AccScience Publishing / MSAM / Volume 3 / Issue 4 / DOI: 10.36922/msam.5748
REVIEW

 Additive manufacturing of light-emitting active 3D optical structures

Taewon Kim1 Hyeokin Kang1 Shufan Li2 Jiannan Jiao3* Young-Jin Kim1*
Show Less
1 Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
2 School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, China
3 Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China
Submitted: 1 November 2024 | Accepted: 22 November 2024 | Published: 12 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

 Additive manufacturing of arbitrarily shaped, light-emitting 3D structures is a pivotal innovation for controlling the beam propagation direction, angular distribution, emission point, and wavelength of active light sources. These light sources, which include microscale lasers, light-emitting diodes, quantum dots (QDs), and other emerging materials, are crucial for applications such as 3D cellular imaging, biomedical endoscopy, linear and non-linear imaging spectroscopy, photonic circuit integration, optical computing, and high-precision metrology in semiconductor and flat-panel display inspection. To meet the diverse requirements of these applications, various light-emitting materials, such as fluorescent dyes, up-conversion nanoparticles, QDs, and non-linear optical media, have been incorporated into additive manufacturing techniques. Over the past decade, several additive manufacturing methods have been adapted for fabricating active 3D optical structures, including inkjet printing of functional inks, fused deposition modeling of light-emitting filaments, selective sintering of active material powders, and two-photon polymerization of photonic polymers. These methodologies offer unprecedented versatility in designing and constructing complex optical structures with integrated light-emitting properties. The advent of such novel 3D-printed active optical systems promises to revolutionize fields ranging from on-chip photonics to advanced spectroscopy and precise optical measurement techniques, ultimately enabling new frontiers in photonic technologies and their applications.

Keywords
Additive manufacturing
Active optical materials
Optical structures
Lasers
Funding
This work was supported by the Korean National Research Foundation (Nos. NRF-2020R1A2C 210233813, NRF-RS-2024-00401786), Ministry of Agriculture, Food and Rural Affairs (No. MAFRA: RS-2024-00401642), and R&D Program for Forest Science Technology (Project No. 2023488B10-2325-AA01) provided by Korea Forest Service (Korea Forestry Promotion Institute), Envision project.
Conflict of interest
The authors declare that they have no known competing interests.
References
  1. Camposeo A, Persano L, Farsari M, Pisignano D. Additive manufacturing: Applications and directions in photonics and optoelectronics. Adv Opt Mater. 2019;7(1):1800419. doi: 10.1002/adom.201800419
  2. Yang L, Mayer F, Bunz UH, Blasco E, Wegener M. Multi-material multi-photon 3D laser micro-and nanoprinting. Light Adv Manuf. 2021;2(3):296-312. doi: 10.37188/lam.2021.017
  3. Jiao J. Femtosecond Laser Additive Manufacturing of Nonlinear and Fluorescent Optical Structures. Doctoral thesis, Nanyang Technological University, Singapore; 2020. doi: 10.32657/10356/144184
  4. Zhu Y, Tang T, Zhao S, et al. Recent advancements and applications in 3D printing of functional optics. Addit Manuf. 2022;52:102682. doi: 10.1016/j.addma.2022.102682
  5. Xu X, Madrigal JB, Broussier A, et al., editors. Quantum emitters based on polymeric structures embedded with quantum dots fabricated via photo-polymerization. In: Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIII; United States: SPIE; 2020.
  6. Zhao Z, Zhou Y, Liu B, et al. Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue. Cell. 2023;186(11):2475- 2491.e22. doi: 10.1016/j.cell.2023.04.016
  7. Fu Y, Zhang S, Ma L, Zhao Z, Liao H, Xie T. Comprehensive advancement in endoscopy: Optical design, algorithm enhancement, and clinical validation for merged WLI and CBI imaging. Biomed Opt Express. 2024;15(2):506-523. doi: 10.1364/BOE.506134
  8. Srivastava S, Ranjan S, Yadav L, et al. Advanced spectroscopic techniques for characterizing defects in perovskite solar cells. Commun Mater. 2023;4(1):52. doi: 10.1038/s43246-023-00379-y
  9. Huang H, Zheng S, Sun W. Beam manipulation for quantum dot light-emitting diode with an Ag grating and a phase-gradient metasurface. Opt Express. 2022;30(16):28345-28357. doi: 10.1364/OE.463772
  10. Chen X, Ji C, Xiang Y, Kang X, Shen B, Yu T. Angular distribution of polarized light and its effect on light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes. Opt Express. 2016;24(10):A935-A942. doi: 10.1364/OE.24.00A935
  11. Jun YC, Huang KC, Brongersma ML. Plasmonic beaming and active control over fluorescent emission. Nat Commun. 2011;2(1):283. doi: 10.1038/ncomms1286
  12. Li M, Li R, Wu L, et al. Ultrabright and stable top-emitting quantum-dot light-emitting diodes with negligible angular color shift. Nat Commun. 2024;15(1):5161. doi: 10.1038/s41467-024-49574-6
  13. Schmidt EL, Ou Z, Ximendes E, et al. Near-infrared II fluorescence imaging. Nat Rev Methods Prim. 2024;4(1):23. doi: 10.1038/s43586-024-00301-x
  14. Mohtashami Y, Heki LK, Wong MS, et al. Metasurface light-emitting diodes with directional and focused emission. Nano Lett. 2023;23(22):10505-10511. doi: 10.1021/acs.nanolett.3c03272
  15. Cai G, Li Y, Zhang Y, et al. Compact angle-resolved metasurface spectrometer. Nat Mater. 2024;23(1):71-78. doi: 10.1038/s41563-023-01710-1
  16. Nian L, Pei X, Zhao Z, Wang X. Review of optical designs for light-emitting diode packaging. IEEE Trans Compon Pack Manuf Technol. 2019;9(4):642-648. doi: 10.1109/TCPMT.2019.2895729
  17. Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica. 2015;2(2):104-111. doi: 10.1364/OPTICA.2.000104
  18. Shin H, Yoon GW, Choi W, et al. Miniaturized multicolor fluorescence imaging system integrated with a PDMS light-guide plate for biomedical investigation. npj Flexible Electron. 2023;7(1):7. doi: 10.1038/s41528-023-00243-6
  19. Pshenay-Severin E, Bae H, Reichwald K, et al. Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept. Light Sci Appl. 2021;10(1):207. doi: 10.1038/s41377-021-00648-w
  20. Browning CM, Deal J, Mayes S, Arshad A, Rich TC, Leavesley SJ. Excitation-scanning hyperspectral video endoscopy: Enhancing the light at the end of the tunnel. Biomed Opt Express. 2020;12(1):247-271. doi: 10.1364/BOE.411640
  21. Wang V, Uddin SZ, Park J, Javey A. Highly multicolored light-emitting arrays for compressive spectroscopy. Sci Adv. 2023;9(16):eadg1607. doi: 10.1126/sciadv.adg1607
  22. Wang S, Wang Y, Guo T, Cao S. A long wave-infrared miniatured quantum dot spectrometer. Anal Chem. 2024;96(35):14090-14098. doi: 10.1021/acs.analchem.4c00695
  23. Austin JS, Xiao W, Wang F, et al. Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR. J Mater Chem C. 2024;12(29):10992-11000. doi: 10.1039/D4TC01917B
  24. Farooq F, Shin S, Lee JY, et al. Strategy to achieve a pure red/ green/blue-emitting upconversion luminescence for full-color displays. ACS Appl Mater Interfaces. 2024;16(29):38221-38230. doi: 10.1021/acsami.4c05482
  25. Lv Y, Xiong Z, Dong H, et al. Pure metal-organic framework microlasers with controlled cavity shapes. Nano Lett. 2020;20(3):2020-2025. doi: 10.1021/acs.nanolett.9b05321
  26. Lin X, Zhou W, Liu Y, et al. 3D‐printed möbius microring lasers: Topology engineering in photonic microstructures. Small. 2022;18(33):2202812. doi: 10.1002/smll.202202812
  27. Zheng X, Wang L, Wang M, et al. Resolution improvement of structured illumination microscopy using non‐diffraction‐limited point‐scanned fluorescence fringe. Laser Photon Rev. 2023;17(7):2200796. doi: 10.1002/lpor.202200796
  28. Dai C, Wan S, Li Z, Shi Y, Zhang S, Li Z. Switchable unidirectional emissions from hydrogel gratings with integrated carbon quantum dots. Nat Commun. 2024;15(1):845. doi: 10.1038/s41467-024-45284-1
  29. Kuang T, Huang R, Xiong W, et al. Nonlinear multi-frequency phonon lasers with active levitated optomechanics. Nat Phys. 2023;19(3):414-419. doi: 10.1038/s41567-022-01857-9
  30. Wang D, Li YL, Chu F, et al. Color liquid crystal grating based color holographic 3D display system with large viewing angle. Light Sci Appl. 2024;13(1):16. doi: 10.1038/s41377-023-01375-0
  31. Lukashchuk A, Yildirim HK, Bancora A, et al. Photonic-electronic integrated circuit-based coherent LiDAR engine. Nat Commun. 2024;15(1):3134. doi: 10.1038/s41467-024-47478-z
  32. Juodėnas M, Strandberg E, Grabowski A, et al. High-angle deflection of metagrating-integrated laser emission for high-contrast microscopy. Light Sci Appl. 2023;12(1):251. doi: 10.1038/s41377-023-01286-0
  33. Mansha S, Moitra P, Xu X, et al. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light Sci Appl. 2022;11(1):141. doi: 10.1038/s41377-022-00832-6
  34. Wang M, Wang F, Chen J, et al. Active beam steering enabled by photonic-crystal surface-emitting laser. ACS nano. 2024;18(29):18880-18888. doi: 10.1021/acsnano.3c09793
  35. Busschaert S, Flöry N, Papadopoulos S, Parzefall M, Heeg S, Novotny L. Beam steering with a nonlinear optical phased array antenna. Nano Lett. 2019;19(9):6097-6103. doi: 10.1021/acs.nanolett.9b02029
  36. Chaudhari AK, Tan JC. Dual‐guest functionalized zeolitic imidazolate framework‐8 for 3D printing white light‐emitting composites. Adv Opt Mater. 2020;8(8):1901912. doi: 10.1002/adom.201901912
  37. Vyatskikh A, Ng RC, Edwards B, Briggs RM, Greer JR. Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals. Nano Lett. 2020;20(5):3513-3520. doi: 10.1021/acs.nanolett.0c00454
  38. Sergeev A, Pavlov D, Kuchmizhak A, et al. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays. Light Sci Appl. 2020;9(1):16. doi: 10.1038/s41377-020-0247-6
  39. Boyer J, Johnson N, Van Veggel F. Upconverting lanthanide-doped NaYF4-PMMA polymer composites prepared by in situ polymerization. Chem Mater. 2009;21(10):2010-2012. doi: 10.1021/cm900756h
  40. Zhang C, Zou CL, Zhao Y, et al. Organic printed photonics: From microring lasers to integrated circuits. Sci Adv. 2015;1(8):e1500257. doi: 10.1126/sciadv.1500257
  41. Sergeeva KA, Pavlov DV, Seredin AA, et al. Laser‐printed plasmonic metasurface supporting bound states in the continuum enhances and shapes infrared spontaneous emission of coupled HgTe quantum dots. Adv Funct Mater. 2023;33(44):2307660. doi: 10.1002/adfm.202307660
  42. Mahata MK, Kumar K, Rai VK. Er3+–Yb3+ doped vanadate nanocrystals: A highly sensitive thermographic phosphor and its optical nanoheater behavior. Sensors Actuat B Chem. 2015;209:775-780. doi: 10.1016/j.snb.2014.12.039
  43. Zhang Q, Boniface A, Parashar VK, Gijs MA, Moser C. Multi-photon polymerization using upconversion nanoparticles for tunable feature-size printing. Nanophotonics. 2023;12(8):1527-1536. doi: 10.1515/nanoph-2022-0598
  44. Rocheva VV, Koroleva AV, Savelyev AG, et al. High-resolution 3D photopolymerization assisted by upconversion nanoparticles for rapid prototyping applications. Sci Rep. 2018;8(1):3663. doi: 10.1038/s41598-018-21793-0
  45. Bae J, Lee S, Ahn J, et al. 3D-printed quantum dot nanopixels. ACS Nano. 2020;14(9):10993-1001. doi: 10.1021/acsnano.0c04075
  46. Zhang G, Yu B, Cao Z, et al. A low loss quantum-dot-doped optical fiber temperature sensor based on flexible print technology. IEEE Photon J. 2020;12(3):1-8. doi: 10.1109/JPHOT.2020.2974905
  47. Ritacco T, Lio GE, Xu X, et al. Three-dimensional photoluminescent crypto-images doped with (cdse) zns quantum dots by one-photon and two-photon polymerization. ACS Appl Nano Mater. 2021;4(7):6916-6927. doi: 10.1021/acsanm.1c00968
  48. Zhao J, Yan Y, Gao Z, et al. Full-color laser displays based on organic printed microlaser arrays. Nat Commun. 2019;10(1):870. doi: 10.1038/s41467-019-08834-6
  49. Mata M, Sanz de León A, Valencia-Liñán LM, Molina SI. Plasmonic characterization of 3D printable metal-polymer nanocomposites. ACS Mater Au. 2024;4:424-435. doi: 10.1021/acsmaterialsau.4c00007
  50. Yang J, Feng M, Zhang K, et al. All‐inorganic functional phosphor-glass composites by light curing induced 3D printing for next‐generation modular lighting devices. Adv Opt Mater. 2022;10(21):2201110. doi: 10.1002/adom.202201110
  51. Yang J, Feng M, Li Y, et al. Chromaticity-tunable all-inorganic color converters fabricated by 3D printing for modular plant growth lighting devices. ACS Appl Mater Interfaces. 2023;15(19):23527-23537. doi: 10.1021/acsami.3c03881
  52. Xie M, Ji H, Wang D, et al. 3D printing of gradient-doped Yb: YAG laser ceramics by leveraging active mixing. Addit Manuf Front. 2024;3(1):200118. doi: 10.1016/j.amf.2024.200118
  53. Zhou Y, Cheng C, Hu L, Chen F. Guided-wave up-conversion luminescence in Er3+/Yb3+ Co-doped phosphate glass waveguide produced by direct femtosecond laser writing. Front Phys. 2022;9:763377. doi: 10.3389/fphy.2021.763377
  54. Moon BS, Lee TK, Jeon WC, Kwak SK, Kim YJ, Kim DH. Continuous-wave upconversion lasing with a sub-10 W cm-2 threshold enabled by atomic disorder in the host matrix. Nat Commun. 2021;12(1):4437. doi: 10.1038/s41467-021-24751-z
  55. Li B, Wang S, Chen J, et al. 3D Printing of LuAG: Ce transparent ceramics for laser-driven lighting. Ceram Int. 2023;49(23):38708-38716. doi: 10.1016/j.ceramint.2023.09.207
  56. Tong NB, Dung CT, Hanh TTK, et al. Intense green upconversion in core-shell structured NaYF4: Er, Yb@ SiO2 microparticles for anti-counterfeiting printing. Ceram Int. 2023;49(17):28484-28491. doi: 10.1016/j.ceramint.2023.06.105
  57. Yoo J, Lee K, Yang UJ, et al. Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing. Nat Photon. 2024;18(10):1105-1112. doi: 10.1038/s41566-024-01496-x
  58. Liu SF, Hou ZW, Lin L, et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science. 2022;377(6610):1112-1116. doi: 10.1126/science.abo5345
  59. Long J, Chen X, Mao T, et al. Laser direct writing of sol–gel-derived vacancy-rich functional oxide semiconductors. ACS nano. 2023;17(11):10033-10340. doi: 10.1021/acsnano.2c12163
  60. Huang X, Guo Q, Yang D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat Photon. 2020;14(2):82-88. doi: 10.1038/s41566-019-0538-8
  61. Loke G, Yuan R, Rein M, et al. Structured multimaterial filaments for 3D printing of optoelectronics. Nat Commun. 2019;10(1):4010. doi: 10.1038/s41467-019-11986-0
  62. Wang W, Ouaras K, Rutz AL, et al. Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Sci Adv. 2020;6(40):eaba0931. doi: 10.1126/sciadv.aba0931
  63. Kotz F, Quick AS, Risch P, et al. Two‐photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Adv Mater. 2021;33(9):2006341. doi: 10.1002/adma.202006341
  64. Prediger R, Kluck S, Hambitzer L, Sauter D, Kotz‐Helmer F. High‐resolution structuring of silica‐based nanocomposites for the fabrication of transparent multicomponent glasses with adjustable properties. Adv Mater. 2024;36:e2407630. doi: 10.1002/adma.202407630
  65. Weber K, Werdehausen D, König P, et al. Tailored nanocomposites for 3D printed micro-optics. Opt Mater Express. 2020;10(10):2345-2355. doi: 10.1364/OME.399392
  66. Luo X. Subwavelength artificial structures: Opening a new era for engineering optics. Adv Mater. 2019;31(4):1804680. doi: 10.1002/adma.201804680
  67. Khonina S, Kazanskiy N, Butt M. Exploring diffractive optical elements and their potential in free space optics and imaging‐a comprehensive review. Laser Photon Rev. 2024:2400377. doi: 10.1002/lpor.202400377
  68. Ocier CR, Richards CA, Bacon-Brown DA, et al. Direct laser writing of volumetric gradient index lenses and waveguides. Light Sci Appl. 2020;9(1):196. doi: 10.1038/s41377-020-00431-3
  69. Orange Kedem R, Opatovski N, Xiao D, et al. Near index matching enables solid diffractive optical element fabrication via additive manufacturing. Light Sci Appl. 2023;12(1):222. doi: 10.1038/s41377-023-01277-1
  70. Yulaev A, Zhu W, Zhang C, et al. Metasurface-integrated photonic platform for versatile free-space beam projection with polarization control. ACS Photon. 2019;6(11):2902-2909. doi: 10.1021/acsphotonics.9b01000
  71. Hu T, Zhang M, Mei H, Chang P, Wang X, Cheng L. 3D printing technology toward state‐of‐the‐art photoelectric devices. Adv Mater Technol. 2023;8(4):2200827. doi: 10.1002/admt.202200827
  72. Hu G, Albrow-Owen T, Jin X, et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat Commun. 2017;8(1):278. doi: 10.1038/s41467-017-00358-1
  73. Li Q, Zhao H, Yang D, et al. Direct in situ fabrication of multicolor afterglow carbon dot patterns with transparent and traceless features via laser direct writing. Nano Lett. 2024;24(10):3028-3035. doi: 10.1021/acs.nanolett.3c04192
  74. Chang Z, Deng W, Ren X, et al. High-speed printing of narrow-band-gap Sn-Pb perovskite layers toward cost-effective manufacturing of optoelectronic devices. ACS Appl Mater Interfaces. 2023;15(26):32037-32046. doi: 10.1021/acsami.3c06098
  75. An J, Le TSD, Lim CHJ, et al. Single‐step selective laser writing of flexible photodetectors for wearable optoelectronics. Adv Sci. 2018;5(8):1800496. doi: 10.1002/advs.201800496
  76. Butt MA, Mateos X. Strategic insights into integrated photonics: Core concepts, practical deployments, and future outlook. Appl Sci. 2024;14(14):6365. doi: 10.3390/app14146365
  77. Zhang S, Zhou H, Liu B, Su Z, Huang L. Recent advances and prospects of optical metasurfaces. Acs Photon. 2023;10(7):2045-2063. doi: 10.1021/acsphotonics.2c01539
  78. Hu J, Mengu D, Tzarouchis DC, Edwards B, Engheta N, Ozcan A. Diffractive optical computing in free space. Nat Commun. 2024;15(1):1525. doi: 10.1038/s41467-024-45982-w
  79. Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science. 2013;339(6125):1232009. doi: 10.1126/science.1232009
  80. Yang Y, Seong J, Choi M, et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. Light Sci Appl. 2023;12(1):152. doi: 10.1038/s41377-023-01169-4
  81. Xu Y, Maier P, Trappen M, et al. 3D-printed facet-attached microlenses for advanced photonic system assembly. Light Adv Manuf. 2023;4(2):77-93. doi: 10.37188/lam.2023.003
  82. Grabulosa A, Moughames J, Porte X, Brunner D. Combining one and two photon polymerization for accelerated high performance (3+ 1) D photonic integration. Nanophotonics. 2022;11(8):1591-601. doi: 10.1515/nanoph-2021-0733
  83. Liu Y, Wang H, Ho J, et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat Commun. 2019;10(1):4340. doi: 10.1038/s41467-019-12360-w
  84. Cao Y, Nallappan K, Guerboukha H, Xu G, Skorobogatiy M. Additive manufacturing of highly reconfigurable plasmonic circuits for terahertz communications. Optica. 2020;7(9):1112-1125. doi: 10.1364/OPTICA.398572
  85. Gu T, Kim HJ, Rivero-Baleine C, Hu J. Reconfigurable metasurfaces towards commercial success. Nat Photon. 2023;17(1):48-58. doi: 10.1038/s41566-022-01099-4
  86. Li H, Wang GM, Hu G, Cai T, Qiu CW, Xu HX. 3D‐printed curved metasurface with multifunctional wavefronts. Adv Opt Mater. 2020;8(15):2000129. doi: 10.1002/adom.202000129
  87. Zhou X, Wang H, Liu S, et al. Arbitrary engineering of spatial caustics with 3D-printed metasurfaces. Nat Commun. 2024;15(1):3719. doi: 10.1038/s41467-024-48026-5
  88. Zhu X, Engelberg J, Remennik S, et al. Resonant laser printing of optical metasurfaces. Nano Lett. 2022;22(7):2786-2792. doi: 10.1021/acs.nanolett.1c04874
  89. Zhu X, Yan W, Levy U, Mortensen NA, Kristensen A. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci Adv. 2017;3(5):e1602487. doi: 10.1126/sciadv.1602487
  90. Zhu J, Yang Y, Hu N, Liao S, Nulman J. Additively manufactured multi-material ultrathin metasurfaces for broadband circular polarization decoupled beams and orbital angular momentum generation. ACS Appl Mater Interfaces. 2021;13(49):59460-59470. doi: 10.1021/acsami.1c16493
  91. Zeng Y, Lu D, Xu X, et al. Laser‐printed terahertz plasmonic phase‐change metasurfaces. Adv Opt Mater. 2023;11(10):2202651. doi: 10.1002/adom.202202651
  92. Karatza A, Zouboulis P, Gavalas I, et al. SLA resins modification by liquid mixing with ceramic powders aiming at mechanical property and thermal stability enhancement for rapid tooling applications. J Manuf Mater Process. 2022;6(6):129. doi: 10.3390/jmmp6060129
  93. Vinoth Babu N, Venkateshwaran N, Rajini N, et al. Influence of slicing parameters on surface quality and mechanical properties of 3D-printed CF/PLA composites fabricated by FDM technique. Mater Technol. 2022;37(9):1008-1025. doi: 10.1080/10667857.2021.1915056
  94. Barkane A, Platnieks O, Jurinovs M, Gaidukovs S. Thermal stability of UV-cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application. Polymer Degrad Stabil. 2020;181:109347. doi: 10.1016/j.polymdegradstab.2020.109347
  95. Pazhamannil RV, Rajeev A, Govindan P, Edacherian A. Experimental investigations into the effects of process parameters and UV curing on the tensile strength of projection based stereolithography. Strength Mater. 2022;54(3):483-492. doi: 10.1007/s11223-022-00423-1
  96. Türker H, Aksoy B, Özsoy K. Fabrication of customized dental guide by stereolithography method and evaluation of dimensional accuracy with artificial neural networks. J Mechan Behav Biomed Mater. 2022;126:105071. doi: 10.1016/j.jmbbm.2021.105071
  97. Senthooran V, Weng Z, Wu L. Enhancing mechanical and thermal properties of 3D-printed samples using mica-epoxy acrylate resin composites-via digital light processing (DLP). Polymers. 2024;16(8):1148. doi: 10.3390/polym16081148
  98. Lin C, Xu W, Liu B, et al. Three-dimensional printing of large objects with high resolution by dynamic projection scanning lithography. Micromachines. 2023;14(9):1700. doi: 10.3390/mi14091700
  99. Binyamin I, Grossman E, Gorodnitsky M, Kam D, Magdassi S. 3D printing thermally stable high-performance polymers based on a dual curing mechanism. Adv Funct Mater. 2023;33(24):2214368. doi: 10.1002/adfm.202214368
  100. Huang J, Zhang B, Xiao J, Zhang Q. An approach to improve the resolution of DLP 3D printing by parallel mechanism. Appl Sci. 2022;12(24):12905. doi: 10.3390/app122412905
  101. Dannenberg PH, Liapis AC, Martino N, Sarkar D, Kim KH, Yun SH. Facile layer-by-layer fabrication of semiconductor microdisk laser particles. APL Photon. 2023;8(2):0213301. doi: 10.1063/5.0130792
  102. Wei P, Cipriani C, Hsieh CM, Kamani K, Rogers S, Pentzer E. Go with the flow: Rheological requirements for direct ink write printability. J Appl Phys. 2023;134(10):100701. doi: 10.1063/5.0155896
  103. Aqeel AB, Mohasan M, Lv P, Yang Y, Duan H. Effects of the actuation waveform on the drop size reduction in drop-on-demand inkjet printing. Acta Mechan Sin. 2020;36(5):983-989. doi: 10.1007/s10409-020-00991-y
  104. Jiang P, Yan C, Guo Y, et al. Direct ink writing with high-strength and swelling-resistant biocompatible physically crosslinked hydrogels. Biomater Sci. 2019;7(5):1805-1814. doi: 10.1039/C9BM00081J
  105. Jaiswal A, Rani S, Singh G, et al. Additive manufacturing of highly fluorescent organic 3D-metastructures at sub-wavelength resolution. Mater Today Phys. 2021;20:100434. doi: 10.1016/j.mtphys.2021.100434
  106. Vizsnyiczai G, Kelemen L, Ormos P. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms. Opt Express. 2014;22(20):24217-24123. doi: 10.1364/OE.22.024217
  107. O’Halloran S, Pandit A, Heise A, Kellett A. Two-photon polymerization: Fundamentals, materials, and chemical modification strategies. Adv Sci. 2023;10(7):2204072. doi: 10.1002/advs.202204072
  108. Jiao J, Zhou D, Li S, et al. Injection-seeded high-repetition-rate short-pulse micro-laser based on upconversion nanoparticles. Nanoscale. 2021;13(2):878-885. doi: 10.1039/D0NR06232D
  109. Roy NK, Behera D, Dibua OG, Foong CS, Cullinan MA. A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts. Microsyst Nanoeng. 2019;5(1):64. doi: 10.1038/s41378-019-0116-8
  110. Goetzendorfer B, Mohr T, Hellmann R. Hybrid approaches for selective laser sintering by building on dissimilar materials. Materials. 2020;13(22):5285. doi: 10.3390/ma13225285
  111. Jeong HY, Lee E, An SC, Lim Y, Jun YC. 3D and 4D printing for optics and metaphotonics. Nanophotonics. 2020;9(5):1139-1160. doi: 10.1515/nanoph-2019-0483
  112. Jung NT, Chen PR, Ho SJ, Tung CC, Chen PY, Chen HS. 3D quantum dot-lens fabricated by stereolithographic printing with in-situ UV curing for lighting and displays. Compos Part B Eng. 2021;226:109350. doi: 10.1016/j.compositesb.2021.109350
  113. Klein M, Steenhusen S, Löbmann P. Inorganic-organic hybrid polymers for printing of optical components: from digital light processing to inkjet 3D-printing. J Sol-Gel Sci Technol. 2022;101:649-654. doi: 10.1007/s10971-022-05748-6
  114. Kong YL, Tamargo IA, Kim H, et al. 3D printed quantum dot light-emitting diodes. Nano Letters. 2014;14(12):7017-7023. doi: 10.1021/nl5033292
  115. Faraji Rad Z, Prewett PD, Davies GJ. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays. Microsyst Nanoeng. 2021;7(1):71. doi: 10.1038/s41378-021-00298-3
  116. Liu Z, Wang D, Gao H, Li M, Zhou H, Zhang C. Metasurface-enabled augmented reality display: A review. Adv Photon. 2023;5(3):034001. doi: 10.1117/1.AP.5.3.034001
  117. Abdullah KA, Reed W. 3D printing in medical imaging and healthcare services. J Med Radiat Sci. 2018;65(3):237-239. doi: 10.1002/jmrs.292

 

 



Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing