AccScience Publishing / MSAM / Volume 3 / Issue 4 / DOI: 10.36922/msam.5729
ORIGINAL RESEARCH ARTICLE

Research on impact resistance of AlSi7Mg uniform and gradient porous structures manufactured by laser powder bed fusion

Mingkang Zhang1 Guijun Bi2 Jie Chen2*
Show Less
1 Additive Manufacturing Laboratory, School of Mechanical and Energy Engineering, Guangdong Ocean University, Yangjiang, Guangdong, China
2 Guangdong Key Laboratory of Modern Control Technology, Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
Submitted: 30 October 2024 | Accepted: 12 November 2024 | Published: 5 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Triply periodic minimal surfaces (TPMSs) have the advantage of energy absorption (EA) in automotive, aerospace, and military applications. In this study, uniform and gradient TPMS sandwich structures were prepared by laser powder bed fusion technique, and the effects of cell size and gradient type on the deformation and EA of the structures at different impact velocities were investigated based on drop hammer impact tests. The results indicate that, among the uniform TPMS sandwich structures, the structure with a smaller cell size exhibits higher EA and peak impact force, providing greater impact strength. In contrast, the structure with a larger cell size has a lower peak acceleration, which is suitable for vibration damping. The gradient distribution effectively disperses the impact capacity to obtain a higher impact strength; thus, the sine gradient (G-sineI) structure has the best impact resistance. This work validated the superior EA of gradient TPMS structures and presented a corresponding design method and impact performance evaluation for these structures.

Keywords
Additive manufacturing
Laser power bed fusion
Gradient porous structure
Impact resistance
Funding
The research was jointly sponsored by the funding schemes of GuangdongNaturalScienceFoundation(2023A1515012704), Guangdong Ocean University (360302022201), and ‘Science and Technology Project of Guangdong Academy of Sciences (2022GDASZH-2022010107), and Yangjiang City Key Industry Talent Revitalization Plan Project for Alloy Materials and Hardware Scissors (Grant No. RCZX2023002).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Siddique SH, Hazell PJ, Wang H, Escobedo JP, Ameri AA. Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption-a review. Addit Manufact. 2022;58:103051. doi: 10.1016/j.addma.2022.103051
  2. Feng J, Fu J, Yao X, He Y. Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications. Int J Extreme Manuf. 2022;4(2):022001. doi: 10.1088/2631-7990/ac5be6
  3. Chen D, Gao K, Yang J, Zhang L. Functionally graded porous structures: Analyses, performances, and applications-a review. Thin Walled Struct. 2023;191:111046. doi: 10.1016/j.tws.2023.111046
  4. Babu AS, Binish K, Jaivignesh M, Sugavaneswaran M. Modelling of functional gradient porous structure and its fabrication using additive manufacturing process. Mater Today Proc. 2018;5(11):24558-24567. doi: 10.1016/j.matpr.2018.10.253
  5. Liu B, Feng J, Chen J, He Y, Fu J. A topology optimisation-based design method for 3D Voronoi porous structures and its application for medical pillows. Virtual Phys Prototyp. 2023;18(1):e2285392. doi: 10.1080/17452759.2023.2285392
  6. Tang Y, Gao Z, Zhao YF. Design of conformal porous structures for the cooling system of an injection mold fabricated by additive manufacturing process. J Mech Design. 2019;141(10):101702. doi: 10.1115/1.4043680
  7. Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371-392. doi: 10.1016/j.actamat.2016.07.019
  8. Sing SL, Yeong WY. Laser powder bed fusion for metal additive manufacturing: Perspectives on recent developments. Virtual Phys Prototyp. 2020;15(3):359-370. doi: 10.1080/17452759.2020.1779999
  9. Zhu Z, Hu Z, Seet HL, Liu T, Liao W, Ramamurty U, Nai SM. Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications. Int J Mach Tools Manufact. 2023;190:104047. doi: 10.1016/j.ijmachtools.2023.104047
  10. Liu TS, Chen P, Qiu F, et al. Review on laser directed energy deposited aluminum alloys. Int J Extreme Manuf. 2024;6(2):022004. doi: 10.1088/2631-7990/ad16bb
  11. Pan F, Yang M, Chen X. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys. J Mater Sci Technol. 2016;32(12):1211-1221. doi: 10.1016/j.jmst.2016.07.001
  12. Bharath C, Shamanth V, Hemanth K. Studies on mechanical behaviour of AlSi10Mg alloy produced by selective laser melting and A360 alloy by die casting. Mater Today Proc. 2021;45:78-81. doi: 10.1016/j.matpr.2020.10.095
  13. Dash SS, Chen D. A review on processing-microstructure-property relationships of Al-Si alloys: Recent advances in deformation behavior. Metals. 2023;13(3):609. doi: 10.3390/met13030609
  14. Zhang J, Song B, Wei Q, Bourell D, Shi Y. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends. J Mater Sci Technol. 2019;35(2):270-284. doi: 10.1016/j.matpr.2020.10.095
  15. Medrano VA, Arrieta E, Merino J, et al. A comprehensive and comparative study of microstructure and mechanical properties for post-process heat treatment of AlSi7Mg alloy components fabricated in different laser powder bed fusion systems. J Mater Res Technol. 2023;24:6820-6842. doi: 10.1016/j.jmrt.2023.04.129
  16. Zvoníček J, Koutný D, Pantělejev L, Paloušek D. Development of Process Parameters for SLM Processing of AlSi7Mg Aluminum Alloy. Current Methods of Construction Design: Proceedings of the ICMD 2018. Germany: Springer; 2020. p. 515-524. doi: 10.1007/978-3-030-33146-7_59
  17. Kimura T, Nakamoto T. Microstructures and mechanical properties of A356 (AlSi7Mg0. 3) aluminum alloy fabricated by selective laser melting. Mater Design. 2016;89:1294-1301. doi: 10.1016/j.matdes.2015.10.065
  18. Nasab MH, Romano S, Gastaldi D, Beretta S, Vedani M. Combined effect of surface anomalies and volumetric defects on fatigue assessment of AlSi7Mg fabricated via laser powder bed fusion. Addit Manufact. 2020;34:100918. doi: 10.1016/j.addma.2019.100918
  19. Marola S, Peverini OA, Lumia M, Addamo G, Calignano F, Manfredi D. Effect of thermal treatments on the surface electrical conductivity of AlSi7Mg produced by laser powder bed fusion. Mater Today Commun. 2024;710:109339. doi: 10.1016/j.mtcomm.2024.109339
  20. Fan H, Witvrouw A, Wolf-Monheim F, Souschek R, Yang S. Effects of substrate surface treatments on hybrid manufacturing of AlSi7Mg using die casting and selective laser melting. J Mater Sci Technol. 2023;156:142-156. doi: 10.1016/j.jmst.2023.02.009
  21. Zhang Z, Li J, Cheng T, et al. Simultaneously enhanced strength and ductility of AlSi7Mg alloy fabricated by laser powder bed fusion with on-line static magnetic field. Virtual Phys Prototyp. 2023;18:e2161918. doi: 10.1080/17452759.2022.2161918
  22. Al-Ketan O, Abu Al-Rub RK. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv Eng Mater. 2019;21(10):1900524. doi: 10.1002/adem.201900524
  23. Yang N, Du CF, Wang S, Yang Y, Zhang C. Mathematically defined gradient porous materials. Mater Lett. 2016;173:136-140. doi: 10.1016/j.matlet.2016.03.021
  24. Zhang Y, Zhang J, Zhao X, et al. Mechanical behaviors regulation of triply periodic minimal surface structures with crystal twinning. Addit Manuf. 2022;58:103036. doi: 10.1016/j.addma.2022.103036
  25. Wang H, Tan D, Liu Z, Yin H, Wen G. On crashworthiness of novel porous structure based on composite TPMS structures. Eng Struct. 2022;252:113640. doi: 10.1016/j.engstruct.2021.113640
  26. Guo X, Ding J, Li X, et al. Interpenetrating phase composites with 3D printed triply periodic minimal surface (TPMS) lattice structures. Compos Part B: Eng. 2023;248:110351. doi: 10.1016/j.compositesb.2022.110351
  27. Peng C, Tran P. Bioinspired functionally graded gyroid sandwich panel subjected to impulsive loadings. Compos Part B Eng. 2020;188:107773. doi: 10.1016/j.compositesb.2020.107773
  28. Xing Y, Yang J. Stiffness distribution in natural insect cuticle reveals an impact resistance strategy. J Biomech. 2020;109:109952. doi: 10.1016/j.jbiomech.2020.109952
  29. Zhao M, Zhang DZ, Liu F, Li Z, Ma Z, Ren Z. Mechanical and energy absorption characteristics of additively manufactured functionally graded sheet lattice structures with minimal surfaces. Int J Mech Sci. 2020;167:105262. doi: 10.1016/j.ijmecsci.2019.105262
  30. Yu S, Sun J, Bai J. Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Mater Design. 2019;182:108021. doi: 10.1016/j.matdes.2019.108021
  31. Zhang T, Zhang K, Liu F, et al. Analysis of thermal storage behavior of composite phase change materials embedded with gradient-designed TPMS thermal conductivity enhancers: A numerical and experimental study. Appl Energy. 2024;358:122630. doi: 10.1016/j.apenergy.2024.122630
  32. Li Y, Liu B, Li Z, et al. Design and Compression Behavior Exploration of Skeletal and Sheet Triply Periodic Minimal Surface Structures. Adv Eng Mater. 2024;26(3):2301589. doi: 10.1002/adem.202301589
  33. Wallat L, Altschuh P, Reder M, Nestler B, Poehler F. Computational design and characterisation of gyroid structures with different gradient functions for porosity adjustment. Materials (Basel). 2022;15(10):3730. doi: 10.3390/ma15103730
  34. Zhang J, Xie S, Li T, et al. A study of multi-stage energy absorption characteristics of hybrid sheet TPMS lattices. Thin Walled Struct. 2023;190:110989. doi: 10.1016/j.tws.2023.110989
  35. Han L, Shunai C. An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self‐assembled systems. Adv Mater. 2018;30:1705708. doi: 10.1002/adma.201705708
  36. Zhang L, Feih S, Daynes S, et al. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Addit Manufact. 2018;23:505-515. doi: 10.1016/j.addma.2018.08.007
  37. Yang E, Leary M, Lozanovski B, et al. Effect of geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: A numerical study. Mater Design. 2019;184:108165. doi: 10.1016/j.matdes.2019.108165
  38. Li X, Lijun X, Weidong S. Compressive behavior of selective laser melting printed Gyroid structures under dynamic loading. Addit Manufact. 2021;46:102054.
  39. Ramos H, Santiago R, Soe S, et al. Response of gyroid lattice structures to impact loads. Int J Impact Eng. 2022;164:104202. doi: 10.1016/j.addma.2021.102054
  40. Jing L, Wang ZH, Zhao LM. Failure and deformation modes of sandwich beams under quasi-static loading. Appl Mech Mech Eng. 2010;29:84-88. doi: 10.4028/www.scientific.net/AMM.29-32.84
  41. Deshpande VS, Fleck NA. Collapse of truss core sandwich beams in 3-point bending. Int J Solids Struct. 2001;38(36-37):6275-6305. doi: 10.1016/S0020-7683(01)00103-2

 

 

 



Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing