Topology optimization of an aluminum bicycle pedal crank using laser powder bed fusion

This study investigates the application of topology optimization (TO) in combination with laser powder bed fusion (LPBF) to design a lightweight, high-performance bicycle pedal crank using AlSi10Mg alloy. The optimization process was carried out using Fusion 360 and nTopology, resulting in a 20% mass reduction while ensuring compliance with the ISO 14781 standards for pedal cranks. The component was characterized in terms of microstructure, surface roughness, dimensional accuracy, powder distribution, and Vickers hardness. The microstructure exhibited the characteristic melt pool patterns associated with LPBF, indicative of the manufacturing process. Surface roughness measurements showed a mean value of 23.4 μm, with dimensional analysis revealing a mean deviation of 7% from nominal dimensions. The powder distribution analysis indicated a narrow particle size distribution, contributing to consistent print quality. The component’s hardness was measured at 134 HV0.3, highlighting its promising mechanical properties. This work demonstrates the potential of TO and LPBF to produce structurally optimized, lightweight components with enhanced performance, providing valuable insights into the application of Design for Additive Manufacturing for metallic materials.

- Costa JM, Sequeiros EW, Santos RF, Vieira MF. Benchmarking L-PBF systems for die production: Powder, dimensional, surface, microstructural and mechanical characterisation. Metals Basel. 2024;14:520 doi: 10.3390/met14050520
- ISO/ASTM. ISO/ASTM 52900: 2021-Additive Manufacturing-General Principles-Fundamentals and Vocabulary. London: ISO; 2021. p. 28.
- Pei E. Springer Handbook of Additive Manufacturing. Berlin: Springer; 2023.
- Bar-Cohen Y. Advances in Manufacturing and Processing of Materials and Structures. United States: CRC Press; 2018.
- Ford S, Despeisse M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J Clean Prod. 2016;137:1573-1587. doi: 10.1016/j.jclepro.2016.04.150
- Costa JM, Sequeiros EW, Vieira MF. Fused filament fabrication for metallic materials: A brief review. Materials. 2023;16:7505. doi: 10.3390/ma16247505
- Zutin GC, Pulquerio EC, Pasotti AV, Barbosa GF, Shiki SB. Application of robotic manipulator technology and its relation to additive manufacturing process-a review. Int J Adv Manuf Technol. 2024;133:257-271. doi: 10.1007/s00170-024-13710-9
- Prakash KS, Nancharaih T, Rao VVS. Additive manufacturing techniques in manufacturing -an overview. Mater Today Proc. 2018;5:3873-3882. doi: 10.1016/j.matpr.2017.11.642
- Zhou L, Miller J, Vezza J, et al. Additive manufacturing: A comprehensive review. Sensors. 2024;24:2668. doi: 10.3390/s24092668
- Gibson I, Rosen DW, Stucker B. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing. New York: Springer US; 2010.
- Costa J, Sequeiros E, Vieira MT, Vieira M. Additive manufacturing: Material extrusion of metallic parts. U Porto J Eng. 2021;7:53-69. doi: 10.24840/2183-6493_007.003_0005
- Gebhardt A, Kessler J, Thurn L. 5 Perspectives and Strategies of Additive Manufacturing. In: 3D Printing. 2nd ed. Germany: Hanser; 2019. p. 137-165.
- Gibson I, Rosen D, Stucker B, Khorasani M. Binder Jetting. Berlin: Springer International Publishing; 2021. p. 237-252.
- Egan PF. Design for additive manufacturing: Recent innovations and future directions. Designs. 2023;7:83. doi: 10.3390/designs7040083
- Chen H, Wei Q, Wen S, Li Z, Shi Y. Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method. Int J Mach Tool Manuf. 2017;123:146-159.
- Sun X, Chen M, Liu T, et al. Characterization, preparation, and reuse of metallic powders for laser powder bed fusion: A review. Int J Extreme Manuf. 2024;6:012003. doi: 10.1088/2631-7990/acfbc3
- Veetil JK, Khorasani M, Ghasemi A, et al. Build position-based dimensional deviations of laser powder-bed fusion of stainless steel 316L. Precis Eng. 2021;67:58-68. doi: 10.1016/j.precisioneng.2020.09.024
- Sehhat MH, Mahdianikhotbesara A. Powder spreading in laser-powder bed fusion process. Granular Matter. 2021;23:89. doi: 10.1007/s10035-021-01162-x
- Parteli EJR, Poschel T. Particle-based simulation of powder application in additive manufacturing. Powder Technol. 2016;288:96-102. doi: 10.1016/j.powtec.2015.10.035
- Haferkamp L, Haudenschild L, Spierings A, et al. The influence of particle shape, powder flowability, and powder layer density on part density in laser powder bed fusion. Metals-Basel. 2021;11:418. doi: 10.3390/met11030418
- Mostafaei A, Ghiaasiaan R, Ho IT, et al. Additive manufacturing of nickel-based superalloys: A state-of-the-art review on process-structure-defect-property relationship. Prog Mater Sci. 2023;136:101108. doi: 10.1016/j.pmatsci.2023.101108
- Costa JM, Vieira MF. Teaching design for AM to science materials engineering graduate students: Hand-on approach. Modern Concepts Mater Sci. 2024;6. doi: 10.33552/MCMS.2024.06.000640
- Costa JM, Sequeiros EW, Figueiredo D, Reis AR, Vieira MF. Optimizing Metal AM Potential through DfAM: Design, Performance, and Industrial Impact. London: IntechOpen; 2024.
- Oliveira C, Maia M, Costa J. Production of an office stapler by material extrusion process, using DfAM as optimization strategy. U Porto J Eng. 2023;9:28-41. doi: 10.24840/2183-6493_009-001_001635
- Brackett D, Ashcroft I, Hague R. Topology optimization for additive manufacturing. In: Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, SFF 2011, Austin, TX; 2011. p. 348-362.
- Plocher J, Panesar A. Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures. Mater Design. 2019;183:108164. doi: 10.1016/j.matdes.2019.108164
- Ibhadode O, Zhang Z, Sixt J, et al. Topology optimization for metal additive manufacturing: Current trends, challenges, and future outlook. Virtual Phys Prototy. 2023;18:2181192. doi: 10.1080/17452759.2023.2181192
- Diegel O, Nordin A, Motte D. A Practical Guide to Design for Additive Manufacturing. Berlin: Springer; 2019.
- ASM International. Aluminum Science and Technology. Vol. 2A. Netherlands: ASM International; 2018. doi: 10.31399/asm.hb.v02a.9781627082075
- Su J, Ng WL, An J, Yeong WY, Chua CK, Sing SL. Achieving sustainability by additive manufacturing: A state-of-the-art review and perspectives. Virtual Phys Prototyp. 2024;19:e2438899. doi: 10.1080/17452759.2024.2438899
- Sbrugnera Sotomayor NA, Caiazzo F, Alfieri V. Enhancing design for additive manufacturing workflow: Optimization, design and simulation tools. Appl Sci. 2021;11:6628. doi: 10.3390/app11146628
- Mata M, Pinto M, Costa J. Topological optimization of a metal extruded doorhandle using ntopology. U Porto J Eng. 2023;9:42-54. doi: 10.24840/2183-6493_009-001_001620
- Rometsch PA, Zhu Y, Wu X, Huang A. Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion. Mater Design. 2022;219:110779. doi: 10.1016/j.matdes.2022.110779
- Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater Today. 2018;21:22-37. doi: 10.1016/j.mattod.2017.07.001
- Shimano. Shimano SLX M7000 Hollowtech II Crank. Available from: https://bike.shimano.com/technologies/ details/hollowtech-2.html [Last accessed on 2024 Jul 10].
- ISO. ISO/IEC/IEEE 14764:2022-Software Engineering- Software Life Cycle Processes-Maintenance. Switzerland: ISO; 2022. p. 36.
- Sandvik. Osprey® AlSi10Mg Powder for Additive Manufacturing - DATASHEET. Available from: https:// www.metalpowder.sandvik/en/syssiteassets/metal-powder/ datasheets/osprey-alsi10mg-and-alsi7mg.pdf [Last accessed on 2024 Oct 19].
- Li P, Kim Y, Bobel AC, et al. Microstructural origin of the anisotropic flow stress of laser powder bed fused AlSi10Mg. Acta Mater. 2021;220:117346. doi: 10.1016/j.actamat.2021.117346
- Zhou L, Mehta A, Schulz E, McWilliams B, Cho K, Sohn Y. Microstructure, precipitates and hardness of selectively laser melted AlSi10Mg alloy before and after heat treatment. Mater Charact. 2018;143:5-17. doi: 10.1016/j.matchar.2018.04.022
- Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting. Progress Mater Sci. 2019;106:100578. doi: 10.1016/j.pmatsci.2019.100578
- Mower TM, Long MJ. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A. 2016;651:198-213. doi: 10.1016/j.msea.2015.10.068
- Li BQ, Li Z, Bai P, Liu B, Kuai Z. Research on surface roughness of AlSi10Mg parts fabricated by laser powder bed fusion. Metals Basel. 2018;8:524. doi: 10.3390/met8070524
- ISO_4287. Geometrical Product Specifications (GPS)-Surface Texture: Profile Method-Terms, Definitions and Surface Texture Parameters. Switzerland: ISO; 1997.
- ISO/ASTM. ISO 25178-600:2019-Geometrical Product Specifications (GPS)-Surface Texture: Areal-Part 600: Metrological Characteristics for Areal Topography Measuring Methods. Switzerland: ISO; 2019. p. 21.
- Khan HM, Karabulut Y, Kitay O, Kaynak Y, Jawahir IS. Influence of the post-processing operations on surface integrity of metal components produced by laser powder bed fusion additive manufacturing: A review. Machining Sci Technol. 2021;25:118-176. doi: 10.1080/10910344.2020.1855649
- Mehta B, Hryha E, Nyborg L, Tholence F, Johansson E. Effect of surface sandblasting and turning on compressive strength of thin 316L stainless steel shells produced by laser powder bed fusion. Metals Basel. 2021;11:1070. doi: 10.3390/met11071070
- Maamoun AH, Xue YF, Elbestawi MA, Veldhuis SC. Effect of selective laser melting process parameters on the quality of al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy. Materials. 2018;11:2343. doi: 10.3390/ma11122343
- Sagbas B. Post-processing effects on surface properties of direct metal laser sintered AlSi10Mg parts. Metals Mater Int. 2020;26:143-153. doi: 10.1007/s12540-019-00375-3
- Chu F, Zhang K, Shen H, et al. Influence of satellite and agglomeration of powder on the processability of AlSi10Mg powder in Laser Powder Bed Fusion. J Mater Res Technol. 2021;11:2059-2073. doi: 10.1016/j.jmrt.2021.02.015
- Al Njjar A, Mazloum K, Sata A. Optimization of powder metallurgy parameters for improving the major properties of AA7075/SiC composites for aerospace applications. J Mater Eng Perform. 2024. doi: 10.1007/s11665-024-09998-z
- Zhang P, Li X, Dong S, et al. Superhigh yield ratio and considerable plasticity in powder metallurgy Al-Zn-Mg-Cu alloy prepared with elemental powder. JOM. 2024; 77:1241- 1251. doi: 10.1007/s11837-024-07018-y