AccScience Publishing / MSAM / Volume 3 / Issue 4 / DOI: 10.36922/msam.4970
ORIGINAL RESEARCH ARTICLE

Anti-microbial plastic parts fabricated by high-speed sintering

Saleh Alkarri1* Zahir Bashir2 Marco Wimmer3,4 Johann Schorzmanm3 Frank Döpper3,4
Show Less
1 School of Packaging, Michigan State University, East Lansing, Michigan, United States of America
2 Catenated Carbon Consultancy Ltd., Birmingham, England
3 Chair of Manufacturing and Remanufacturing Technologies, Faculty of Engineering, University of Bayreuth, Bayreuth, Germany
4 Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Bayreuth, Germany
Submitted: 27 September 2024 | Accepted: 23 October 2024 | Published: 3 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

 This study utilizes Mg(OH)2 nanocrystals (a non-leaching biocide) to develop plastic articles with anti-microbial activity. The standard method for manufacturing plastic nanocomposites involves melt compounding Mg(OH)2 nanocrystals into a polymer melt, followed by injection molding; however, this approach did not produce a part with anti-microbial activity because there were no Mg(OH)2 nanocrystals on the surface of the parts. Anti-microbial polyamide 12 (PA 12) parts could be produced using a specific 3D printing method called high-speed sintering (HSS). The HSS-printed parts were subsequently dip-coated with an anti-microbial suspension of Mg(OH)2 nanoplatelets (NPs). The Mg(OH)2 NPs embedded on the surface of the HSS-printed part exhibited a log10 4 reduction (effective killing) of the bacterium Escherichia coli K-12 MG1655 (E. coli). The Mg(OH)2 NPs adhered well to the HSS-printed parts and could be used repeatedly with no loss of anti-microbial activity. In contrast, the dip-coated injection-molded PA 12 part was ineffective because the Mg(OH)2 NPs did not adhere to it. The surface of the HSS-printed part naturally allows the binding of the Mg(OH)2 nanocrystals. The anti-microbial activity of Mg(OH)2 NPs depends on direct contact between them and the microbe, which is feasible with the dip-coated HSS-printed part but not with the injection-molded nanocomposite. The work illustrates some of the unique possibilities arising from 3D printing.

Keywords
: Anti-microbial plastics
E. coli K-12 MG1655
Magnesium hydroxide
Non-leachable
Polyamide 12
High-speed sintering
Additive manufacturing
Funding
This research received no external funding
Conflict of interest
All authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References
  1. Babutan I, Lucaci AD, Botiz I. Antimicrobial polymeric structures assembled on surfaces. Polymers (Basel). 2021;13:1552.doi: 10.3390/polym13101552
  2. Cappitelli F, Sorlini C. Microorganisms attack synthetic polymers in items representing our cultural heritage. Appl Environ Microbiol. 2008;74:564-569. doi: 10.1128/AEM.01768-07
  3. Cappitelli F, Principi P, Pedrazzani R, Toniolo L, Sorlini C. Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci Total Environ. 2007;385(1-3):172-181. doi: 10.1016/j.scitotenv.2007.06.022
  4. Webb JS, Nixon M, Eastwood IM, Greenhalgh M, Robson GD, Handley PS. Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl Environ Microbiol. 2000;66:3194-3200. doi: 10.1128/aem.66.8.3194-3200.2000
  5. Friedrich J, Zalar P, Mohorcic M, Klun U, Krzan A. Ability of fungi to degrade synthetic polymer nylon-6. Chemosphere. 2007;67(10):2089-2095. doi: 10.1016/j.chemosphere.2006.09.038
  6. Cai Z, Li M, Zhu Z, et al. Biological degradation of plastics and microplastics: A recent perspective on associated mechanisms and influencing factors. Microorganisms. 2023;11:1661. doi: 10.3390/microorganisms11071661
  7. Choi SY, Lee Y, Yu HE, Cho IJ, Kang M, Lee SY. Sustainable production and degradation of plastics using microbes. Nat Microbiol. 2023;8:2253-2276. doi: 10.1038/s41564-023-01529-1
  8. Majumdar P, Lee E, Patel N, Stafslien SJ, Daniels J, Chisholm BJ. Development of environmentally friendly, antifouling coatings based on tethered quaternary ammonium salts in a crosslinked polydimethylsiloxane matrix. J Coat Technol Res. 2008;5:405-417. doi: 10.1007/s11998-008-9098-4
  9. Hui F, Debiemme-Chouvy C. Antimicrobial N-halamine polymers and coatings: A review of their synthesis, characterization, and applications. Biomacromolecules. 2013;14:585-601. doi: 10.1021/bm301980q
  10. Dong A, Huang J, Lan S, et al. Synthesis of N-halamine functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity. Nanotechnology. 2011;22:295602. doi: 10.1088/0957-4484/22/29/295602
  11. Alfei S, Schito AM. Positively charged polymers as promising devices against multidrug resistant gram-negative bacteria: A review. Polymers (Basel). 2020;12:1195. doi: 10.3390/polym12051195
  12. Lin J, Qiu S, Lewis K, Klibanov AM. Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol Prog. 2002;18:1082-1086. doi: 10.1021/bp025597w
  13. Gibney KA, Sovadinova I, Lopez AI, et al. Poly(ethylene imine)s as anti-microbial agents with selective activity. Macromol Biosci. 2012;12:1279-1289. doi: 10.1002/mabi.201200052
  14. Guo L, Yuan W, Lu Z, Li CM. Polymer/nanosilver composite coatings for antibacterial applications. Colloids Surf A Physicochem Eng Asp. 2013;439:69-83. doi: 10.1016/j.colsurfa.2012.12.029
  15. Tamayo L, Azócar M, Kogan M, Riveros A, Páez M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C. 2016;69:1391-1409. doi: 10.1016/j.msec.2016.08.041
  16. Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020;15: 2555-2562. doi: 10.2147/IJN.S246764
  17. He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP Jr., Irwin P. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnol. 2016;14:54. doi: 10.1186/s12951-016-0202-0
  18. Dong C, Song D, Cairney J, Maddan LO, He G, Deng Y. Antibacterial study of Mg(OH)2 nanoplatelets. Mater Res Bull. 2011;46:576-582. doi: 10.1016/j.materresbull.2010.12.023
  19. Zhu Y, Tang Y, Ruan Z, et al. Mg(OH)2 nanoparticles enhance the antibacterial activities of macrophages by activating the reactive oxygen species. J Biomed Mater Res A. 2021;109:2369-2380. doi: 10.1002/jbm.a.37219
  20. Alkarri S, Sharma D, Bergholz TM, Rabnawaz M. Fabrication methodologies for antimicrobial polypropylene surfaces with leachable and nonleachable antimicrobial agents. J Appl Polym Sci. 2023;141:e54757. doi: 10.1002/app.54757
  21. ISO - International Organization for Standardization. ASTM Additive Manufacturing Processes, ISO/ASTM 52900:2015. Switzerland: International Organization for Standardization; 2015.
  22. Beaman JJ, Deckard CR. Selective Laser Sintering with Assisted Powder Handling. U.S. Patent 4,938,816A; 1986.
  23. Schmid M. Selektives Lasersintern (SLS) Mit Kunststoffen: Technologie, Prozesse und Werkstoffe. Ohio: Hanser; 2015.
  24. Bashir Z, Gu H, Yang L. Evaluation of poly (ethylene terephthalate) powder as a material for selective laser sintering, and characterization of printed part. Polym Eng Sci. 2018;58:1888-1900. doi: 10.1002/pen.24797
  25. Fahad M, Hopkinson N. Evaluation and comparison of geometrical accuracy of parts produced by sintering-based additive manufacturing processes. Int J Adv Manuf Technol. 2017;88:3389-3394. doi: 10.1007/s00170-016-9036-z
  26. Hopkinson N, Erasenthiran P. Method and Apparatus for Combining Particulate Material. US Patent 7,879,282 B2; 2011.
  27. Hopkinson N, Hague R, Dickens P. Rapid Manufacturing: An Industrial Revolution for a Digital Age. Hoboken, New Jersey: Wiley-Blackwell; 2005.
  28. Ellis A. The effect of build orientation and surface modification on mechanical properties of high speed sintered parts. Surface Topogr Metrol Prop. 2015;3(3):34005. doi: 10.1088/2051-672X/3/3/034005
  29. Brown R, Morgan CT, Majewski CE. Not Just Nylon Improving the Range of Materials for High Speed Sintering. In: Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference; 2018.
  30. Pezold D, Wimmer M, Alfayez F, Bashir Z, Döpper F. Evaluation of polyethylene terephthalate powder in high speed sintering. Polymers (Basel). 2022;14:2095. doi: 10.3390/polym14102095
  31. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(1(5):10212-10290. doi: 10.1021/acs.chemrev.7b00074
  32. Gu H, Bashir Z, Yang L. The re-usability of heat-exposed poly (ethylene terephthalate) powder for laser sintering. Addit Manuf. 2019;28:194-204. doi: 10.1016/j.addma.2019.05.004
  33. Pham DT, Dotchev KD, Yusoff W. Deterioration of polyamide powder properties in the laser sintering process. Proc Inst Mech Eng C J Mech Eng Sci. 2008;222:2163-2176. doi: 10.1243/09544062jmes839
  34. Alkarri S, Frame M, Cairney J, Maddan L, Kim JH, Rayner JO. Investigating anti-bacterial and anti-COVID-19 virus properties and mode of action of pure Mg (OH)2 and copper-infused Mg (OH)2 nanoparticles and coated polypropylene surfaces. Int J Clin Virol. 2024;8(1):8-23. doi: 10.29328/journal.ijcv.1001057
  35. Alkarri S, Naveed M, Alali F, Vachon J, Walworth A, Vanderberg A. Anti-microbial, thermal, mechanical, and gas barrier properties of linear low-density polyethylene extrusion blow-molded bottles. Polymers (Basel). 2024;16:1914. doi: 10.3390/polym16131914
  36. Alkarri S. Developing Methods for Incorporating Anti-microbial Biocidal Nanoparticles in Thermoplastics. Michigan State University; 2023. Available from: https:// www.proquest.com/openview/3d3600d8ed0e1614fa1c801e 2fdf9dc3/1?pq-origsite=gscholar&cbl=18750&diss=y [Last accessed on 2024 Aug 15].
  37. Halbus AF, Horozov TS, Paunov VN. Controlling the antimicrobial action of surface modified magnesium hydroxide nanoparticle. Biomimetics (Basel). 2019;4:41. doi: 10.3390/biomimetics4020041
  38. Pan X, Wang Y, Chen Z, et al. Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)₂. ACS Appl Mater Interfaces. 2013;5(3):1137-1142. doi: 10.1021/am302910q
  39. Gu H, Al Fayez F, Yang L, Ahmad T, Bashir Z. Powder bed fusion of aluminum-poly(ethylene terephthalate) hybrid powder: Process behavior and characterization of printed parts. Addit Manuf. 2022;51:102616. doi: 10.1016/j.addma.2022.102616
  40. Anis A, Elnour AY, Alam MA, Al-Zahrani SM, AlFayez F, Bashir Z. Aluminum-filled amorphous-PET, a composite showing simultaneous increase in modulus and impact resistance. Polymers (Basel). 2020;12:2038. doi: 10.3390/polym12092038
  41. Zhang J, Wang F, Yalamarty SSK, Filipczak N, Jin Y, Li X. Nano silver-induced toxicity and associated mechanisms. Int J Nanomedicine. 2022;17:1851-1864. doi: 10.2147/IJN.S355131
  42. Wang Y, Liu Y, Li, X, et al. Investigation of the biosafety of antibacterial Mg(OH)2 nanoparticles to a normal biological system. J Funct Biomater. 2023;14:229. doi: 10.3390/jfb14040229
  43. Singh R, Smitha MS, Singh SP. The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol. 2014;14:4745-4756. doi: 10.1166/jnn.2014.9527
  44. Guerrero Correa M, Martínez FB, Vidal CP, Streitt C, Escrig J, de Dicastillo CL. Antimicrobial metal-based nanoparticles: A review on their synthesis, types and antimicrobial action. Beilstein J Nanotechnol. 2020;11:1450-1469. doi: 10.3762/bjnano.11.129
  45. Campos MD, Zucchi PC, Phung A, Leonard SN, Hirsch EB. The activity of antimicrobial surfaces varies by testing protocol utilized. PLoS One. 2016;11(8):e0160728. doi: 10.1371/journal.pone.0160728

 



Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing