AccScience Publishing / MSAM / Volume 4 / Issue 1 / DOI: 10.36922/msam.7357
Cite this article
46
Download
389
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ORIGINAL RESEARCH ARTICLE

Understanding the antibacterial efficacy of additively manufactured copper-added 316L stainless steel

Michael B. Myers1 Amit Bandyopadhyay1*
Show Less
1 W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, United States of America
Submitted: 12 December 2024 | Accepted: 24 January 2025 | Published: 26 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

In response to the growing demand for advanced materials with inherent infection resistance, this research investigates the properties of 316L stainless steel with copper, produced through laser-directed energy deposition additive manufacturing. The study focuses on three compositions: pure 316L, 316L with 3 wt.% Cu, and 316L with 5 wt.% Cu. Compressive strength measurements and Vickers hardness tests were conducted to assess mechanical properties, while microstructural characterization and X-ray diffraction analysis provided insights into the material’s physical properties. This research extends beyond physical and mechanical properties by exploring the on-contact antibacterial efficacy against Staphylococcus aureus and Pseudomonas aeruginosa up to 72 h. The addition of Cu reduced the ability of bacterial colonization of both strains on the metal surface. The findings of this investigation have the potential to benefit the biomedical devices, contributing to both structural and biofunctional properties of materials.

Graphical abstract
Keywords
316L stainless steel
Directed energy deposition
Additive manufacturing
Copper
Infection control
Conflict of interest
Amit Bandyopadhyay is the Editorial Board Member of the journal but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly. The authors declare that they have no competing interests.
References
  1. Darouiche RO. Device‐associated infections: A macroproblem that starts with microadherence. Clin Infect Dis. 2001;33(9):1567-1572. doi: 10.1086/323130
  2. iData Research. Orthopedic Trauma Devices Market Size, Share and COVID-19 Impact Analysis. United States. 2019-2025. iData Research; 2019. Available from: https:// idataresearch.com/product/trauma-devices-market-united-states [Last accessed on 2024 Nov 25].
  3. Ciliveri S and Bandyopadhyay A. Enhanced osteogenesis and bactericidal performance of additively manufactured MgO-and Cu-added CpTi for load-bearing implants. Int J Bioprinting. 2023;9(6):1167. doi: 10.36922/ijb.1167
  4. Thakore RV, Greenberg SE, Shi H, et al. Surgical site infection in orthopedic trauma: A case-control study evaluating risk factors and cost. J Clin Orthop Trauma. 2015;6(4):220-226. doi: 10.1016/j.jcot.2015.04.004
  5. Ciliveri S, Bandyopadhyay A. Additively manufactured SiO2 and Cu-added Ti implants for synergistic enhancement of bone formation and antibacterial efficacy. ACS Appl Mater Interfaces. 2024;16(3):3106-3115. doi: 10.1021/acsami.3c14994
  6. Devasconcellos P, Bose S, Beyenal H, Bandyopadhyay A, Zirkle LG. Antimicrobial particulate silver coatings on stainless steel implants for fracture management. Mater Sci Eng C Mater Biol Appl. 2012;32(5):1112-1120. doi: 10.1016/j.msec.2012.02.020
  7. Xi T, Shahzad MB, Xu D, et al. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel. Mater Sci Eng C Mater Biol Appl. 2017;71:1079-1085. doi: 10.1016/j.msec.2016.11.022
  8. Vincent M, Duval RE, Hartemann P, Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J Appl Microbiol. 2018;124(5):1032-1046. doi: 10.1111/jam.13681
  9. Bandyopadhyay A, Mitra I, Ciliveri S, et al. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. Int J Extreme Manuf. 2023;6(1):015503. doi: 10.1088/2631-7990/ad07e7
  10. Zhuang Y, Zhang S, Yang K, Ren L, Dai K. Antibacterial activity of copper-bearing 316L stainless steel for the prevention of implant-related infection. J Biomed Mater Res B Appl Biomater. 2020;108(2):484-495. doi: 10.1002/jbm.b.34405
  11. Dash A, Bose S, Bandyopadhyay A. Additively manufactured 17-4 PH stainless steels for fracture management devices. Virtual Phys Prototyp. 2024;19(1):e2397698. doi: 10.1080/17452759.2024.2397698
  12. Chen KK, Chao CY, Chen JH, Wu JH, Chang YH, Du JK. Effect of low copper addition to as-forged 304 stainless steel for dental applications. Metals. 2021;11(1):43. doi: 10.3390/met11010043
  13. Vincent M, Hartemann P, Engels-Deutsch M. Antimicrobial applications of copper. Int J Hyg Environ Health. 2016;219(7 Part A):585-591. doi: 10.1016/j.ijheh.2016.06.003
  14. Hadrup N, Sharma AK, Jacobsen NR, Loeschner K. Distribution, metabolism, excretion, and toxicity of implanted silver: A review. Drug Chem Toxicol. 2022;45(5):2388-2397. doi: 10.1080/01480545.2021.1950167
  15. Cao B, Zheng Y, Xi T, et al. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: Effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed Microdevices. 2012;14(4):709-720. doi: 10.1007/s10544-012-9651-x
  16. Badhe RV, Akinfosile O, Bijukumar D, Barba M, Mathew MT. Systemic toxicity eliciting metal ion levels from metallic implants and orthopedic devices-A mini review. Toxicol Lett. 2021;350:213-224. doi: 10.1016/j.toxlet.2021.07.004
  17. Foadian F, Kremer R, Post M, Taghizadeh Tabrizi A, Aghajani H. Investigation of in-situ low copper alloying of 316L using the powder bed fusion process. Solids. 2023;4(3):156-165. doi: 10.3390/solids4030010
  18. Bandyopadhyay A, Bose S. Additive Manufacturing. 2nd ed. United States: CRC Press; 2019. doi: 10.1201/9780429466236
  19. ASTM F3413-19e1: Guide for Additive Manufacturing- Design-Directed Energy Deposition. United States: ASTM International; 2019. doi: 10.1520/F3413-19E01
  20. Bandyopadhyay A, Traxel KD, Lang M, Juhasz M, Eliaz N, Bose S. Alloy design via additive manufacturing: Advantages, challenges, applications and perspectives. Mater Today. 2022;52:207-224. doi: 10.1016/j.mattod.2021.11.026
  21. ASTM E407-23: Standard Practice for Microetching Metals and Alloys. United States:ASTM International; 2023. doi: 10.1520/E0407-23
  22. ASTM E9-19: Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature. United States: ASTM International; 2019. doi: 10.1520/E0009-19
  23. ASTM E92-23: Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. United States: ASTM International; 2023. doi: 10.1520/E0092-23
  24. Ersts PJ. DotDotGoose. Available from: https:// biodiversityinformatics.amnh.org/open_source/dotdotgoose [Last accessed on 2024 Nov 25].
  25. STM E92-23: Standard Specification for Wrought 18Chromium-14Nickel-2.5Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673). United States: ASTM International; 2019. doi: 10.1520/F0138-19
  26. Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mater Sci Eng A. 2019;759:90-96. doi: 10.1016/j.msea.2019.05.028
  27. Behjat A, Shamanian M, Iuliano L, Saboori A. Laser powder bed fusion in situ alloying of AISI 316L-2.5%Cu alloy: Microstructure and mechanical properties evolution. Prog Addit Manuf. 2024;9:2031-2039. doi: 10.1007/s40964-023-00557-x
  28. Liu Y, Yang J, Yang H, et al. Cu-bearing 316L stainless steel coatings produced by laser melting deposition: Microstructure and corrosion behavior in simulated body fluids. Surf Coat Technol. 2021;428:127868. doi: 10.1016/j.surfcoat.2021.127868
  29. Behjat A, Shamanian M, Sadeghi F, Iuliano L, Saboori A. Additive manufacturing of a novel in-situ alloyed AISI316L-Cu stainless steel: Microstructure and antibacterial properties. Mater Lett. 2024;355:135363. doi: 10.1016/j.matlet.2023.135363
  30. Płatek P, Sienkiewicz J, Janiszewski J, Jiang F. Investigations on mechanical properties of lattice structures with different values of relative density made from 316L by Selective Laser Melting (SLM). Materials (Basel). 2020;13:2204. doi: 10.3390/ma13092204
  31. Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol. 2011;77(5):1541-1547. doi: 10.1128/AEM.02766-10

 

 



Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing