Multicavity structures with triply periodic minimal surface for broadband and perfect sound absorption manufactured by laser powder bed fusion
This research proposes a multicavity and a graded structure design method for triply periodic minimal surface (TPMS) structures with broadband and perfect sound absorption. TPMS structures were manufactured by laser powder bed fusion. The sound absorption coefficient curves and acoustic band structure of TPMS are analyzed using a two-microphone impedance tube. As the thickness of TPMS structures increases, the noise reduction coefficient of TPMS structures increases linearly, and the first resonance frequency shifts to the lower frequency. The acoustic band structures indicate that the acoustic bandgap of TPMS structures shifts to a lower frequency with increasing thickness. Diamond has the highest noise reduction coefficient among these four types of TPMS. The TPMS with a multicavity design has multiple resonance peaks. Notably, the five resonance peaks of the multicavity-I-Wrapped Package (IWP) are all above 0.94, achieving near-perfect sound absorption over a wide frequency range. The semi-absorption bandwidth of the multicavity-TPMS structure has been widened, except for multicavity-diamond structures. Both uniform and multicavity TPMS present a subwavelength absorption peak. The graded design method can broaden the semi-absorption bandwidth of TPMS, and the combination of graded and multicavity designs can further enhance broadband and achieve perfect sound absorption.
- Liu Z, Zhang X, Mao Y, et al. Locally resonant sonic materials. Science. 2000;289(5485):1734-1736. doi: 10.1126/science.289.5485.1734
- Zhang S, Xia C, Fang N. Broadband acoustic cloak for ultrasound waves. Phys Rev Lett. 2011;106(2):024301. doi: 10.1103/PhysRevLett.106.024301
- Yang M, Sheng P. Sound absorption structures: From porous media to acoustic metamaterials. Annu Rev Mater Res. 2017;47:83-114. doi: 10.1146/annurev-matsci-070616-124032
- Liu CR, Wu JH, Lu K, Zhao ZT, Huang Z. Acoustical siphon effect for reducing the thickness in membrane-type metamaterials with low-frequency broadband absorption. Appl Acoust. 2019;148:1-8. doi: 10.1016/j.apacoust.2018.12.008
- Zhao H, Wen J, Yang H, Lv L, Wen X. Backing effects on the underwater acoustic absorption of a viscoelastic slab with locally resonant scatterers. Appl Acoust. 2014;76:48-51. doi: 10.1016/j.apacoust.2013.07.022
- Guo J, Fang Y, Jiang Z, Zhang X. An investigation on noise attenuation by acoustic liner constructed by Helmholtz resonators with extended necks. J Acoust Soc Am. 2021;149(1):70-81. doi: 10.1121/10.0002990
- Zhang X, Wu J, Mao Q, Zhou W, Xiong Y. Design of a honeycomb-microperforated panel with an adjustable sound absorption frequency. Appl Acoust. 2020;164:107246. doi: 10.1016/j.apacoust.2020.107246
- Leclaire P, Umnova O, Dupont T, Panneton R. Acoustical properties of air-saturated porous material with periodically distributed dead-end pores. J Acoust Soc Am. 2015;137(4):1772-1782. doi: 10.1121/1.4916712
- Costa-Baptista J, Fotsing ER, Mardjono J, Therriault D, Ross A. Design and fused filament fabrication of multilayered microchannels for subwavelength and broadband sound absorption. Addit Manuf. 2022;55:102777. doi: 10.1016/j.addma.2022.102777
- Pierre J, Iervolino F, Farahani RD, Piccirelli N, Lévesque M, Therriault D. Material extrusion additive manufacturing of multifunctional sandwich panels with load-bearing and acoustic capabilities for aerospace applications. Addit Manuf. 2023;61:103344. doi: 10.1016/j.addma.2022.103344
- Wang C, Huang L. On the acoustic properties of parallel arrangement of multiple micro-perforated panel absorbers with different cavity depths. J Acoust Soc Am. 2011;130(1):208-218. doi: 10.1121/1.3596459
- Qian YJ, Zhang J, Sun N, Kong DY, Zhang XX. Pilot study on wideband sound absorber obtained by adopting a serial-parallel coupling manner. Appl Acoust. 2017;124:48-51. doi: 10.1016/j.apacoust.2017.03.021
- Yan S, Wu J, Chen J, Xiong Y, Mao Q, Zhang X. Optimization design and analysis of honeycomb micro-perforated plate broadband sound absorber. Appl Acoust. 2022;186:108487. doi: 10.1016/j.apacoust.2021.108487
- Shen C, Cummer SA. Harnessing multiple internal reflections to design highly absorptive acoustic metasurfaces. Phys Rev Appl. 2018;9(5):054009. doi: 10.1103/PhysRevApplied.9.054009
- Elayouch A, Addouche M, Khelif A. Extensive tailorability of sound absorption using acoustic metamaterials. J Appl Phys. 2018;124(15):155103. doi: 10.1063/1.5035129
- Yang W, An J, Chua CK, Zhou K. Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography. Virtual Phys Prototyp. 2020;15(2):242-249. doi: 10.1080/17452759.2020.1740747
- Lin C, Wen G, Yin H, Wang ZP, Liu J, Xie YM. Revealing the sound insulation capacities of TPMS sandwich panels. J Sound Vib. 2022;540:117303. doi: 10.1016/j.jsv.2022.117303
- Zhang M, Liu C, Deng M, Li Y, Li J, Wang D. Graded minimal surface structures with high specific strength for broadband sound absorption produced by laser powder bed fusion. Coatings. 2023;13(11):1950. doi: 10.3390/coatings13111950
- Li Z, Zhou Y, Kong X, et al. Sound absorption performance of a micro-perforated plate sandwich structure based on selective laser melting. Virtual Phys Prototyp. 2024;19(1):e2321607. doi: 10.1080/17452759.2024.2321607
- Xue Y, Paige Nobles L, Sharma B, Stuart Bolton J. Designing hybrid aerogel-3D printed absorbers for simultaneous low frequency and broadband noise control. Mater Des. 2024;242:113026. doi: 10.1016/j.matdes.2024.113026
- Wang Z, Guo Z, Li Z, Zeng K. Design, manufacture, and characterisation of hierarchical metamaterials for simultaneous ultra-broadband sound-absorbing and superior mechanical performance. Virtual Phys Prototyp. 2022;18(1):e2111585. doi: 10.1080/17452759.2022.2111585
- Yang X, Shen X, Bai P, et al. Preparation and characterization of gradient compressed porous metal for high-efficiency and thin-thickness acoustic absorber. Materials (Basel). 2019;12(9):1413. doi: 10.3390/ma12091413
- Meng H, Ren S, Xin F, Lu T. Sound absorption coefficient optimization of gradient sintered metal fiber felts. Sci China Technol Sci. 2016;59(5):699-708. doi: 10.1007/s11431-016-6042-1
- Zhang X, Qu Z, Xu Y. Enhanced sound absorption in two-dimensional continuously graded phononic crystals. Jpn J Appl Phys. 2019;58(9):090904. doi: 10.7567/1347-4065/ab3686
- Zhang XH, Qu ZG, Tian D, Fang Y. Acoustic characteristics of continuously graded phononic crystals. Appl Acoust. 2019;151:22-29. doi: 10.1016/j.apacoust.2019.03.002
- Boulvert J, Cavalieri T, Costa-Baptista J, et al. Optimally graded porous material for broadband perfect absorption of sound. J Appl Phys. 2019;126(17):175101. doi: 10.1063/1.5119715
- Guan X, Yang J, Deckers E, Hornikx M. Computational Characterization of Functionally Graded Porous Ansorbers Based On Triply Periodic Minimal Surfaces (TPMS). In: Proceedings of the 10th Convention of the European Acoustics Association Forum Acusticum; 2023
- Zhang XH, Qu ZG, He XC, Lu DL. Experimental study on the sound absorption characteristics of continuously graded phononic crystals. AIP Adv. 2016;6(10):105205. doi: 10.1063/1.4965923
- Xiang-Nan K, Bin L, Zhong-Hua L, Peng-Fei Z, Chao S. Research on sound absorption properties of tri-periodic minimal surface sandwich structure of selective laser melting titanium alloy. Mater Trans. 2023;64(4):861-868. doi: 10.2320/matertrans.MT-M2022164