AccScience Publishing / MSAM / Volume 4 / Issue 1 / DOI: 10.36922/MSAM025040003
ORIGINAL RESEARCH ARTICLE

Topology optimization of an aluminum bicycle pedal crank using laser powder bed fusion

Jose Manuel Costa1,2* Mariana Cerqueira Maia1 Adriana Pinho Fernandes1 Elsa Costa Oliveira1 Manuel Fernando Vieira1,2 Elsa Wellenkamp Sequeiros1,2
Show Less
1 Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
2 LAETA, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
MSAM 2025, 4(1), 025040003 https://doi.org/10.36922/MSAM025040003
Submitted: 24 January 2025 | Accepted: 21 February 2025 | Published: 26 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This study investigates the application of topology optimization (TO) in combination with laser powder bed fusion (LPBF) to design a lightweight, high-performance bicycle pedal crank using AlSi10Mg alloy. The optimization process was carried out using Fusion 360 and nTopology, resulting in a 20% mass reduction while ensuring compliance with the ISO 14781 standards for pedal cranks. The component was characterized in terms of microstructure, surface roughness, dimensional accuracy, powder distribution, and Vickers hardness. The microstructure exhibited the characteristic melt pool patterns associated with LPBF, indicative of the manufacturing process. Surface roughness measurements showed a mean value of 23.4 μm, with dimensional analysis revealing a mean deviation of 7% from nominal dimensions. The powder distribution analysis indicated a narrow particle size distribution, contributing to consistent print quality. The component’s hardness was measured at 134 HV0.3, highlighting its promising mechanical properties. This work demonstrates the potential of TO and LPBF to produce structurally optimized, lightweight components with enhanced performance, providing valuable insights into the application of Design for Additive Manufacturing for metallic materials.

Graphical abstract
Keywords
Bike crank
AlSi10Mg
Laser powder bed fusion
Design for Additive Manufacturing
Topology optimization
Metallographic characterization
Roughness dimensional analysis
Powder characterization
Funding
This research received no external funding.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Costa JM, Sequeiros EW, Santos RF, Vieira MF. Benchmarking L-PBF systems for die production: Powder, dimensional, surface, microstructural and mechanical characterisation. Metals Basel. 2024;14:520 doi: 10.3390/met14050520
  2. ISO/ASTM. ISO/ASTM 52900: 2021-Additive Manufacturing-General Principles-Fundamentals and Vocabulary. London: ISO; 2021. p. 28.
  3. Pei E. Springer Handbook of Additive Manufacturing. Berlin: Springer; 2023.
  4. Bar-Cohen Y. Advances in Manufacturing and Processing of Materials and Structures. United States: CRC Press; 2018.
  5. Ford S, Despeisse M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J Clean Prod. 2016;137:1573-1587. doi: 10.1016/j.jclepro.2016.04.150
  6. Costa JM, Sequeiros EW, Vieira MF. Fused filament fabrication for metallic materials: A brief review. Materials. 2023;16:7505. doi: 10.3390/ma16247505
  7. Zutin GC, Pulquerio EC, Pasotti AV, Barbosa GF, Shiki SB. Application of robotic manipulator technology and its relation to additive manufacturing process-a review. Int J Adv Manuf Technol. 2024;133:257-271. doi: 10.1007/s00170-024-13710-9
  8. Prakash KS, Nancharaih T, Rao VVS. Additive manufacturing techniques in manufacturing -an overview. Mater Today Proc. 2018;5:3873-3882. doi: 10.1016/j.matpr.2017.11.642
  9. Zhou L, Miller J, Vezza J, et al. Additive manufacturing: A comprehensive review. Sensors. 2024;24:2668. doi: 10.3390/s24092668
  10. Gibson I, Rosen DW, Stucker B. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. New York: Springer US; 2010.
  11. Costa J, Sequeiros E, Vieira MT, Vieira M. Additive manufacturing: Material extrusion of metallic parts. U Porto J Eng. 2021;7:53-69. doi: 10.24840/2183-6493_007.003_0005
  12. Gebhardt A, Kessler J, Thurn L. 5 Perspectives and Strategies of Additive Manufacturing. In: 3D Printing. 2nd ed. Germany: Hanser; 2019. p. 137-165.
  13. Gibson I, Rosen D, Stucker B, Khorasani M. Binder Jetting. Berlin: Springer International Publishing; 2021. p. 237-252.
  14. Egan PF. Design for additive manufacturing: Recent innovations and future directions. Designs. 2023;7:83. doi: 10.3390/designs7040083
  15. Chen H, Wei Q, Wen S, Li Z, Shi Y. Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method. Int J Mach Tool Manuf. 2017;123:146-159.
  16. Sun X, Chen M, Liu T, et al. Characterization, preparation, and reuse of metallic powders for laser powder bed fusion: A review. Int J Extreme Manuf. 2024;6:012003. doi: 10.1088/2631-7990/acfbc3
  17. Veetil JK, Khorasani M, Ghasemi A, et al. Build position-based dimensional deviations of laser powder-bed fusion of stainless steel 316L. Precis Eng. 2021;67:58-68. doi: 10.1016/j.precisioneng.2020.09.024
  18. Sehhat MH, Mahdianikhotbesara A. Powder spreading in laser-powder bed fusion process. Granular Matter. 2021;23:89. doi: 10.1007/s10035-021-01162-x
  19. Parteli EJR, Poschel T. Particle-based simulation of powder application in additive manufacturing. Powder Technol. 2016;288:96-102. doi: 10.1016/j.powtec.2015.10.035
  20. Haferkamp L, Haudenschild L, Spierings A, et al. The influence of particle shape, powder flowability, and powder layer density on part density in laser powder bed fusion. Metals-Basel. 2021;11:418. doi: 10.3390/met11030418
  21. Mostafaei A, Ghiaasiaan R, Ho IT, et al. Additive manufacturing of nickel-based superalloys: A state-of-the-art review on process-structure-defect-property relationship. Prog Mater Sci. 2023;136:101108. doi: 10.1016/j.pmatsci.2023.101108
  22. Costa JM, Vieira MF. Teaching design for AM to science materials engineering graduate students: Hand-on approach. Modern Concepts Mater Sci. 2024;6. doi: 10.33552/MCMS.2024.06.000640
  23. Costa JM, Sequeiros EW, Figueiredo D, Reis AR, Vieira MF. Optimizing Metal AM Potential through DfAM: Design, Performance, and Industrial Impact. London: IntechOpen; 2024.
  24. Oliveira C, Maia M, Costa J. Production of an office stapler by material extrusion process, using DfAM as optimization strategy. U Porto J Eng. 2023;9:28-41. doi: 10.24840/2183-6493_009-001_001635
  25. Brackett D, Ashcroft I, Hague R. Topology optimization for additive manufacturing. In: Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, SFF 2011, Austin, TX; 2011. p. 348-362.
  26. Plocher J, Panesar A. Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures. Mater Design. 2019;183:108164. doi: 10.1016/j.matdes.2019.108164
  27. Ibhadode O, Zhang Z, Sixt J, et al. Topology optimization for metal additive manufacturing: Current trends, challenges, and future outlook. Virtual Phys Prototy. 2023;18:2181192. doi: 10.1080/17452759.2023.2181192
  28. Diegel O, Nordin A, Motte D. A Practical Guide to Design for Additive Manufacturing. Berlin: Springer; 2019.
  29. ASM International. Aluminum Science and Technology. Vol. 2A. Netherlands: ASM International; 2018. doi: 10.31399/asm.hb.v02a.9781627082075
  30. Su J, Ng WL, An J, Yeong WY, Chua CK, Sing SL. Achieving sustainability by additive manufacturing: A state-of-the-art review and perspectives. Virtual Phys Prototyp. 2024;19:e2438899. doi: 10.1080/17452759.2024.2438899
  31. Sbrugnera Sotomayor NA, Caiazzo F, Alfieri V. Enhancing design for additive manufacturing workflow: Optimization, design and simulation tools. Appl Sci. 2021;11:6628. doi: 10.3390/app11146628
  32. Mata M, Pinto M, Costa J. Topological optimization of a metal extruded doorhandle using ntopology. U Porto J Eng. 2023;9:42-54. doi: 10.24840/2183-6493_009-001_001620
  33. Rometsch PA, Zhu Y, Wu X, Huang A. Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion. Mater Design. 2022;219:110779. doi: 10.1016/j.matdes.2022.110779
  34. Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater Today. 2018;21:22-37. doi: 10.1016/j.mattod.2017.07.001
  35. Shimano. Shimano SLX M7000 Hollowtech II Crank. Available from: https://bike.shimano.com/technologies/ details/hollowtech-2.html [Last accessed on 2024 Jul 10].
  36. ISO. ISO/IEC/IEEE 14764:2022-Software Engineering- Software Life Cycle Processes-Maintenance. Switzerland: ISO; 2022. p. 36.
  37. Sandvik. Osprey® AlSi10Mg Powder for Additive Manufacturing - DATASHEET. Available from: https:// www.metalpowder.sandvik/en/syssiteassets/metal-powder/ datasheets/osprey-alsi10mg-and-alsi7mg.pdf [Last accessed on 2024 Oct 19].
  38. Li P, Kim Y, Bobel AC, et al. Microstructural origin of the anisotropic flow stress of laser powder bed fused AlSi10Mg. Acta Mater. 2021;220:117346. doi: 10.1016/j.actamat.2021.117346
  39. Zhou L, Mehta A, Schulz E, McWilliams B, Cho K, Sohn Y. Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment. Mater Charact. 2018;143:5-17. doi: 10.1016/j.matchar.2018.04.022
  40. Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting. Progress Mater Sci. 2019;106:100578. doi: 10.1016/j.pmatsci.2019.100578
  41. Mower TM, Long MJ. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A. 2016;651:198-213. doi: 10.1016/j.msea.2015.10.068
  42. Li BQ, Li Z, Bai P, Liu B, Kuai Z. Research on surface roughness of AlSi10Mg parts fabricated by laser powder bed fusion. Metals Basel. 2018;8:524. doi: 10.3390/met8070524
  43. ISO_4287. Geometrical Product Specifications (GPS)-Surface Texture: Profile Method-Terms, Definitions and Surface Texture Parameters. Switzerland: ISO; 1997.
  44. ISO/ASTM. ISO 25178-600:2019-Geometrical Product Specifications (GPS)-Surface Texture: Areal-Part 600: Metrological Characteristics for Areal Topography Measuring Methods. Switzerland: ISO; 2019. p. 21.
  45. Khan HM, Karabulut Y, Kitay O, Kaynak Y, Jawahir IS. Influence of the post-processing operations on surface integrity of metal components produced by laser powder bed fusion additive manufacturing: A review. Machining Sci Technol. 2021;25:118-176. doi: 10.1080/10910344.2020.1855649
  46. Mehta B, Hryha E, Nyborg L, Tholence F, Johansson E. Effect of surface sandblasting and turning on compressive strength of thin 316L stainless steel shells produced by laser powder bed fusion. Metals Basel. 2021;11:1070. doi: 10.3390/met11071070
  47. Maamoun AH, Xue YF, Elbestawi MA, Veldhuis SC. Effect of selective laser melting process parameters on the quality of al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy. Materials. 2018;11:2343. doi: 10.3390/ma11122343
  48. Sagbas B. Post-processing effects on surface properties of direct metal laser sintered AlSi10Mg parts. Metals Mater Int. 2020;26:143-153. doi: 10.1007/s12540-019-00375-3
  49. Chu F, Zhang K, Shen H, et al. Influence of satellite and agglomeration of powder on the processability of AlSi10Mg powder in Laser Powder Bed Fusion. J Mater Res Technol. 2021;11:2059-2073. doi: 10.1016/j.jmrt.2021.02.015
  50. Al Njjar A, Mazloum K, Sata A. Optimization of powder metallurgy parameters for improving the major properties of AA7075/SiC composites for aerospace applications. J Mater Eng Perform. 2024. doi: 10.1007/s11665-024-09998-z
  51. Zhang P, Li X, Dong S, et al. Superhigh yield ratio and considerable plasticity in powder metallurgy Al-Zn-Mg-Cu alloy prepared with elemental powder. JOM. 2024; 77:1241- 1251. doi: 10.1007/s11837-024-07018-y



 

Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing