AccScience Publishing / MSAM / Volume 5 / Issue 1 / DOI: 10.36922/MSAM025340079
ORIGINAL RESEARCH ARTICLE

 Reactive selective laser melting of silicon carbide

Tsovinar Ghaltaghchyan1* Khachik Nazaretyan2 Ani Khachikyan1 Marina Aghayan1
Show Less
1 3D printing Research Laboratory, A.B. Nalbandyan Institute of Chemical Physics NAS RA, Yerevan, Armenia
2 Laboratory of Macrokinetics of Solid-State Reactions, A.B. Nalbandyan Institute of Chemical Physics NAS RA, Yerevan, Armenia
MSAM 2026, 5(1), 025340079 https://doi.org/10.36922/MSAM025340079
Received: 22 August 2025 | Accepted: 24 September 2025 | Published online: 31 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Additive manufacturing of silicon carbide (SiC) is challenging due to uncontrollable quality, surface roughness of fabricated parts, expensive post-processing, and long production times for customized components. Developing cost-effective, rapid manufacturing techniques that maintain high quality and design freedom is therefore highly desirable. In this study, laser powder bed fusion (LPBF) followed by ultra-fast post heat treatment was applied to produce SiC-based composites using silicon and carbon powders as raw materials. The influence of processing parameters on silicon-carbon reaction and sintering was investigated. Boron carbide was used as an additive to enhance sintering. Substantial SiC formation occurred despite the limited heating time. Boron carbide influenced both SiC formation and grain growth. The maximum Vickers hardness (1218 HV0.2) was achieved in boron carbide-containing heat-treated samples printed at a laser power of 48 W. This novel approach enables the efficient fabrication of SiC-based composites with enhanced hardness, underscoring the potential of LPBF for cost-effective and customizable ceramic component manufacturing.

Graphical abstract
Keywords
Laser powder bed fusion
Selective laser melting
Silicon carbide
Ultra-fast heating
High-speed temperature scanner
Reactive sintering
Funding
This work was supported by the Higher Education and Science Committee of MESCS RA under grant numbers 22AA-2F022 and 22IRF-05.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Izhevskyi VA, Genova LA, Bressiani JC, Bressiani AHA. Review article: Silicon carbide. Structure, properties and processing. Cerâmica. 2000;46(297):4-13. doi: 10.1590/S0366-69132000000100002
  2. Freedman MR, Millard ML. Improved consolidation of silicon carbide. In: 10th Annual Conference on Composites and Advanced Ceramic Materials: Ceramic Engineering and Science Proceedings. Vol. 7. United States: John Wiley & Sons, Inc.; 1986. p. 884-892. doi: 10.1002/9780470320341.ch15
  3. Frolova MG, Leonov AV, Kargin Yu F, et al. Molding features of silicon carbide products by the method of hot slip casting. Inorgan Mater Appl Res. 2018;9(4):675-678. doi: 10.1134/S2075113318040123
  4. Luo ZH, Jiang DL, Zhang JX, Lin QL, Chen ZM, Huang ZR. Preparation of reaction-bonded silicon carbide with well controlled structure by tape casting method. Ceram Int. 2012;38(3):2125-2128. doi: 10.1016/j.ceramint.2011.10.053
  5. Zhang Z, Zhang Y, Gong H, et al. Influence of carbon content on ceramic injection molding of reaction‐bonded silicon carbide. Int J Appl Ceram Technol. 2016;13(5):838-843. doi: 10.1111/ijac.12570
  6. Bharathi V, Anilchandra AR, Sangam SS, Shreyas S, Shankar SB. A review on the challenges in machining of ceramics. Mater Today Proc. 2021;46:1451-1458. doi: 10.1016/j.matpr.2021.03.019
  7. Sharma D, Khurana M, Manghnani S, Chhatrawat RS, Goswami C, Yadav AK. The Challenges in Machining of Ceramics- A Short Review. In: Proceedings of the Advancement in Electronics and Communication Engineering; 2022. Available from: https://ssrn.com/abstract=4186512 [Last accessed on 2025 Oct 15].
  8. Niu Z, Zhang J, Liu F, et al. Forming quality control of laser powder bed fusion GH3536 alloy: Surface quality, defects, and microstructure. Mater Sci Addit Manuf. 2025;4(4):025220042. doi: 10.36922/MSAM025220042
  9. Lu Z, San SLL, Tan MJ, An J, Zhang Y, Chua CK. Preliminary investigation on tensile and fatigue properties of Ti6Al4V manufactured by selected laser melting. Mater Sci Addit Manuf. 2023;2(2):0912. doi: 10.36922/msam.0912
  10. Gunasekaran J, Sevvel P, John Solomon I. Metallic materials fabrication by selective laser melting: A review. Mater Today Proc. 2021;37:252-256. doi: 10.1016/j.matpr.2020.05.162
  11. Langpoklakpam C, Liu AC, Chu KH, et al. Review of silicon carbide processing for power MOSFET. Crystals (Basel). 2022;12(2):245. doi: 10.3390/cryst12020245
  12. Fan Z, Zhang J, Wang Z, Shan C, Huang C, Wang F. A state-of-the-art review of fracture toughness of silicon carbide: Implications for high-precision laser dicing techniques. Processes. 2024;12(12):2696. doi: 10.3390/pr12122696
  13. Meyers S, De Leersnijder L, Vleugels J, Kruth JP. Direct laser sintering of reaction bonded silicon carbide with low residual silicon content. J Eur Ceram Soc. 2018;38(11):3709-3717. doi: 10.1016/j.jeurceramsoc.2018.04.055
  14. Wang Y, Wang P, Li L, et al. Effect of Si addition on microstructure and mechanical properties of SiC ceramic fabricated by direct LPBF with CVI technology. Applied Sciences. 2025;15(15):8585. doi: 10.3390/app15158585
  15. Lv X, Ye F, Cheng L, Fan S, Liu Y. Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology. J Eur Ceram Soc. 2019;39(11):3380-3386. doi: 10.1016/j.jeurceramsoc.2019.04.043
  16. Xu T, Cheng S, Jin L, Zhang K, Zeng T. High‐temperature flexural strength of SiC ceramics prepared by additive manufacturing. Int J Appl Ceram Technol. 2020;17(2):438-448. doi: 10.1111/ijac.13454
  17. Bai X, Ding G, Zhang K, et al. Stereolithography additive manufacturing and sintering approaches of SiC ceramics. Open Ceramics. 2021;5:100046. doi: 10.1016/j.oceram.2020.100046
  18. Lv X, Gao L, Cui X, et al. Binder jetting additive manufacturing of hierarchical structural SiCw/SiC composites. Addit Manuf. 2024;93:104434. doi: 10.1016/j.addma.2024.104434
  19. Hayun S, Paris V, Mitrani R, et al. Microstructure and mechanical properties of silicon carbide processed by Spark Plasma Sintering (SPS). Ceram Int. 2012;38(8):6335-6340. doi: 10.1016/j.ceramint.2012.05.003
  20. Ray DA, Kaur S, Cutler RA, Shetty DK. Effect of additives on the activation energy for sintering of silicon carbide. J Am Ceramic Soc. 2008;91(4):1135-1140. doi: 10.1111/j.1551-2916.2008.02271.x
  21. Ding S, Zhu S, Zeng YP, Jiang D. Fabrication of mullite-bonded porous silicon carbide ceramics by in situ reaction bonding. J Eur Ceram Soc. 2007;27(4):2095-2102. doi: 10.1016/j.jeurceramsoc.2006.06.003
  22. Paik U, Park HC, Choi SC, Ha CG, Kim JW, Jung YG. Effect of particle dispersion on microstructure and strength of reaction-bonded silicon carbide. Mater Sci Eng A. 2002;334(1-2):267-274. doi: 10.1016/S0921-5093(01)01897-4
  23. Aroati S, Cafri M, Dilman H, Dariel MP, Frage N. Preparation of reaction bonded silicon carbide (RBSC) using boron carbide as an alternative source of carbon. J Eur Ceram Soc. 2011;31(5):841-845. doi: 10.1016/j.jeurceramsoc.2010.11.032
  24. Zhang NL, Yang JF, Deng YC, Wang B, Yin P. Preparation and properties of reaction bonded silicon carbide (RB-SiC) ceramics with high SiC percentage by two-step sintering using compound carbon sources. Ceram Int. 2019;45(12):15715-15719. doi: 10.1016/j.ceramint.2019.04.224
  25. Grinchuk PS, Kiyashko MV, Abuhimd HM, et al. Advanced technology for fabrication of reaction-bonded SiC with controlled composition and properties. J Eur Ceram Soc.2021;41(12):5813-5824. doi: 10.1016/j.jeurceramsoc.2021.05.017
  26. Grant GT. Direct digital manufacturing. In: Clinical Applications of Digital Dental Technology. United States: Wiley; 2023. p. 46-59. doi: 10.1002/9781119800613.ch3
  27. Hopkinson N, Hague RJM, Dickens PM, editors. Rapid Manufacturing. United States: Wiley; 2005. doi: 10.1002/0470033991
  28. Gavalda-Diaz O, Saiz E, Chevalier J, Bouville F. Toughening of ceramics and ceramic composites through microstructure engineering: A review. Int Mater Rev. 2025;70(1):3-30. doi: 10.1177/09506608241308337
  29. Karadimas G, Salonitis K. Ceramic matrix composites for aero engine applications-a review. Appl Sci. 2023;13(5):3017. doi: 10.3390/app13053017
  30. Ur Rehman A, Saleem MA, Liu T, Zhang K, Pitir F, Salamci MU. Influence of silicon carbide on direct powder bed selective laser process (sintering/melting) of alumina. Materials. 2022;15(2):637. doi: 10.3390/ma15020637
  31. Meyers S. Direct Selective Laser Sintering of Reaction Bonded Silicon Carbide. Available from: https://hdl.handle. net/2152/89454 [Last accessed on 2025 Oct 10].
  32. Zou Y, Li CH, Tang Y, et al. Preform impregnation to optimize the properties and microstructure of RB-SiC prepared with laser sintering and reactive melt infiltration. J Eur Ceram Soc. 2020;40(15):5186-5195. doi: 10.1016/j.jeurceramsoc.2020.07.023
  33. Ghaltaghchyan T, Khachatryan H, Asatryan K, Rstakyan V, Aghayan M. Effect of additives on selective laser sintering of silicon carbide. Bol Soc Esp Cerám Vidrio. 2023;62(6):504-514. doi: 10.1016/j.bsecv.2023.01.001
  34. Zakaryan M, Nazaretyan K, Aydinyan S, Kharatyan S. Joint reduction of NiO/WO3 pair and NiWO4 by Mg + C combined reducer at high heating rates. Metals (Basel). 2021;11(9):1351. doi: 10.3390/met11091351
  35. Gayler ML. Melting point of high-purity silicon. Nature. 1938;142(3593):478-478. doi: 10.1038/142478a0
  36. Ghaltaghchyan T, Nazaretyan K, Rstakyan V, Aghayan M. Fast carbidization of silicon in additive manufactured Si-C-SiC composite. Results Mater. 2025;25:100653. doi: 10.1016/j.rinma.2024.100653
  37. Gu D, Yang Y, Xi L, Yang J, Xia M. Laser absorption behavior of randomly packed powder-bed during selective laser melting of SiC and TiB2 reinforced Al matrix composites. Opt Laser Technol. 2019;119:105600. doi: 10.1016/j.optlastec.2019.105600
  38. Liu R, Chen G, Qiu Y, et al. Fabrication of porous SiC by direct selective laser sintering effect of boron carbide. Metals (Basel). 2021;11(5):737. doi: 10.3390/met11050737
  39. Stobierski L, Gubernat A. Sintering of silicon carbide II. Effect of boron. Ceram Int. 2003;29(4):355-361. doi: 10.1016/S0272-8842(02)00144-X
  40. Chen J, Chen P, Li X, Zhu Y, Wang F. Effect of B4C on the microstructure and mechanical properties of SiC refractory ceramics. 2022. Available from: https://www.researchgate. net/publication/363930570_Effect_of_B4C_on_the_ Microstructure_and_Mechanical_Properties_of_SiC_ Refractory_Ceramics [Last accessed on 2025 Oct 10].
  41. Stobierski L, Gubernat A. Sintering of silicon carbide I. Effect of carbon. Ceram Int. 2003;29(3):287-292. doi: 10.1016/S0272-8842(02)00117-7
  42. Fang J, Tan YC, Yang Y, et al. Influence of laser power on microstructure and performance of SiC/Ti composite fabricated through selective laser melting. J Mater Res Technol. 2025;34:1130-1143. doi: 10.1016/j.jmrt.2024.12.044
  43. Lee EJ, Lee DH, Kim JC, Kim DJ. Densification behavior of high purity SiC by hot pressing. Ceram Int. 2014;40(10):16389-16392. doi: 10.1016/j.ceramint.2014.07.143
  44. Shin S, Kim M, Kim M, et al. Ultrafast high-temperature sintering of reaction-bonded SiC with Y2O3-Al2O3 sintering additives. Mater Lett. 2025;382:137956. doi: 10.1016/j.matlet.2024.137956
  45. Chaugule PS, Du W, Kamath RR, Barua B, Messner MC, Singh D. Reliability comparisons between additively manufactured and conventional SiC-Si ceramic composites. J Am Ceramic Soc. 2024;107(5):3117-3133. doi: 10.1111/jace.19682
  46. Yu YT, Naik GK, Lim YB, Yoon JM. Sintering behavior of spark plasma sintered SiC with Si-SiC composite nanoparticles prepared by thermal DC plasma process. Nanoscale Res Lett. 2017;12(1):606. doi: 10.1186/s11671-017-2370-8
  47. Zhang ZH, Wang FC, Luo J, Lee SK, Wang L. Processing and characterization of fine-grained monolithic SiC ceramic synthesized by spark plasma sintering. Mater Sci Eng A. 2010;527(7-8):2099-2103. doi: 10.1016/j.msea.2009.12.027

 

 

 

Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing