AccScience Publishing / MSAM / Volume 4 / Issue 3 / DOI: 10.36922/MSAM025220044
ORIGINAL RESEARCH ARTICLE

Microstructural evolution and mechanical properties of laser-powder bed fusion-fabricated Ti-10Ta-2Nb-2Zr alloy as a potential orthopedic implant material

Igor Polozov1* Victoria Nefyodova1 Anton Zolotarev1 Anatoly Popovich1
Show Less
1 Scientific and Educational Center, Structural and Functional Materials, Institute of Mechanical Engineering, Materials, and Transport, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
MSAM 2025, 4(3), 025220044 https://doi.org/10.36922/MSAM025220044
Received: 30 May 2025 | Accepted: 9 July 2025 | Published online: 12 August 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Titanium alloys are gaining attention for their potential to improve implant performance in biomedical applications. This study investigates the Ti-10Ta-2Nb-2Zr alloy fabricated using laser-powder bed fusion (L-PBF) for potential biomedical applications. The research aims to examine the influence of processing parameters on material structure and properties, and to develop porous structures based on triply periodic minimal surfaces (TPMS) to reduce elastic modulus and improve mechanical compatibility with bone tissue. Spherical Ti-10Ta-2Nb-2Zr powder was processed using L-PBF with varying laser power (250 – 280 W), scanning speed (500 – 1000 mm/s), and hatch spacing (80 – 100 μm). Maximum relative density of 99.91% was achieved at volumetric energy density of 70 J/mm3. Differential scanning calorimetry revealed the β-transus temperature at 862°C. Microstructural analysis showed the formation of martensitic α’-phase in the as-built condition with acicular morphology. Heat treatment at 900°C resulted in the formation of a lamellar α + β structure. Mechanical properties in the as-built condition were characterized by yield strength of 551.8 MPa, ultimate tensile strength of 641.2 MPa, elongation of 19.0%, and elastic modulus of 89.0 GPa. After heat treatment, strength characteristics decreased by 15 – 18%, whereas elastic modulus reduced to 86.0 GPa. TPMS porous structures (gyroid, Schwarz, and split) with 50% porosity demonstrated an elastic modulus of 9.2 – 9.7 GPa, representing approximately 18% of the solid material value. These results demonstrate the potential of Ti-10Ta-2Nb-2Zr as a promising alternative to conventional Ti-6Al-4V for orthopedic applications, offering enhanced mechanical properties and reduced stress shielding due to its lower elastic modulus and tailored porous architectures.

Graphical abstract
Keywords
Titanium alloy
Laser powder bed fusion
Biomaterials
Triply periodic minimal surfaces
Mechanical properties
Microstructure
Funding
This research was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement No. 075-15-2024-562).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Wu H, Chen X, Kong L, Liu P. Mechanical and biological properties of Ti and its alloys for oral implant with preparation techniques: A review. Materials (Basel). 2023;16(21):6860. doi: 10.3390/ma16216860
  2. Khorasani AM, Goldberg M, Doeven EH, Littlefair G. Titanium in biomedical applications-properties and fabrication: A review. J Biomater Tissue Eng. 2015;5(8):593-619. doi: 10.1166/jbt.2015.1361
  3. Zhang Y, Xiu P, Jia Z, et al. Effect of vanadium released from micro-arc oxidized porous Ti6Al4V on biocompatibility in orthopedic applications. Colloids Surf B Biointerfaces. 2018;169:366-374. doi: 10.1016/j.colsurfb.2018.05.044
  4. Abdel-Hady Gepreel M, Niinomi M. Biocompatibility of Ti-alloys for long-term implantation. J Mech Behav Biomed Mater. 2013;20:407-415. doi: 10.1016/j.jmbbm.2012.11.014
  5. Laheurte P, Prima F, Eberhardt A, Gloriant T, Wary M, Patoor E. Mechanical properties of low modulus β titanium alloys designed from the electronic approach. J Mech Behav Biomed Mater. 2010;3(8):565-573. doi: 10.1016/j.jmbbm.2010.07.001
  6. Han L, Che S. An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self‐assembled systems. Adv Mater. 2018;30(17):e1705708. doi: 10.1002/adma.201705708
  7. Learmonth ID, Young C, Rorabeck C. The operation of the century: Total hip replacement. Lancet. 2007;370(9597):1508-1519. doi: 10.1016/S0140-6736(07)60457-7
  8. khan B, Kumar S. Implementation of Triply Periodic Minimal Surface (TPMS) Structure in Mesenchymal Stem Cell Differentiation. United States: Research Square; 2022. doi: 10.21203/rs.3.rs-2156625/v1
  9. Castro APG, Pires T, Santos JE, Gouveia BP, Fernandes PR. Permeability versus design in TPMS scaffolds. Materials (Basel). 2019;12(8):1313. doi: 10.3390/ma12081313
  10. Chen LY, Cui YW, Zhang LC. Recent development in beta titanium alloys for biomedical applications. Metals (Basel). 2020;10(9):1139. doi: 10.3390/met10091139
  11. Niinomi M, Boehlert CJ. Titanium alloys for biomedical applications. In: Advances in Metallic Biometerials. Berlin: Springer; 2015. p. 179-213. doi: 10.1007/978-3-662-46836-4_8
  12. Bahl S, Suwas S, Chatterjee K. Comprehensive review on alloy design, processing, and performance of Titanium alloys as biomedical materials. Int Mater Rev. 2021;66(2):114-139. doi: 10.1080/09506608.2020.1735829
  13. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30-42. doi: 10.1016/j.jmbbm.2007.07.001
  14. Huang S, Sing SL, De Looze G, Wilson R, Yeong WY. Laser powder bed fusion of titanium-tantalum alloys: Compositions and designs for biomedical applications. J Mech Behav Biomed Mater. 2020;108:103775. doi: 10.1016/j.jmbbm.2020.103775
  15. Fuerst J, Medlin D, Carter M, Sears J, Vander Voort G. LASER additive manufacturing of titanium-tantalum alloy structured interfaces for modular orthopedic devices. JOM. 2015;67(4):775-780. doi: 10.1007/s11837-015-1345-4
  16. Sing SL, Yeong WY, Wiria FE. Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. J Alloys Compd. 2016;660:461-470. doi: 10.1016/j.jallcom.2015.11.141
  17. Plaine AH, Silva MR, Bolfarini C. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of the metastable β-type Ti-35Nb- 7Zr-5Ta alloy. Mater Res. 2018;22(1):e20180462. doi: 10.1590/1980-5373-mr-2018-0462
  18. Ummethala R, Karamched PS, Rathinavelu S, et al. Selective laser melting of high-strength, low-modulus Ti–35Nb–7Zr– 5Ta alloy. Materialia. 2020;14:100941. doi: 10.1016/j.mtla.2020.100941
  19. Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scrip Mater. 2011;65(1):21-24. doi: 10.1016/j.scriptamat.2011.03.024
  20. Hao YL, Yang R, Niinomi M, et al. Young’s modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α” martensite. Metall Mater Trans A. 2002;33(10):3137-3144. doi: 10.1007/s11661-002-0299-7
  21. Yang K, Wang J, Tang H, Li Y. Additive manufacturing of in-situ reinforced Ti-35Nb-5Ta-7Zr (TNTZ) alloy by selective electron beam melting (SEBM). J Alloys Compd. 2020;826:154178. doi: 10.1016/j.jallcom.2020.154178
  22. Brodie EG, Medvedev AE, Frith JE, Dargusch MS, Fraser HL, Molotnikov A. Remelt processing and microstructure of selective laser melted Ti25Ta. J Alloys Compd. 2020;820:153082. doi: 10.1016/j.jallcom.2019.153082
  23. Ji G, Zhou Z, Meng F, et al. Effect of Zr addition on the local structure and mechanical properties of Ti-Ta-Nb-Zr refractory high-entropy alloys. J Mater Res Technol. 2022;19:4428-4438. doi: 10.1016/j.jmrt.2022.06.160
  24. Biesiekierski A, Lin J, Li Y, Ping D, Yamabe-Mitarai Y, Wen C. Investigations into Ti-(Nb,Ta)-Fe alloys for biomedical applications. Acta Biomater. 2016;32:336-347. doi: 10.1016/j.actbio.2015.12.010
  25. Zhenhuan W, Yu D, Junsi L, et al. Physiochemical and biological evaluation of SLM-manufactured Ti-10Ta-2Nb- 2Zr alloy for biomedical implant applications. Biomed Mater. 2020;15(4):045017. doi: 10.1088/1748-605X/ab7ff4
  26. Morita A, Fukui H, Tadano H, Hayashi S, Hasegawa J, Niinomi M. Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace. Mater Sci Eng A. 2000;280(1):208-213. doi: 10.1016/S0921-5093(99)00668-1
  27. Zhao D, Han C, Li Y, et al. Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting. J Alloys Compd. 2019;804:288-298. doi: 10.1016/j.jallcom.2019.06.307
  28. Soro N, Brodie EG, Abdal-hay A, Alali AQ, Kent D, Dargusch MS. Additive manufacturing of biomimetic titanium-tantalum lattices for biomedical implant applications. Mater Des. 2022;218:110688. doi: 10.1016/j.matdes.2022.110688
  29. Yoo DJ. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int J Precis Eng Manuf. 2011;12(1):61-71. doi: 10.1007/s12541-011-0008-9
  30. Yoo DJ. Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials. 2011;32(31):7741-7754. doi: 10.1016/j.biomaterials.2011.07.019
  31. Dilip JJS, Zhang S, Teng C, et al. Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog Addit Manuf. 2017;2(3):157-167. doi: 10.1007/s40964-017-0030-2
  32. Xiang S, Yuan Y, Zhang C, Chen J. Effects of process parameters on the corrosion resistance and biocompatibility of Ti6Al4V parts fabricated by selective laser melting. ACS Omega. 2022;7(7):5954-5961. doi: 10.1021/acsomega.1c06246
  33. Pesode P, Barve S. A review-metastable β titanium alloy for biomedical applications. J Eng Appl Sci. 2023;70(1):25. doi: 10.1186/s44147-023-00196-7
  34. Liu CC, Li YHZ, Gu J, Song M. Phase transformation in titanium alloys: A review. Trans Nonferrous Metals Soc China. 2024;34(10):3093-3117. doi: 10.1016/S1003-6326(24)66597-0
  35. Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844-879. doi: 10.1016/j.actamat.2012.10.043
  36. Ahmed T, Rack HJ. Phase transformations during cooling in α+β titanium alloys. Mater Sci Eng A. 1998;243(1-2):206-211. doi: 10.1016/S0921-5093(97)00802-2
  37. Bania PJ. Beta titanium alloys and their role in the titanium industry. JOM. 1994;46(7):16-19. doi: 10.1007/BF03220742
  38. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Prog Mater Sci. 2009;54(3):397-425. doi: 10.1016/j.pmatsci.2008.06.004
  39. Jamshidi P, Aristizabal M, Kong W, et al. Selective laser melting of Ti-6Al-4V: The impact of post-processing on the tensile, fatigue and biological properties for medical implant applications. Materials. 2020;13(12):2813. doi: 10.3390/ma13122813
  40. Cho JY, Xu W, Brandt M, Qian M. Selective laser melting-fabricated Ti-6Al-4V alloy: Microstructural inhomogeneity, consequent variations in elastic modulus and implications. Opt Laser Technol. 2019;111:664-670. doi: 10.1016/j.optlastec.2018.08.052



Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing