Understanding the antibacterial efficacy of additively manufactured copper-added 316L stainless steel

In response to the growing demand for advanced materials with inherent infection resistance, this research investigates the properties of 316L stainless steel with copper, produced through laser-directed energy deposition additive manufacturing. The study focuses on three compositions: pure 316L, 316L with 3 wt.% Cu, and 316L with 5 wt.% Cu. Compressive strength measurements and Vickers hardness tests were conducted to assess mechanical properties, while microstructural characterization and X-ray diffraction analysis provided insights into the material’s physical properties. This research extends beyond physical and mechanical properties by exploring the on-contact antibacterial efficacy against Staphylococcus aureus and Pseudomonas aeruginosa up to 72 h. The addition of Cu reduced the ability of bacterial colonization of both strains on the metal surface. The findings of this investigation have the potential to benefit the biomedical devices, contributing to both structural and biofunctional properties of materials.

- Darouiche RO. Device‐associated infections: A macroproblem that starts with microadherence. Clin Infect Dis. 2001;33(9):1567-1572. doi: 10.1086/323130
- iData Research. Orthopedic Trauma Devices Market Size, Share and COVID-19 Impact Analysis. United States. 2019-2025. iData Research; 2019. Available from: https:// idataresearch.com/product/trauma-devices-market-united-states [Last accessed on 2024 Nov 25].
- Ciliveri S and Bandyopadhyay A. Enhanced osteogenesis and bactericidal performance of additively manufactured MgO-and Cu-added CpTi for load-bearing implants. Int J Bioprinting. 2023;9(6):1167. doi: 10.36922/ijb.1167
- Thakore RV, Greenberg SE, Shi H, et al. Surgical site infection in orthopedic trauma: A case-control study evaluating risk factors and cost. J Clin Orthop Trauma. 2015;6(4):220-226. doi: 10.1016/j.jcot.2015.04.004
- Ciliveri S, Bandyopadhyay A. Additively manufactured SiO2 and Cu-added Ti implants for synergistic enhancement of bone formation and antibacterial efficacy. ACS Appl Mater Interfaces. 2024;16(3):3106-3115. doi: 10.1021/acsami.3c14994
- Devasconcellos P, Bose S, Beyenal H, Bandyopadhyay A, Zirkle LG. Antimicrobial particulate silver coatings on stainless steel implants for fracture management. Mater Sci Eng C Mater Biol Appl. 2012;32(5):1112-1120. doi: 10.1016/j.msec.2012.02.020
- Xi T, Shahzad MB, Xu D, et al. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel. Mater Sci Eng C Mater Biol Appl. 2017;71:1079-1085. doi: 10.1016/j.msec.2016.11.022
- Vincent M, Duval RE, Hartemann P, Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J Appl Microbiol. 2018;124(5):1032-1046. doi: 10.1111/jam.13681
- Bandyopadhyay A, Mitra I, Ciliveri S, et al. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. Int J Extreme Manuf. 2023;6(1):015503. doi: 10.1088/2631-7990/ad07e7
- Zhuang Y, Zhang S, Yang K, Ren L, Dai K. Antibacterial activity of copper-bearing 316L stainless steel for the prevention of implant-related infection. J Biomed Mater Res B Appl Biomater. 2020;108(2):484-495. doi: 10.1002/jbm.b.34405
- Dash A, Bose S, Bandyopadhyay A. Additively manufactured 17-4 PH stainless steels for fracture management devices. Virtual Phys Prototyp. 2024;19(1):e2397698. doi: 10.1080/17452759.2024.2397698
- Chen KK, Chao CY, Chen JH, Wu JH, Chang YH, Du JK. Effect of low copper addition to as-forged 304 stainless steel for dental applications. Metals. 2021;11(1):43. doi: 10.3390/met11010043
- Vincent M, Hartemann P, Engels-Deutsch M. Antimicrobial applications of copper. Int J Hyg Environ Health. 2016;219(7 Part A):585-591. doi: 10.1016/j.ijheh.2016.06.003
- Hadrup N, Sharma AK, Jacobsen NR, Loeschner K. Distribution, metabolism, excretion, and toxicity of implanted silver: A review. Drug Chem Toxicol. 2022;45(5):2388-2397. doi: 10.1080/01480545.2021.1950167
- Cao B, Zheng Y, Xi T, et al. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: Effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed Microdevices. 2012;14(4):709-720. doi: 10.1007/s10544-012-9651-x
- Badhe RV, Akinfosile O, Bijukumar D, Barba M, Mathew MT. Systemic toxicity eliciting metal ion levels from metallic implants and orthopedic devices-A mini review. Toxicol Lett. 2021;350:213-224. doi: 10.1016/j.toxlet.2021.07.004
- Foadian F, Kremer R, Post M, Taghizadeh Tabrizi A, Aghajani H. Investigation of in-situ low copper alloying of 316L using the powder bed fusion process. Solids. 2023;4(3):156-165. doi: 10.3390/solids4030010
- Bandyopadhyay A, Bose S. Additive Manufacturing. 2nd ed. United States: CRC Press; 2019. doi: 10.1201/9780429466236
- ASTM F3413-19e1: Guide for Additive Manufacturing- Design-Directed Energy Deposition. United States: ASTM International; 2019. doi: 10.1520/F3413-19E01
- Bandyopadhyay A, Traxel KD, Lang M, Juhasz M, Eliaz N, Bose S. Alloy design via additive manufacturing: Advantages, challenges, applications and perspectives. Mater Today. 2022;52:207-224. doi: 10.1016/j.mattod.2021.11.026
- ASTM E407-23: Standard Practice for Microetching Metals and Alloys. United States:ASTM International; 2023. doi: 10.1520/E0407-23
- ASTM E9-19: Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature. United States: ASTM International; 2019. doi: 10.1520/E0009-19
- ASTM E92-23: Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. United States: ASTM International; 2023. doi: 10.1520/E0092-23
- Ersts PJ. DotDotGoose. Available from: https:// biodiversityinformatics.amnh.org/open_source/dotdotgoose [Last accessed on 2024 Nov 25].
- STM E92-23: Standard Specification for Wrought 18Chromium-14Nickel-2.5Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673). United States: ASTM International; 2019. doi: 10.1520/F0138-19
- Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing. Mater Sci Eng A. 2019;759:90-96. doi: 10.1016/j.msea.2019.05.028
- Behjat A, Shamanian M, Iuliano L, Saboori A. Laser powder bed fusion in situ alloying of AISI 316L-2.5%Cu alloy: Microstructure and mechanical properties evolution. Prog Addit Manuf. 2024;9:2031-2039. doi: 10.1007/s40964-023-00557-x
- Liu Y, Yang J, Yang H, et al. Cu-bearing 316L stainless steel coatings produced by laser melting deposition: Microstructure and corrosion behavior in simulated body fluids. Surf Coat Technol. 2021;428:127868. doi: 10.1016/j.surfcoat.2021.127868
- Behjat A, Shamanian M, Sadeghi F, Iuliano L, Saboori A. Additive manufacturing of a novel in-situ alloyed AISI316L-Cu stainless steel: Microstructure and antibacterial properties. Mater Lett. 2024;355:135363. doi: 10.1016/j.matlet.2023.135363
- Płatek P, Sienkiewicz J, Janiszewski J, Jiang F. Investigations on mechanical properties of lattice structures with different values of relative density made from 316L by Selective Laser Melting (SLM). Materials (Basel). 2020;13:2204. doi: 10.3390/ma13092204
- Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol. 2011;77(5):1541-1547. doi: 10.1128/AEM.02766-10