Additive manufacturing of light-emitting active 3D optical structures
Additive manufacturing of arbitrarily shaped, light-emitting 3D structures is a pivotal innovation for controlling the beam propagation direction, angular distribution, emission point, and wavelength of active light sources. These light sources, which include microscale lasers, light-emitting diodes, quantum dots (QDs), and other emerging materials, are crucial for applications such as 3D cellular imaging, biomedical endoscopy, linear and non-linear imaging spectroscopy, photonic circuit integration, optical computing, and high-precision metrology in semiconductor and flat-panel display inspection. To meet the diverse requirements of these applications, various light-emitting materials, such as fluorescent dyes, up-conversion nanoparticles, QDs, and non-linear optical media, have been incorporated into additive manufacturing techniques. Over the past decade, several additive manufacturing methods have been adapted for fabricating active 3D optical structures, including inkjet printing of functional inks, fused deposition modeling of light-emitting filaments, selective sintering of active material powders, and two-photon polymerization of photonic polymers. These methodologies offer unprecedented versatility in designing and constructing complex optical structures with integrated light-emitting properties. The advent of such novel 3D-printed active optical systems promises to revolutionize fields ranging from on-chip photonics to advanced spectroscopy and precise optical measurement techniques, ultimately enabling new frontiers in photonic technologies and their applications.
- Camposeo A, Persano L, Farsari M, Pisignano D. Additive manufacturing: Applications and directions in photonics and optoelectronics. Adv Opt Mater. 2019;7(1):1800419. doi: 10.1002/adom.201800419
- Yang L, Mayer F, Bunz UH, Blasco E, Wegener M. Multi-material multi-photon 3D laser micro-and nanoprinting. Light Adv Manuf. 2021;2(3):296-312. doi: 10.37188/lam.2021.017
- Jiao J. Femtosecond Laser Additive Manufacturing of Nonlinear and Fluorescent Optical Structures. Doctoral thesis, Nanyang Technological University, Singapore; 2020. doi: 10.32657/10356/144184
- Zhu Y, Tang T, Zhao S, et al. Recent advancements and applications in 3D printing of functional optics. Addit Manuf. 2022;52:102682. doi: 10.1016/j.addma.2022.102682
- Xu X, Madrigal JB, Broussier A, et al., editors. Quantum emitters based on polymeric structures embedded with quantum dots fabricated via photo-polymerization. In: Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIII; United States: SPIE; 2020.
- Zhao Z, Zhou Y, Liu B, et al. Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue. Cell. 2023;186(11):2475- 2491.e22. doi: 10.1016/j.cell.2023.04.016
- Fu Y, Zhang S, Ma L, Zhao Z, Liao H, Xie T. Comprehensive advancement in endoscopy: Optical design, algorithm enhancement, and clinical validation for merged WLI and CBI imaging. Biomed Opt Express. 2024;15(2):506-523. doi: 10.1364/BOE.506134
- Srivastava S, Ranjan S, Yadav L, et al. Advanced spectroscopic techniques for characterizing defects in perovskite solar cells. Commun Mater. 2023;4(1):52. doi: 10.1038/s43246-023-00379-y
- Huang H, Zheng S, Sun W. Beam manipulation for quantum dot light-emitting diode with an Ag grating and a phase-gradient metasurface. Opt Express. 2022;30(16):28345-28357. doi: 10.1364/OE.463772
- Chen X, Ji C, Xiang Y, Kang X, Shen B, Yu T. Angular distribution of polarized light and its effect on light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes. Opt Express. 2016;24(10):A935-A942. doi: 10.1364/OE.24.00A935
- Jun YC, Huang KC, Brongersma ML. Plasmonic beaming and active control over fluorescent emission. Nat Commun. 2011;2(1):283. doi: 10.1038/ncomms1286
- Li M, Li R, Wu L, et al. Ultrabright and stable top-emitting quantum-dot light-emitting diodes with negligible angular color shift. Nat Commun. 2024;15(1):5161. doi: 10.1038/s41467-024-49574-6
- Schmidt EL, Ou Z, Ximendes E, et al. Near-infrared II fluorescence imaging. Nat Rev Methods Prim. 2024;4(1):23. doi: 10.1038/s43586-024-00301-x
- Mohtashami Y, Heki LK, Wong MS, et al. Metasurface light-emitting diodes with directional and focused emission. Nano Lett. 2023;23(22):10505-10511. doi: 10.1021/acs.nanolett.3c03272
- Cai G, Li Y, Zhang Y, et al. Compact angle-resolved metasurface spectrometer. Nat Mater. 2024;23(1):71-78. doi: 10.1038/s41563-023-01710-1
- Nian L, Pei X, Zhao Z, Wang X. Review of optical designs for light-emitting diode packaging. IEEE Trans Compon Pack Manuf Technol. 2019;9(4):642-648. doi: 10.1109/TCPMT.2019.2895729
- Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope. Optica. 2015;2(2):104-111. doi: 10.1364/OPTICA.2.000104
- Shin H, Yoon GW, Choi W, et al. Miniaturized multicolor fluorescence imaging system integrated with a PDMS light-guide plate for biomedical investigation. npj Flexible Electron. 2023;7(1):7. doi: 10.1038/s41528-023-00243-6
- Pshenay-Severin E, Bae H, Reichwald K, et al. Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept. Light Sci Appl. 2021;10(1):207. doi: 10.1038/s41377-021-00648-w
- Browning CM, Deal J, Mayes S, Arshad A, Rich TC, Leavesley SJ. Excitation-scanning hyperspectral video endoscopy: Enhancing the light at the end of the tunnel. Biomed Opt Express. 2020;12(1):247-271. doi: 10.1364/BOE.411640
- Wang V, Uddin SZ, Park J, Javey A. Highly multicolored light-emitting arrays for compressive spectroscopy. Sci Adv. 2023;9(16):eadg1607. doi: 10.1126/sciadv.adg1607
- Wang S, Wang Y, Guo T, Cao S. A long wave-infrared miniatured quantum dot spectrometer. Anal Chem. 2024;96(35):14090-14098. doi: 10.1021/acs.analchem.4c00695
- Austin JS, Xiao W, Wang F, et al. Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR. J Mater Chem C. 2024;12(29):10992-11000. doi: 10.1039/D4TC01917B
- Farooq F, Shin S, Lee JY, et al. Strategy to achieve a pure red/ green/blue-emitting upconversion luminescence for full-color displays. ACS Appl Mater Interfaces. 2024;16(29):38221-38230. doi: 10.1021/acsami.4c05482
- Lv Y, Xiong Z, Dong H, et al. Pure metal-organic framework microlasers with controlled cavity shapes. Nano Lett. 2020;20(3):2020-2025. doi: 10.1021/acs.nanolett.9b05321
- Lin X, Zhou W, Liu Y, et al. 3D‐printed möbius microring lasers: Topology engineering in photonic microstructures. Small. 2022;18(33):2202812. doi: 10.1002/smll.202202812
- Zheng X, Wang L, Wang M, et al. Resolution improvement of structured illumination microscopy using non‐diffraction‐limited point‐scanned fluorescence fringe. Laser Photon Rev. 2023;17(7):2200796. doi: 10.1002/lpor.202200796
- Dai C, Wan S, Li Z, Shi Y, Zhang S, Li Z. Switchable unidirectional emissions from hydrogel gratings with integrated carbon quantum dots. Nat Commun. 2024;15(1):845. doi: 10.1038/s41467-024-45284-1
- Kuang T, Huang R, Xiong W, et al. Nonlinear multi-frequency phonon lasers with active levitated optomechanics. Nat Phys. 2023;19(3):414-419. doi: 10.1038/s41567-022-01857-9
- Wang D, Li YL, Chu F, et al. Color liquid crystal grating based color holographic 3D display system with large viewing angle. Light Sci Appl. 2024;13(1):16. doi: 10.1038/s41377-023-01375-0
- Lukashchuk A, Yildirim HK, Bancora A, et al. Photonic-electronic integrated circuit-based coherent LiDAR engine. Nat Commun. 2024;15(1):3134. doi: 10.1038/s41467-024-47478-z
- Juodėnas M, Strandberg E, Grabowski A, et al. High-angle deflection of metagrating-integrated laser emission for high-contrast microscopy. Light Sci Appl. 2023;12(1):251. doi: 10.1038/s41377-023-01286-0
- Mansha S, Moitra P, Xu X, et al. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light Sci Appl. 2022;11(1):141. doi: 10.1038/s41377-022-00832-6
- Wang M, Wang F, Chen J, et al. Active beam steering enabled by photonic-crystal surface-emitting laser. ACS nano. 2024;18(29):18880-18888. doi: 10.1021/acsnano.3c09793
- Busschaert S, Flöry N, Papadopoulos S, Parzefall M, Heeg S, Novotny L. Beam steering with a nonlinear optical phased array antenna. Nano Lett. 2019;19(9):6097-6103. doi: 10.1021/acs.nanolett.9b02029
- Chaudhari AK, Tan JC. Dual‐guest functionalized zeolitic imidazolate framework‐8 for 3D printing white light‐emitting composites. Adv Opt Mater. 2020;8(8):1901912. doi: 10.1002/adom.201901912
- Vyatskikh A, Ng RC, Edwards B, Briggs RM, Greer JR. Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals. Nano Lett. 2020;20(5):3513-3520. doi: 10.1021/acs.nanolett.0c00454
- Sergeev A, Pavlov D, Kuchmizhak A, et al. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays. Light Sci Appl. 2020;9(1):16. doi: 10.1038/s41377-020-0247-6
- Boyer J, Johnson N, Van Veggel F. Upconverting lanthanide-doped NaYF4-PMMA polymer composites prepared by in situ polymerization. Chem Mater. 2009;21(10):2010-2012. doi: 10.1021/cm900756h
- Zhang C, Zou CL, Zhao Y, et al. Organic printed photonics: From microring lasers to integrated circuits. Sci Adv. 2015;1(8):e1500257. doi: 10.1126/sciadv.1500257
- Sergeeva KA, Pavlov DV, Seredin AA, et al. Laser‐printed plasmonic metasurface supporting bound states in the continuum enhances and shapes infrared spontaneous emission of coupled HgTe quantum dots. Adv Funct Mater. 2023;33(44):2307660. doi: 10.1002/adfm.202307660
- Mahata MK, Kumar K, Rai VK. Er3+–Yb3+ doped vanadate nanocrystals: A highly sensitive thermographic phosphor and its optical nanoheater behavior. Sensors Actuat B Chem. 2015;209:775-780. doi: 10.1016/j.snb.2014.12.039
- Zhang Q, Boniface A, Parashar VK, Gijs MA, Moser C. Multi-photon polymerization using upconversion nanoparticles for tunable feature-size printing. Nanophotonics. 2023;12(8):1527-1536. doi: 10.1515/nanoph-2022-0598
- Rocheva VV, Koroleva AV, Savelyev AG, et al. High-resolution 3D photopolymerization assisted by upconversion nanoparticles for rapid prototyping applications. Sci Rep. 2018;8(1):3663. doi: 10.1038/s41598-018-21793-0
- Bae J, Lee S, Ahn J, et al. 3D-printed quantum dot nanopixels. ACS Nano. 2020;14(9):10993-1001. doi: 10.1021/acsnano.0c04075
- Zhang G, Yu B, Cao Z, et al. A low loss quantum-dot-doped optical fiber temperature sensor based on flexible print technology. IEEE Photon J. 2020;12(3):1-8. doi: 10.1109/JPHOT.2020.2974905
- Ritacco T, Lio GE, Xu X, et al. Three-dimensional photoluminescent crypto-images doped with (cdse) zns quantum dots by one-photon and two-photon polymerization. ACS Appl Nano Mater. 2021;4(7):6916-6927. doi: 10.1021/acsanm.1c00968
- Zhao J, Yan Y, Gao Z, et al. Full-color laser displays based on organic printed microlaser arrays. Nat Commun. 2019;10(1):870. doi: 10.1038/s41467-019-08834-6
- Mata M, Sanz de León A, Valencia-Liñán LM, Molina SI. Plasmonic characterization of 3D printable metal-polymer nanocomposites. ACS Mater Au. 2024;4:424-435. doi: 10.1021/acsmaterialsau.4c00007
- Yang J, Feng M, Zhang K, et al. All‐inorganic functional phosphor-glass composites by light curing induced 3D printing for next‐generation modular lighting devices. Adv Opt Mater. 2022;10(21):2201110. doi: 10.1002/adom.202201110
- Yang J, Feng M, Li Y, et al. Chromaticity-tunable all-inorganic color converters fabricated by 3D printing for modular plant growth lighting devices. ACS Appl Mater Interfaces. 2023;15(19):23527-23537. doi: 10.1021/acsami.3c03881
- Xie M, Ji H, Wang D, et al. 3D printing of gradient-doped Yb: YAG laser ceramics by leveraging active mixing. Addit Manuf Front. 2024;3(1):200118. doi: 10.1016/j.amf.2024.200118
- Zhou Y, Cheng C, Hu L, Chen F. Guided-wave up-conversion luminescence in Er3+/Yb3+ Co-doped phosphate glass waveguide produced by direct femtosecond laser writing. Front Phys. 2022;9:763377. doi: 10.3389/fphy.2021.763377
- Moon BS, Lee TK, Jeon WC, Kwak SK, Kim YJ, Kim DH. Continuous-wave upconversion lasing with a sub-10 W cm-2 threshold enabled by atomic disorder in the host matrix. Nat Commun. 2021;12(1):4437. doi: 10.1038/s41467-021-24751-z
- Li B, Wang S, Chen J, et al. 3D Printing of LuAG: Ce transparent ceramics for laser-driven lighting. Ceram Int. 2023;49(23):38708-38716. doi: 10.1016/j.ceramint.2023.09.207
- Tong NB, Dung CT, Hanh TTK, et al. Intense green upconversion in core-shell structured NaYF4: Er, Yb@ SiO2 microparticles for anti-counterfeiting printing. Ceram Int. 2023;49(17):28484-28491. doi: 10.1016/j.ceramint.2023.06.105
- Yoo J, Lee K, Yang UJ, et al. Highly efficient printed quantum dot light-emitting diodes through ultrahigh-definition double-layer transfer printing. Nat Photon. 2024;18(10):1105-1112. doi: 10.1038/s41566-024-01496-x
- Liu SF, Hou ZW, Lin L, et al. 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science. 2022;377(6610):1112-1116. doi: 10.1126/science.abo5345
- Long J, Chen X, Mao T, et al. Laser direct writing of sol–gel-derived vacancy-rich functional oxide semiconductors. ACS nano. 2023;17(11):10033-10340. doi: 10.1021/acsnano.2c12163
- Huang X, Guo Q, Yang D, et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat Photon. 2020;14(2):82-88. doi: 10.1038/s41566-019-0538-8
- Loke G, Yuan R, Rein M, et al. Structured multimaterial filaments for 3D printing of optoelectronics. Nat Commun. 2019;10(1):4010. doi: 10.1038/s41467-019-11986-0
- Wang W, Ouaras K, Rutz AL, et al. Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Sci Adv. 2020;6(40):eaba0931. doi: 10.1126/sciadv.aba0931
- Kotz F, Quick AS, Risch P, et al. Two‐photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Adv Mater. 2021;33(9):2006341. doi: 10.1002/adma.202006341
- Prediger R, Kluck S, Hambitzer L, Sauter D, Kotz‐Helmer F. High‐resolution structuring of silica‐based nanocomposites for the fabrication of transparent multicomponent glasses with adjustable properties. Adv Mater. 2024;36:e2407630. doi: 10.1002/adma.202407630
- Weber K, Werdehausen D, König P, et al. Tailored nanocomposites for 3D printed micro-optics. Opt Mater Express. 2020;10(10):2345-2355. doi: 10.1364/OME.399392
- Luo X. Subwavelength artificial structures: Opening a new era for engineering optics. Adv Mater. 2019;31(4):1804680. doi: 10.1002/adma.201804680
- Khonina S, Kazanskiy N, Butt M. Exploring diffractive optical elements and their potential in free space optics and imaging‐a comprehensive review. Laser Photon Rev. 2024:2400377. doi: 10.1002/lpor.202400377
- Ocier CR, Richards CA, Bacon-Brown DA, et al. Direct laser writing of volumetric gradient index lenses and waveguides. Light Sci Appl. 2020;9(1):196. doi: 10.1038/s41377-020-00431-3
- Orange Kedem R, Opatovski N, Xiao D, et al. Near index matching enables solid diffractive optical element fabrication via additive manufacturing. Light Sci Appl. 2023;12(1):222. doi: 10.1038/s41377-023-01277-1
- Yulaev A, Zhu W, Zhang C, et al. Metasurface-integrated photonic platform for versatile free-space beam projection with polarization control. ACS Photon. 2019;6(11):2902-2909. doi: 10.1021/acsphotonics.9b01000
- Hu T, Zhang M, Mei H, Chang P, Wang X, Cheng L. 3D printing technology toward state‐of‐the‐art photoelectric devices. Adv Mater Technol. 2023;8(4):2200827. doi: 10.1002/admt.202200827
- Hu G, Albrow-Owen T, Jin X, et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat Commun. 2017;8(1):278. doi: 10.1038/s41467-017-00358-1
- Li Q, Zhao H, Yang D, et al. Direct in situ fabrication of multicolor afterglow carbon dot patterns with transparent and traceless features via laser direct writing. Nano Lett. 2024;24(10):3028-3035. doi: 10.1021/acs.nanolett.3c04192
- Chang Z, Deng W, Ren X, et al. High-speed printing of narrow-band-gap Sn-Pb perovskite layers toward cost-effective manufacturing of optoelectronic devices. ACS Appl Mater Interfaces. 2023;15(26):32037-32046. doi: 10.1021/acsami.3c06098
- An J, Le TSD, Lim CHJ, et al. Single‐step selective laser writing of flexible photodetectors for wearable optoelectronics. Adv Sci. 2018;5(8):1800496. doi: 10.1002/advs.201800496
- Butt MA, Mateos X. Strategic insights into integrated photonics: Core concepts, practical deployments, and future outlook. Appl Sci. 2024;14(14):6365. doi: 10.3390/app14146365
- Zhang S, Zhou H, Liu B, Su Z, Huang L. Recent advances and prospects of optical metasurfaces. Acs Photon. 2023;10(7):2045-2063. doi: 10.1021/acsphotonics.2c01539
- Hu J, Mengu D, Tzarouchis DC, Edwards B, Engheta N, Ozcan A. Diffractive optical computing in free space. Nat Commun. 2024;15(1):1525. doi: 10.1038/s41467-024-45982-w
- Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science. 2013;339(6125):1232009. doi: 10.1126/science.1232009
- Yang Y, Seong J, Choi M, et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. Light Sci Appl. 2023;12(1):152. doi: 10.1038/s41377-023-01169-4
- Xu Y, Maier P, Trappen M, et al. 3D-printed facet-attached microlenses for advanced photonic system assembly. Light Adv Manuf. 2023;4(2):77-93. doi: 10.37188/lam.2023.003
- Grabulosa A, Moughames J, Porte X, Brunner D. Combining one and two photon polymerization for accelerated high performance (3+ 1) D photonic integration. Nanophotonics. 2022;11(8):1591-601. doi: 10.1515/nanoph-2021-0733
- Liu Y, Wang H, Ho J, et al. Structural color three-dimensional printing by shrinking photonic crystals. Nat Commun. 2019;10(1):4340. doi: 10.1038/s41467-019-12360-w
- Cao Y, Nallappan K, Guerboukha H, Xu G, Skorobogatiy M. Additive manufacturing of highly reconfigurable plasmonic circuits for terahertz communications. Optica. 2020;7(9):1112-1125. doi: 10.1364/OPTICA.398572
- Gu T, Kim HJ, Rivero-Baleine C, Hu J. Reconfigurable metasurfaces towards commercial success. Nat Photon. 2023;17(1):48-58. doi: 10.1038/s41566-022-01099-4
- Li H, Wang GM, Hu G, Cai T, Qiu CW, Xu HX. 3D‐printed curved metasurface with multifunctional wavefronts. Adv Opt Mater. 2020;8(15):2000129. doi: 10.1002/adom.202000129
- Zhou X, Wang H, Liu S, et al. Arbitrary engineering of spatial caustics with 3D-printed metasurfaces. Nat Commun. 2024;15(1):3719. doi: 10.1038/s41467-024-48026-5
- Zhu X, Engelberg J, Remennik S, et al. Resonant laser printing of optical metasurfaces. Nano Lett. 2022;22(7):2786-2792. doi: 10.1021/acs.nanolett.1c04874
- Zhu X, Yan W, Levy U, Mortensen NA, Kristensen A. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci Adv. 2017;3(5):e1602487. doi: 10.1126/sciadv.1602487
- Zhu J, Yang Y, Hu N, Liao S, Nulman J. Additively manufactured multi-material ultrathin metasurfaces for broadband circular polarization decoupled beams and orbital angular momentum generation. ACS Appl Mater Interfaces. 2021;13(49):59460-59470. doi: 10.1021/acsami.1c16493
- Zeng Y, Lu D, Xu X, et al. Laser‐printed terahertz plasmonic phase‐change metasurfaces. Adv Opt Mater. 2023;11(10):2202651. doi: 10.1002/adom.202202651
- Karatza A, Zouboulis P, Gavalas I, et al. SLA resins modification by liquid mixing with ceramic powders aiming at mechanical property and thermal stability enhancement for rapid tooling applications. J Manuf Mater Process. 2022;6(6):129. doi: 10.3390/jmmp6060129
- Vinoth Babu N, Venkateshwaran N, Rajini N, et al. Influence of slicing parameters on surface quality and mechanical properties of 3D-printed CF/PLA composites fabricated by FDM technique. Mater Technol. 2022;37(9):1008-1025. doi: 10.1080/10667857.2021.1915056
- Barkane A, Platnieks O, Jurinovs M, Gaidukovs S. Thermal stability of UV-cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application. Polymer Degrad Stabil. 2020;181:109347. doi: 10.1016/j.polymdegradstab.2020.109347
- Pazhamannil RV, Rajeev A, Govindan P, Edacherian A. Experimental investigations into the effects of process parameters and UV curing on the tensile strength of projection based stereolithography. Strength Mater. 2022;54(3):483-492. doi: 10.1007/s11223-022-00423-1
- Türker H, Aksoy B, Özsoy K. Fabrication of customized dental guide by stereolithography method and evaluation of dimensional accuracy with artificial neural networks. J Mechan Behav Biomed Mater. 2022;126:105071. doi: 10.1016/j.jmbbm.2021.105071
- Senthooran V, Weng Z, Wu L. Enhancing mechanical and thermal properties of 3D-printed samples using mica-epoxy acrylate resin composites-via digital light processing (DLP). Polymers. 2024;16(8):1148. doi: 10.3390/polym16081148
- Lin C, Xu W, Liu B, et al. Three-dimensional printing of large objects with high resolution by dynamic projection scanning lithography. Micromachines. 2023;14(9):1700. doi: 10.3390/mi14091700
- Binyamin I, Grossman E, Gorodnitsky M, Kam D, Magdassi S. 3D printing thermally stable high-performance polymers based on a dual curing mechanism. Adv Funct Mater. 2023;33(24):2214368. doi: 10.1002/adfm.202214368
- Huang J, Zhang B, Xiao J, Zhang Q. An approach to improve the resolution of DLP 3D printing by parallel mechanism. Appl Sci. 2022;12(24):12905. doi: 10.3390/app122412905
- Dannenberg PH, Liapis AC, Martino N, Sarkar D, Kim KH, Yun SH. Facile layer-by-layer fabrication of semiconductor microdisk laser particles. APL Photon. 2023;8(2):0213301. doi: 10.1063/5.0130792
- Wei P, Cipriani C, Hsieh CM, Kamani K, Rogers S, Pentzer E. Go with the flow: Rheological requirements for direct ink write printability. J Appl Phys. 2023;134(10):100701. doi: 10.1063/5.0155896
- Aqeel AB, Mohasan M, Lv P, Yang Y, Duan H. Effects of the actuation waveform on the drop size reduction in drop-on-demand inkjet printing. Acta Mechan Sin. 2020;36(5):983-989. doi: 10.1007/s10409-020-00991-y
- Jiang P, Yan C, Guo Y, et al. Direct ink writing with high-strength and swelling-resistant biocompatible physically crosslinked hydrogels. Biomater Sci. 2019;7(5):1805-1814. doi: 10.1039/C9BM00081J
- Jaiswal A, Rani S, Singh G, et al. Additive manufacturing of highly fluorescent organic 3D-metastructures at sub-wavelength resolution. Mater Today Phys. 2021;20:100434. doi: 10.1016/j.mtphys.2021.100434
- Vizsnyiczai G, Kelemen L, Ormos P. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms. Opt Express. 2014;22(20):24217-24123. doi: 10.1364/OE.22.024217
- O’Halloran S, Pandit A, Heise A, Kellett A. Two-photon polymerization: Fundamentals, materials, and chemical modification strategies. Adv Sci. 2023;10(7):2204072. doi: 10.1002/advs.202204072
- Jiao J, Zhou D, Li S, et al. Injection-seeded high-repetition-rate short-pulse micro-laser based on upconversion nanoparticles. Nanoscale. 2021;13(2):878-885. doi: 10.1039/D0NR06232D
- Roy NK, Behera D, Dibua OG, Foong CS, Cullinan MA. A novel microscale selective laser sintering (μ-SLS) process for the fabrication of microelectronic parts. Microsyst Nanoeng. 2019;5(1):64. doi: 10.1038/s41378-019-0116-8
- Goetzendorfer B, Mohr T, Hellmann R. Hybrid approaches for selective laser sintering by building on dissimilar materials. Materials. 2020;13(22):5285. doi: 10.3390/ma13225285
- Jeong HY, Lee E, An SC, Lim Y, Jun YC. 3D and 4D printing for optics and metaphotonics. Nanophotonics. 2020;9(5):1139-1160. doi: 10.1515/nanoph-2019-0483
- Jung NT, Chen PR, Ho SJ, Tung CC, Chen PY, Chen HS. 3D quantum dot-lens fabricated by stereolithographic printing with in-situ UV curing for lighting and displays. Compos Part B Eng. 2021;226:109350. doi: 10.1016/j.compositesb.2021.109350
- Klein M, Steenhusen S, Löbmann P. Inorganic-organic hybrid polymers for printing of optical components: from digital light processing to inkjet 3D-printing. J Sol-Gel Sci Technol. 2022;101:649-654. doi: 10.1007/s10971-022-05748-6
- Kong YL, Tamargo IA, Kim H, et al. 3D printed quantum dot light-emitting diodes. Nano Letters. 2014;14(12):7017-7023. doi: 10.1021/nl5033292
- Faraji Rad Z, Prewett PD, Davies GJ. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays. Microsyst Nanoeng. 2021;7(1):71. doi: 10.1038/s41378-021-00298-3
- Liu Z, Wang D, Gao H, Li M, Zhou H, Zhang C. Metasurface-enabled augmented reality display: A review. Adv Photon. 2023;5(3):034001. doi: 10.1117/1.AP.5.3.034001
- Abdullah KA, Reed W. 3D printing in medical imaging and healthcare services. J Med Radiat Sci. 2018;65(3):237-239. doi: 10.1002/jmrs.292