AccScience Publishing / MSAM / Volume 5 / Issue 1 / DOI: 10.36922/MSAM025240051
REVIEW ARTICLE

Laser additive manufacturing of nickel-based superalloys: A review

Yunlong Hu1* Zihong Wang1* Qiang Zhang1 Shan Li1 Xin Zhang2 Weidong Huang2
Show Less
1 Department of Structural Materials Research, Suzhou Laboratory, Suzhou, Jiangsu, China
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi, China
MSAM 2026, 5(1), 025240051 https://doi.org/10.36922/MSAM025240051
Received: 14 June 2025 | Accepted: 11 August 2025 | Published online: 31 October 2025
(This article belongs to the Special Issue Additive Manufacturing of Materials for Extreme Environments)
© 2025 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Nickel-based superalloys are critical materials for high-temperature components in core equipment, such as aerospace engines and gas turbines. In recent years, with the rapid advancement of metal additive manufacturing (AM) technologies, the fabrication of complex geometries using nickel-based superalloys has been successfully applied in modern engines and gas turbines. These components demonstrate significant advantages in integration, weight reduction, multifunctionality, and performance enhancement. However, due to the complex alloy composition and multiphase microstructure of nickel-based superalloys, the AM process is accompanied by intricate phase transformations and high thermal stresses. This often leads to defects, such as hot cracking—particularly in the vicinity of the molten pool. In addition, the rapid non-equilibrium solidification and repeated thermal cycles from layer-by-layer deposition result in complex microstructural evolution and phase transformations during both solidification and subsequent solid-state reactions. These factors significantly influence the strengthening and toughening behavior of the superalloys. Consequently, the comprehensive mechanical properties of additively manufactured nickel-based superalloys still lag behind those of their traditionally forged counterparts. This article reviews recent domestic and international research progress on the mechanisms of crack formation and control strategies in AM of nickel-based superalloys, as well as the evolution of microstructure and the associated strengthening and toughening mechanisms. Furthermore, it discusses the design of nickel-based superalloys tailored specifically for AM, and offers insights and future perspectives on the development of advanced strengthening strategies and alloy design methodologies for AM applications.

Graphical abstract
Keywords
Additive manufacturing
Nickel-based superalloy
Cracking mechanism
Microstructural evolution
Strengthening mechanism
Alloy design
Funding
This work was supported by the Advanced Materials- National Science and Technology Major Project (Grant No. 2024ZD0601000), National Natural Science Foundation of China (Grant No. 52105344), Natural Science Foundation of Guangdong Province (Grant No. 2021A1515010942), and Guangzhou Basic and Applied Basic Research (Grant No. 202201010365).
Conflict of interest
The authors declare no financial or personal relationships with other people or organizations that can inappropriately influence the present work. There is no professional or other personal interest of any nature or kind in any product, service, or company that could be construed as influencing the work presented in, or the review of, the present article.
References
  1. Zhang Z, Huang H, Zhang Z. A review of the microstructure and properties of superalloys regulated by magnetic field. J Mater Res Technol. 2024;30:9285-9317. doi: 10.1016/j.jmrt.2024.05.189
  2. Gudivada G, Pandey AK. Recent developments in nickel-based superalloys for gas turbine applications: Review. J Alloys Comp. 2023;964:171128. doi: 10.1016/j.jallcom.2023.171128
  3. Ding W, Miao Q, Li B, et al. Review on grinding technology of nickel-based superalloys used for aero-engine. J Mech Eng. 2019;55:189-215. doi: 10.3901/JME.2019.01.189
  4. Su J, Ng WL, An J, Yeong WY, Chua CK, Sing SL. Achieving sustainability by additive manufacturing: A state-of-the-art review and perspectives. Virtual Phys Prototyp. 2024;19(1):2438899. doi: 10.1080/17452759.2024.2438899
  5. Tan C, Li R, Su J, et al. Review on field assisted metal additive manufacturing. Int J Mach Tools Manuf. 2023;189:104032. doi: 10.1016/j.ijmachtools.2023.104032
  6. Su J, Li Q, Teng J, et al. Programmable mechanical properties of additively manufactured novel steel. Int J Extreme Manuf. 2025;7:015001. doi: 10.1088/2631-7990/ad88bc
  7. Pusateri V, Hauschild MZ, Kara S, Goulas C, Olsen SI. Quantitative sustainability assessment of metal additive manufacturing: A systematic review. CIRP J Manuf Sci Technol. 2024;49:95-110. doi: 10.1016/j.cirpj.2023.12.005
  8. Sarac Yakupoglu T. The qualification of the additively manufactured parts in the aviation industry. Am J Aerosp Eng. 2019;6(1):1-10. doi: 10.11648/j.ajae.20190601.11
  9. CFM International. CFM International Celebrates $32 Billion in New Orders and Commitments at 2017 Paris Air Show. United States: CFM International; 2017.
  10. Mostafaei A, Ghiaasiaan R, Ho IT, et al. Additive manufacturing of nickel-based superalloys: A state-of-the-art review on process-structure-defect-property relationship. Prog Mater Sci. 2023;136:101108. doi: 10.1016/j.pmatsci.2023.101108
  11. Shi F, Zhao J, Wang Z, et al. Research on processing technology of superalloy K465 via laser additive manufacturing. Mech Sci Technol Aerospace Eng. 2017;36:1298-1302. doi: 10.13433/j.cnki.1003-8728.2017.1298
  12. Wang XH, Lin X, Yang HO, et al. Research on the crack predictions in K465 superalloy by laser remelting based on BP neural networks. Yingyong Jiguang/Appl Laser Technol. 2014;34(1):9-14.
  13. He B, Li D, Zhang A, et al. Influence of oxidation on the cracks of DZ125L nickel-based superalloy thin-walled parts in laser metal direct forming. Rapid Prototyp J. 2013;19(6):446-451. doi: 10.1108/RPJ-12-2011-0133
  14. Li Y, Chen K, Tamura N. Mechanism of heat affected zone cracking in Ni-based superalloy DZ125L fabricated by laser 3D printing technique. Mater Des. 2018;150:171-181. doi: 10.1016/j.matdes.2018.04.032
  15. Boswell JH, Clark D, Li W, Attallah MM. Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy. Mater Des. 2019;174:107793. doi: 10.1016/j.matdes.2019.107793
  16. Kalentics N, Farrokhpour N, Logé RE, et al. Healing cracks in selective laser melting by 3D laser shock peening. Addit Manuf. 2019;30:100881. doi: 10.1016/j.addma.2019.100881
  17. Chen M, Hua L, Hu Z, Dong K, Qin X. Cracking and suppression mechanisms of directed energy deposited IN738 superalloy revealed by microstructural characterization, in-situ thermal monitoring, and numerical simulations. J Alloys Comp. 2025;1020:179446. doi: 10.1016/j.jallcom.2025.179446
  18. Perevoshchikova N, Gharbi F, Audinot JN, et al. Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlert’s design. Rapid Prototyp J. 2017;23(5):881-892. doi: 10.1108/RPJ-04-2016-0063
  19. Duan RX, Huang BY, Liu ZM, Peng K, Lu XQ. Selective laser melting fabrication and cracking behavior of Rene104 nickel-based superalloy. Trans Nonferrous Metals Soc China. 2018;28(8):1568-1578. doi: 10.19476/j.ysxb.1004.0609.2018.08.10
  20. Yang J, Li F, Wang Z, Zeng X. Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication. J Mater Process Technol. 2015;225:229-239. doi: 10.1016/j.jmatprotec.2015.06.002
  21. Carter LN, Martin C, Withers PJ, Attallah MM. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J Alloys Comp. 2014;615:338-347. doi: 10.1016/j.jallcom.2014.06.172
  22. Zhao X, Chen J, He F, Tan H, Huang W. Cracking mechanism of Rene88DT superalloy by laser rapid forming. Rare Metal Mater Eng. 2007;36(2):216-220.
  23. Bi G, Sun CN, Chen HC, Ng FL, Ma CCK. Microstructure and tensile properties of superalloy IN100 fabricated by micro-laser aided additive manufacturing. Mater Des. 2014;60:401-408. doi: 10.1016/j.matdes.2014.04.020
  24. Chen Y, Zhang K, Huang J, Hosseini R, Li Z. Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718. Mater Des. 2015;90:586-594. doi: 10.1016/j.matdes.2015.10.155
  25. Chen Y, Lu FG, Zhang K, et al. Dendritic microstructure and hot cracking of laser additive manufactured Inconel 718 under improved base cooling. J Alloys Comp. 2016;670:312-321. doi: 10.1016/j.jallcom.2016.01.250
  26. Lu YZ, Lei WN, Ren WB, Chen SX. Crack analysis and control of laser cladding Inconel 718 alloy. Surf Technol. 2020;49(9):233-243.
  27. Zhang YC, Wang Z, Zhang YY, et al. Microstructure, mechanical properties and thermal crack behavior of laser cladded In718 alloy coating. J Xihua Univ (Nat Sci Ed). 2022;41(3):42-50.
  28. Zhang J, Li S, Wei QS, Shi Y, Wang L, Guo L. Cracking behavior and inhibiting process of Inconel 625 alloy formed by selective laser melting. Chin J Rare Metals. 2015;39(11):961-966. doi: 10.13373/j.cnki.cjrm.2015.11.001
  29. Qiu C, Chen HX, Liu Q, Yue S, Wang HM. On the solidification behaviour and cracking origin of a nickel-based superalloy during selective laser melting. Mater Character. 2019;148:330-344. doi: 10.1016/j.matchar.2018.12.032
  30. Darabi R, Oliveira JP, Nemati N, Reis A, Cesar de Sá J. Benchmarking advanced multiphase field modeling of Inconel 625 in additive manufacturing: Correlating powder bed fusion with dendrite growth and crack formation. Materialia. 2025;40:102384. doi: 10.1016/j.mtla.2025.102384
  31. Pakniat M, Ghaini FM, Torkamany MJ. Hot cracking in laser welding of Hastelloy X with pulsed Nd: YAG and continuous wave fiber lasers. Mater Des. 2016;106:177-183. doi: 10.1016/j.matdes.2016.05.124
  32. Han Q, Gu Y, Soe S, Lacan F, Setchi R. Effect of hot cracking on the mechanical properties of Hastelloy X superalloy fabricated by laser powder bed fusion additive manufacturing. Optics Laser Technol. 2019;124:105984. doi: 10.1016/j.optlastec.2019.105984
  33. Hu J, Lin X, Hu Y. High wear resistance and strength of Hastelloy X reinforced with TiC fabricated by laser powder bed fusion additive manufacturing. Appl Surf Sci. 2024;648:159004. doi: 10.1016/j.apsusc.2023.159004
  34. Han Q, Mertens R, Montero-Sistiaga ML, et al. Laser powder bed fusion of Hastelloy X: Effects of hot isostatic pressing and the hot cracking mechanism. Mater Sci Eng A. 2018;732:228-239. doi: 10.1016/j.msea.2018.07.008
  35. Hu J, Hu Y, Lan C, et al. Cracking mechanism and control of Hastelloy X prepared by laser powder bed fusion. J Mater Res Technol. 2022;21:3526-3547. doi: 10.1016/j.jmrt.2022.10.164
  36. Tomus D, Rometsch PA, Heilmaier M, Wu X. Effect of minor alloying elements on crack-formation characteristics of Hastelloy-X manufactured by selective laser melting. Addit Manuf. 2017;16:65-72. doi: 10.1016/j.addma.2017.05.006
  37. Saarimäki J, Lundberg M, Moverare JJ, et al. Characterization of Hastelloy X produced by laser powder bed additive manufacturing. In: Proceedings of the World Congress on Powder Metallurgy & Particulate Materials (World PM2016). Hamburg, Germany: European Powder Metallurgy Association (EPMA); 2016. p. 1-8.
  38. Dupont JN, Lippold JC, Kiser SD. Welding Metallurgy and Weldability of Nickel-Based Alloys. Hoboken, NJ: John Wiley & Sons, Inc.; 2009.
  39. Hu YL, Lin X, Yu XB, Xu JJ, Lei M, Huang WD. Effect of Ti addition on cracking and microhardness of Inconel 625 during the laser solid forming process. J Alloys Comp. 2017;711:267-277. doi: 10.1016/j.jallcom.2017.03.355
  40. Sonar T, Balasubramanian V, Malarvizhi S, Venkateswaran T, Sivakumar D. An overview on welding of Inconel 718 alloy - Effect of welding processes on microstructural evolution and mechanical properties of joints. Mater Character. 2021;174:110997. doi: 10.1016/j.matchar.2021.110997
  41. Xu JJ, Lin X, Guo PF, et al. The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy. J Alloys Compd. 2018;749:859-870. doi: 10.1016/j.jallcom.2018.03.366
  42. Cloots M, Uggowitzer PJ, Wegener K. Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles. Mater Des. 2016;89:770-784. doi: 10.1016/j.matdes.2015.10.027
  43. Ci S, Liang J, Li J, et al. Microstructure and stress-rupture property of DD32 nickel-based single crystal superalloy fabricated by additive manufacturing. J Alloys Compd. 2021;854:157180. doi: 10.1016/j.jallcom.2020.157180
  44. Zhou Z, Gill AS, Qian D, et al. A finite element study of thermal relaxation of residual stress in laser shock peened IN718 superalloy. Int J Impact Eng. 2011;38(7):590-596. doi: 10.1016/j.ijimpeng.2011.02.006
  45. Moat RJ, Pinkerton AJ, Li L, Withers PJ, Preuss M. Residual stresses in laser direct metal deposited Waspaloy. Mater Sci Eng A. 2011;528(6):2288-2298. doi: 10.1016/j.msea.2010.12.010
  46. Nadammal N, Cabeza S, Mishurova T, et al. Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718. Mater Des. 2017;134:139-150. doi: 10.1016/j.matdes.2017.08.049
  47. Mazumder J. Laser direct metal deposition technology and microstructure and composition segregation of Inconel 718 superalloy. J Iron Steel Res Int. 2011;18(4):73-78. doi: 10.1016/S1006-706X(11)60054-X
  48. Wang F, Ma D, Buhrig-Polaczek A. Microsegregation behavior of alloying elements in single-crystal nickel-based superalloys with emphasis on dendritic structure. Mater Charact. 2017;127:311-316. doi: 10.1016/j.matchar.2017.02.030
  49. Shi Z, Dong J, Zhang M, Zheng L. Solidification characteristics and segregation behavior of Ni-based superalloy K418 for auto turbocharger turbine. J Alloys Compd. 2013;571:168-177. doi: 10.1016/j.jallcom.2013.03.241
  50. Feng S, Zhang N, Luo X. Influence of segregation on liquid density in the mushy zone of DZ483 Ni-based superalloy. Acta Metall Sin. 2012;48(5):541-546. doi: 10.3724/SP.J.1037.2012.00037
  51. Liang YJ, Cheng X, Wang HM. A new microsegregation model for rapid solidification multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid directional solidification. Acta Mater. 2016;118:17-27. doi: 10.1016/j.actamat.2016.07.008
  52. Ojo OA, Chaturvedi MC. On the role of liquated γ′ precipitates in weld heat affected zone microfissuring of a nickel-based superalloy. Mater Sci Eng A. 2005;403(1-2):77-86. doi: 10.1016/j.msea.2005.04.034
  53. Sidhu RK, Ojo OA, Chaturvedi MC. Microstructural response of directionally solidified Rene’ 80 superalloy to gas-tungsten arc welding. Metall Mater Trans A. 2009;40(1):150-162. doi: 10.1007/s11661-008-9700-5
  54. Rush MT, Colegrove PA, Zhang Z, Broad D. Liquation and post-weld heat treatment cracking in Rene 80 laser repair welds. J Mater Process Technol. 2012;212(1):188-197. doi: 10.1016/j.jmatprotec.2011.09.001
  55. Chen Y, Lu FG, Zhang K, et al. Laser powder deposition of carbon nanotube reinforced nickel-based superalloy Inconel 718. Carbon. 2016;107:361-370. doi: 10.1016/j.carbon.2016.06.014
  56. Harrison NJ, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting: A fundamental alloy design approach. Acta Mater. 2015;94:59-68. doi: 10.1016/j.actamat.2015.04.035
  57. Zhong M, Sun H, Liu W, Li J, Zhu X, He J. Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy. Scr Mater. 2005;53(2):159-164. doi: 10.1016/j.scriptamat.2005.03.047
  58. Zhao XM, Lin X, Chen J, Xue L, Huang WD. The effect of hot isostatic pressing on crack healing, microstructure, and mechanical properties of Rene88DT superalloy prepared by laser solid forming. Mater Sci Eng A. 2009;504:29-134. doi: 10.1016/j.msea.2008.12.024
  59. Nematzadeh F, Akbarpour MR, Parvizi S, Kokabi AH, Sadrnezhaad SK. Effect of welding parameters on microstructure, mechanical properties and hot cracking phenomenon in Udimet 520 superalloy. Mater Des. 2012;36:94-99. doi: 10.1016/j.matdes.2011.10.020
  60. Idowu OA, Ojo OA, Chaturvedi MC. Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718Plus superalloy. Mater Sci Eng A. 2007;454:389-397. doi:10.1016/j.msea.2006.11.054
  61. Bian HY, Zhai XY, Wang SJ, Li Y, Wang W. Influence of heat input and thermal cycling on the crack and microstructure of laser deposition repair DZ125 alloy. Rare Met Mater Eng. 2020;49:1701-1706. doi: 10.12442/j.issn.1002-185X.20190156
  62. Ebrahimnia M, Ghaini FM, Shahverdi HR. Hot cracking in pulsed laser processing of a nickel-based superalloy built up by electrospark deposition. Sci Technol Weld Join. 2014;19(1):25-29. doi: 10.1179/1362171813Y.0000000157
  63. Chen ZJ, Zhang QL, Lou CH, Yao JH. Methods of crack control for inconel 738 laser cladding layer. Appl Laser. 2013;33(1):7-13.
  64. Han Q, Gu Y, Setchi R, et al. Additive manufacturing of high-strength crack-free Ni-based Hastelloy X superalloy. Addit Manuf. 2019;30:100919. doi: 10.1016/j.addma.2019.100919
  65. Hu YL, Lin X, Zhang SY, et al. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming. J Alloys Comp. 2018;767:330-344. doi: 10.1016/j.jallcom.2018.07.087
  66. Hu YL, Lin X, Lu XF, et al. Evolution of solidification microstructure and dynamic recrystallisation of Inconel 625 during laser solid forming process. J Mater Sci. 2018;53:15650-15666. doi: 10.1007/s10853-018-2701-x
  67. Li X, Shi JJ, Wang CH, et al. Effect of heat treatment on microstructure evolution of Inconel 718 alloy fabricated by selective laser melting. J Alloys Compd. 2018;764:639-649. doi: 10.1016/j.jallcom.2018.06.112
  68. Chlebus E, Gruber K, Kuźnicka B, Kwaśny W, Sałacinski T. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater Sci Eng A. 2015;639:647-655. doi: 10.1016/j.msea.2015.05.035
  69. Zhang H, Li C, Liu Y, et al. Effect of hot deformation on γ″ and δ phase precipitation of Inconel 718 alloy during deformation and isothermal treatment. J Alloys Compd. 2017;716:65-72. doi: 10.1016/j.jallcom.2017.05.042
  70. Konečná R, Nicoletto G, Kunz L, Bača A. Microstructure and directional fatigue behavior of Inconel 718 produced by selective laser melting. Procedia Struct Integr. 2016;2: 2381-2388. doi: 10.1016/j.prostr.2016.06.298
  71. Zhang F, Ilavsky J, Lindwall G, Stoudt M, Levine L, Allen A. Solid-state transformation of an additively manufactured Inconel 625 alloy at 700℃. Appl Sci. 2021;11:8643. doi: 10.3390/app11188643
  72. Lass EA, Stoudt MR, Katz MB, Williams ME, Ghosh G, Levine LE. Precipitation and dissolution of δ and γ″ during heat treatment of a laser powder-bed fusion produced Ni-based superalloy. Scr Mater. 2018;154:83-86. doi: 10.1016/j.scriptamat.2018.05.025
  73. Marchese G, Bassini E, Parizia S, et al. Role of the chemical homogenization on the microstructural and mechanical evolution of prolonged heat-treated laser powder bed fused Inconel 625. Mater Sci Eng A. 2020;796:140007. doi: 10.1016/j.msea.2020.140007
  74. Lass EA, Stoudt MR, Williams ME, et al. Formation of the Ni3Nb δ-phase in stress-relieved Inconel 625 produced via laser powder-bed fusion additive manufacturing. Metall Mater Trans A Phys Metall Mater Sci. 2017;48(11): 5547-5558. doi: 10.1007/s11661-017-4304-6
  75. Luna V, Trujillo L, Gamon A, et al. Comprehensive and comparative heat treatment of additively manufactured Inconel 625 alloy and corresponding microstructures and mechanical properties. J Manuf Mater Process. 2022;6:107. doi: 10.3390/jmmp6050107
  76. Rosenthal S, Platt S, Hoelker-Jaeger R. Forming properties of additively manufactured monolithic Hastelloy X sheets. Mater Sci Eng A. 2019;753:300-316. doi: 10.1016/j.msea.2019.03.035
  77. Zhang F, Levine LE, Allen AJ, et al. Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive manufactured by laser powder bed fusion. Acta Mater. 2018;152:200-214. doi: 10.1016/j.actamat.2018.03.017
  78. Dinda GP, Dasgupta AK, Mazumder J. Texture control during laser deposition of nickel-based superalloy. Scr Mater. 2012;67(5):503-506. doi: 10.1016/j.scriptamat.2012.12.028
  79. Ma D, Stoica AD, Wang Z, Beese AM. Crystallographic texture in an additively manufactured nickel-base superalloy. Mater Sci Eng A. 2017;684:47-53. doi: 10.1016/j.msea.2016.11.110
  80. Sui S, Tan H, Chen J, et al. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing. Acta Mater. 2019;164:413-427. doi: 10.1016/j.actamat.2018.10.032
  81. Sui S, Chen J, Fan E, Yang H, Lin X, Huang W. The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718. Mater Sci Eng A. 2017;695:6-13. doi: 10.1016/j.msea.2017.03.098
  82. Wu S, Peng HZ, Gao X, et al. Improving creep property of additively manufactured Inconel 718 through specifically designed post heat treatments. Mater Sci Eng A. 2022;857:144047. doi: 10.1016/j.msea.2022.144047
  83. Guo J. The effect of aluminum and titanium on the microstructure and mechanical properties of an iron-base alloy. Acta Metall Sin. 1978;14(3):227-234.
  84. Li X, Chen B, Xing W, et al. Effect of Si on solidification behavior and mechanical property of superalloy K4169. Chin J Mater Res. 2018;32(12):936-945. doi: 10.11901/1005.3093.2018.181
  85. Sullivan CP, Donachie MJ. Microstructures and mechanical properties of iron-base (containing) superalloys. Met Eng Q. 1971;4(11):1.
  86. Ling L, Han Y, Zhou W, et al. Study of microsegregation and Laves phase in Inconel 718 superalloy regarding cooling rate during solidification. Metall Mater Trans A. 2015;46(1):1-8. doi: 10.1007/s11661-014-2614-5
  87. Xiao H, Li S, Han X, Mazumder J, Song L. Laves phase control of Inconel 718 alloy using quasi-continuous-wave laser additive manufacturing. Mater Des. 2017;122:330-339. doi: 10.1016/j.matdes.2017.03.004
  88. Xiao H, Li SM, Xiao WJ, et al. Effects of laser modes on Nb segregation and Laves phase formation during laser additive manufacturing of nickel-based superalloy. Mater Lett. 2017;188:260-262. doi: 10.1016/j.matlet.2016.10.118
  89. Tucho WM, Cuvillier P, Sjølst-Kverneland A, Hansen V. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater Sci Eng A. 2017;689:220-232. doi: 10.1016/j.msea.2017.02.062
  90. Dinda GP, Dasgupta AK, Mazumder J. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability. Mater Sci Eng A. 2009;509(1):98-104. doi: 10.1016/j.msea.2009.01.009
  91. Kreitcberg A, Brailovski V, Turenne S. Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion. Mater Sci Eng A. 2017;689:1-10. doi: 10.1016/j.msea.2017.02.038
  92. Thomas A, El-Wahabi M, Cabrera JM, Prado JM. High temperature deformation of Inconel 718. J Mater Process Technol. 2006;177(1-3):469-472. doi: 10.1016/j.jmatprotec.2006.04.072
  93. Liu F, Lin X, Song M, et al. Effect of intermediate heat treatment temperature on microstructure and notch sensitivity of laser solid-formed Inconel 718 superalloy. J Wuhan Univ Technol Mater Sci Ed. 2011;26(5):908-913. doi: 10.1007/s11595-011-0335-9
  94. Azadian S, Wei L, Warren R. Delta phase precipitation in Inconel 718. Mater Charact. 2004;53(1):7-16. doi: 10.1016/j.matchar.2004.07.004
  95. Cai D, Zhang W, Nie P, Liu W, Yao M. Dissolution kinetics of δ phase and its influence on the notch sensitivity of Inconel 718. Mater Charact. 2007;58(3):220-225. doi: 10.1016/j.matchar.2006.04.020
  96. Li S, Zhuang J, Yang J, et al. The effect of δ-phase on crack propagation under creep and fatigue conditions in Alloy 718. In: Loria EA, editor. Superalloys 718, 625, 706 and Various Derivatives. Warrendale, PA: TMS; 1994. p. 545-556.
  97. Sundararaman M. Evolution of δ phase microstructure in Alloy 718. In: Superalloy 718, 718+ and 907: Proceedings of the 7th International Symposium on Superalloy 718 and Derivatives. United States: John Wiley & Sons; 2010. p. 139-152. doi: 10.1002/9781118762488.ch11
  98. Ye N, Cheng M, Zhang S, Song HW, Zhou HW, Wang PB. Effect of δ phase on mechanical properties of GH4169 alloy at room temperature. J Iron Steel Res Int. 2015;22(8):752-756. doi: 10.1016/S1006-706X(15)30068-6
  99. Yuan Z, Liu J, Zhang S. Research on precipitation kinetics of δ-phase in GH4169 alloy. J Shenyang Ligong Univ. 2010;29(2):23-26.
  100. Deng G, Tu S, Zhang X, et al. Small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 at 650°C in air. Eng Fract Mech. 2016;153:35-49. doi: 10.1016/j.engfracmech.2015.12.014
  101. Hong B, Yi X, Meng QC. Effect of δ-Ni3Nb on low-cycle fatigue fracture of Inconel 718. Acta Metall Sin. 1994;27(2):79-82.
  102. Zhang XC, Li HC, Zeng X, Tu ST, Zhang CC, Wang CQ. Fatigue behavior and bilinear Coffin-Manson plots of Ni-based GH4169 alloy with different volume fractions of δ phase. Mater Sci Eng A. 2017;682:12-22. doi: 10.1016/j.msea.2016.11.040
  103. Zhang H, Zhang S, Cheng M. Effect of δ phase on the tensile deformation behavior of GH4169 alloy at high temperature. Acta Metall Sin. 2013;29(4):483-488. doi: 10.3724/SP.J.1037.2012.00620
  104. Wang RYZ, Zhang XC, Liu F, Yao LL, Tu ST. Fatigue and fracture behaviors of nickel-based forging GH4169 superalloy and optimization of model parameters. Procedia Eng. 2015;130:1088-1096. doi: 10.1016/j.proeng.2015.12.270
  105. Zhang H, Li C, Guo Q, et al. Hot tensile behavior of cold-rolled Inconel 718 alloy at 650°C: the role of δ phase. Mater Sci Eng A. 2018;722:136-146. doi: 10.1016/j.msea.2018.02.093
  106. Ning Y, Huang S, Fu MW, Dong J. Microstructural characterization, formation mechanism, and fracture behavior of the needle δ phase in Fe–Ni–Cr-type superalloys with high Nb content. Mater Charact. 2015;109:36-42. doi: 10.1016/j.matchar.2015.09.011
  107. Cao GH, Sun TY, Wang CH, et al. Investigations of γ′, γ″, and δ precipitates in heat-treated Inconel 718 alloy fabricated by selective laser melting. Mater Charact. 2018;136:398-406. doi: 10.1016/j.matchar.2018.01.015
  108. Tiley J, Viswanathan GB, Hwang JY, Srinivasan R, Lipsitt HA. Evaluation of gamma prime volume fractions and lattice misfits in a nickel-base superalloy using the external standard X-ray diffraction method. Mater Sci Eng A. 2010;528(1):32-36. doi: 10.1016/j.msea.2010.07.036
  109. Drexler A, Oberwinkler B, Primig S, et al. Experimental and numerical investigations of the γ″ and γ′ precipitation kinetics in Alloy 718. Mater Sci Eng A. 2018;723:314-323. doi: 10.1016/j.msea.2018.03.013
  110. Collins DM, Stone HJ. A modelling approach to yield strength optimisation in a nickel-base superalloy. Int J Plast. 2014;54:96-112. doi: 10.1016/j.ijplas.2013.08.009
  111. Slama C, Abdellaoui M. Structural characterization of the aged Inconel 718. J Alloys Compd. 2000;306(1-2):277-284. doi: 10.1016/S0925-8388(00)00789-1
  112. Srinivas S, Prasad KS, Gopikrishna D, Venugopal P. Stress rupture in hot-rolled superalloy 718: Property-microstructure correlation. Mater Charact. 1995;35(2):93-98. doi: 10.1016/1044-5803(95)80108-1
  113. Ming X, Chen J, Tan H, et al. Coarsening behavior of γ″ precipitates in GH4169 superalloy fabricated by laser solid forming. J Mater Eng. 2014;8:8-14.
  114. Chaturvedi MC, Han Y. Effect of particle size on the creep rate of superalloy Inconel 718. Mater Sci Eng. 1987;89:7-10. doi: 10.1016/0025-5416(87)90264-3
  115. Wan HY, Luo YW, Zhang B, et al. Effects of surface roughness and build thickness on fatigue properties of selective laser melted Inconel 718 at 650°C. Int J Fatigue. 2020;137:105654. doi: 10.1016/j.ijfatigue.2020.105654
  116. Ma XF, Zhai HL, Zuo L, et al. Fatigue short crack propagation behavior of selective laser melted Inconel 718 alloy by in-situ SEM study: Influence of orientation and temperature. Int J Fatigue. 2020;139:105739. doi: 10.1016/j.ijfatigue.2020.105739
  117. Yu X, Lin X, Wang Z, et al. Room and high temperature high-cycle fatigue properties of Inconel 718 superalloy prepared using laser directed energy deposition. Mater Sci Eng A. 2021;825:141865. doi: 10.1016/j.msea.2021.141865
  118. Zhang S, Weng K, Guo C, et al. The creep behavior of IN718 alloy fabricated by selective laser melting compared to forging. Appl Mater Today. 2024;38:102252. doi: 10.1016/j.apmt.2024.102252
  119. Shi Q, Zhang S, Dong X, Wang H, Liu Y, Zhang X. Achieving superior resistance to high-temperature creep in laser powder bed fusion of Inconel 718 via grain boundary serration. J Mater Res Technol. 2024;33:7534-7545. doi: 10.1016/j.jmrt.2024.11.038
  120. Spierings AB, Dawson K, Kern K, Stanojevic A, Weber R. SLM-processed Sc- and Zr-modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment. Mater Sci Eng A. 2017;701:264-273. doi: 10.1016/j.msea.2017.06.089
  121. Sreeramagiri P, Bhagavatam A, Ramakrishnan A, Alrehaili H, Dinda GP. Design and development of a high-performance Ni-based superalloy WSU 150 for additive manufacturing. J Mater Sci Technol. 2020;47:20-28. doi: 10.1016/j.jmst.2020.01.041
  122. Tang YT, Panwisawas C, Ghoussoub JN, et al. Alloys-by-design: application to new superalloys for additive manufacturing. Acta Mater. 2021;202:417-436. doi: 10.1016/j.actamat.2020.09.023
  123. Kou S. A criterion for cracking during solidification. Acta Mater. 2015;88:366-374. doi: 10.1016/j.actamat.2015.01.034
  124. Song W, Yang J, Liang J, et al. A new approach to design advanced superalloys for additive manufacturing. Addit Manuf. 2024;84:104098. doi: 10.1016/j.addma.2024.104098
  125. Sun Z, Soh V, Lee C, Tan MJ, Bi G, Zhou W. Effects of carbon content on precipitate evolution and crack susceptibility in additively manufactured IN738LC. Mater Sci Addit Manuf. 2024;3(1):2264. doi: 10.36922/msam.2264
  126. Hong C, Gu DD, Dai DH, Zhang D, Wen M. Laser additive manufacturing of ultrafine TiC particle reinforced Inconel 625 based composite parts: Tailored microstructures and enhanced performance. Mater Sci Eng A. 2015;635:118-128. doi: 10.1016/j.msea.2015.03.043
  127. Gu DD, Hong C, Jia Q, Dai DH, Zhang D. Combined strengthening of multi-phase and graded interface in laser additive manufactured TiC/Inconel 718 composites. J Phys D Appl Phys. 2014;47(4):045309. doi: 10.1088/0022-3727/47/4/045309
  128. Gu DD, Zhang HM, Dai DH, Zhang D, Wen M. Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance. Compos Part B Eng. 2019;163:585-597. doi: 10.1016/j.compositesb.2018.12.146
  129. Cao SN, Gu DD. Laser metal deposition additive manufacturing of TiC/Inconel 625 nanocomposites: Relation of densification, microstructures, and performance. J Mater Res. 2015;30(23):3616-3628. doi: 10.1557/jmr.2015.358
  130. Zhang BC, Bi GJ, Sun CN, Dong ZL, Bi J. Microstructure and mechanical properties of Inconel 625/nano-TiB₂ composite fabricated by LAAM. Mater Des. 2016;111:70-79. doi: 10.1016/j.matdes.2016.08.078
  131. Yang W, He W, Hu Z, Zhang X, Liu Y, Wang H. Fabrication of Inconel 718 composites reinforced with TiCN via laser powder bed fusion: Integration of triply periodic minimal surface lattice structures. J Mater Res Technol. 2024;32: 2443-2458. doi: 10.1016/j.jmrt.2024.08.102
  132. Gruber K, Stopyra W, Kobiela K, Kurzynowski T, Skiba M, Szczepański T. Achieving high strength and ductility in Inconel 718: Tailoring grain structure through micron-sized carbide additives in PBF-LB/M additive manufacturing. Virtual Phys Prototyp. 2024;19(1):e2396064. doi: 10.1080/17452759.2024.2396064
  133. Wang P, Zhang BC, Liu J, Du X. Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting. Mater Des. 2016;112:290-299. doi: 10.1016/j.matdes.2016.09.080
  134. Deng PS, Yao CW, Feng K, et al. Enhanced wear resistance of laser cladded graphene nanoplatelets reinforced Inconel 625 superalloy composite coating. Surf Coat Technol. 2018;335:334-344. doi: 10.1016/j.surfcoat.2017.12.047
  135. Xiao WH, Lu SQ, Wang YC, et al. Mechanical and tribological behaviors of graphene/Inconel 718 composites. Trans Nonferrous Met Soc China. 2018;28:1958-1969. doi: 10.1016/S1003-6326(18)64841-1

 

 

 

 

Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing