, and corrosion properties. Weld World. 2024;68:2869-2889. doi: 10.1007/s40194-024-01839-w
  62. Obispo HM, Murr LE, Arrowood RM, Trillo EA. Copper deposition during the corrosion of aluminum alloy 2024 in sodium chloride solutions. J Mater Sci. 2000;35:3479-3495. doi: 10.1023/A:1004840908494
  63. Na KH, Pyun SI. Comparison of susceptibility to pitting corrosion of AA2024-T4, AA7075-T651 and AA7475-T761 aluminium alloys in neutral chloride solutions using electrochemical noise analysis. Corros Sci. 2008;50:248-258. doi: 10.1016/j.corsci.2007.05.028
  64. Suter T, Alkire RC. Microelectrochemical studies of pit initiation at single inclusions in Al 2024-T3. J Electrochem Soc. 2001;148:B36. doi: 10.1149/1.1344530
  65. Xu W, Liu J. Microstructure and pitting corrosion of friction stir welded joints in 2219-O aluminum alloy thick plate. Corros Sci. 2009;51:2743-2751. doi: 10.1016/j.corsci.2009.07.004
  66. Koteswara Rao SR, Madhusudhan Reddy G, Srinivasa Rao K, Kamaraj M, Prasad Rao K. Reasons for superior mechanical and corrosion properties of 2219 aluminum alloy electron beam welds. Mater Charact. 2005;55:345-354. doi: 10.1016/j.matchar.2005.07.006
  67. Zhu X, Wang R, Wang L, Liu M, Li S. Effect of rotational shear and heat input on the microstructure and mechanical properties of large-diameter 6061 aluminium alloy additive friction stir deposition. Crystals. 2024;14:581. doi: 10.3390/cryst14070581

 

 

 

 

Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing