Anti-microbial plastic parts fabricated by high-speed sintering
This study utilizes Mg(OH)2 nanocrystals (a non-leaching biocide) to develop plastic articles with anti-microbial activity. The standard method for manufacturing plastic nanocomposites involves melt compounding Mg(OH)2 nanocrystals into a polymer melt, followed by injection molding; however, this approach did not produce a part with anti-microbial activity because there were no Mg(OH)2 nanocrystals on the surface of the parts. Anti-microbial polyamide 12 (PA 12) parts could be produced using a specific 3D printing method called high-speed sintering (HSS). The HSS-printed parts were subsequently dip-coated with an anti-microbial suspension of Mg(OH)2 nanoplatelets (NPs). The Mg(OH)2 NPs embedded on the surface of the HSS-printed part exhibited a log10 4 reduction (effective killing) of the bacterium Escherichia coli K-12 MG1655 (E. coli). The Mg(OH)2 NPs adhered well to the HSS-printed parts and could be used repeatedly with no loss of anti-microbial activity. In contrast, the dip-coated injection-molded PA 12 part was ineffective because the Mg(OH)2 NPs did not adhere to it. The surface of the HSS-printed part naturally allows the binding of the Mg(OH)2 nanocrystals. The anti-microbial activity of Mg(OH)2 NPs depends on direct contact between them and the microbe, which is feasible with the dip-coated HSS-printed part but not with the injection-molded nanocomposite. The work illustrates some of the unique possibilities arising from 3D printing.
- Babutan I, Lucaci AD, Botiz I. Antimicrobial polymeric structures assembled on surfaces. Polymers (Basel). 2021;13:1552.doi: 10.3390/polym13101552
- Cappitelli F, Sorlini C. Microorganisms attack synthetic polymers in items representing our cultural heritage. Appl Environ Microbiol. 2008;74:564-569. doi: 10.1128/AEM.01768-07
- Cappitelli F, Principi P, Pedrazzani R, Toniolo L, Sorlini C. Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci Total Environ. 2007;385(1-3):172-181. doi: 10.1016/j.scitotenv.2007.06.022
- Webb JS, Nixon M, Eastwood IM, Greenhalgh M, Robson GD, Handley PS. Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl Environ Microbiol. 2000;66:3194-3200. doi: 10.1128/aem.66.8.3194-3200.2000
- Friedrich J, Zalar P, Mohorcic M, Klun U, Krzan A. Ability of fungi to degrade synthetic polymer nylon-6. Chemosphere. 2007;67(10):2089-2095. doi: 10.1016/j.chemosphere.2006.09.038
- Cai Z, Li M, Zhu Z, et al. Biological degradation of plastics and microplastics: A recent perspective on associated mechanisms and influencing factors. Microorganisms. 2023;11:1661. doi: 10.3390/microorganisms11071661
- Choi SY, Lee Y, Yu HE, Cho IJ, Kang M, Lee SY. Sustainable production and degradation of plastics using microbes. Nat Microbiol. 2023;8:2253-2276. doi: 10.1038/s41564-023-01529-1
- Majumdar P, Lee E, Patel N, Stafslien SJ, Daniels J, Chisholm BJ. Development of environmentally friendly, antifouling coatings based on tethered quaternary ammonium salts in a crosslinked polydimethylsiloxane matrix. J Coat Technol Res. 2008;5:405-417. doi: 10.1007/s11998-008-9098-4
- Hui F, Debiemme-Chouvy C. Antimicrobial N-halamine polymers and coatings: A review of their synthesis, characterization, and applications. Biomacromolecules. 2013;14:585-601. doi: 10.1021/bm301980q
- Dong A, Huang J, Lan S, et al. Synthesis of N-halamine functionalized silica-polymer core-shell nanoparticles and their enhanced antibacterial activity. Nanotechnology. 2011;22:295602. doi: 10.1088/0957-4484/22/29/295602
- Alfei S, Schito AM. Positively charged polymers as promising devices against multidrug resistant gram-negative bacteria: A review. Polymers (Basel). 2020;12:1195. doi: 10.3390/polym12051195
- Lin J, Qiu S, Lewis K, Klibanov AM. Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol Prog. 2002;18:1082-1086. doi: 10.1021/bp025597w
- Gibney KA, Sovadinova I, Lopez AI, et al. Poly(ethylene imine)s as anti-microbial agents with selective activity. Macromol Biosci. 2012;12:1279-1289. doi: 10.1002/mabi.201200052
- Guo L, Yuan W, Lu Z, Li CM. Polymer/nanosilver composite coatings for antibacterial applications. Colloids Surf A Physicochem Eng Asp. 2013;439:69-83. doi: 10.1016/j.colsurfa.2012.12.029
- Tamayo L, Azócar M, Kogan M, Riveros A, Páez M. Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C. 2016;69:1391-1409. doi: 10.1016/j.msec.2016.08.041
- Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020;15: 2555-2562. doi: 10.2147/IJN.S246764
- He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP Jr., Irwin P. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnol. 2016;14:54. doi: 10.1186/s12951-016-0202-0
- Dong C, Song D, Cairney J, Maddan LO, He G, Deng Y. Antibacterial study of Mg(OH)2 nanoplatelets. Mater Res Bull. 2011;46:576-582. doi: 10.1016/j.materresbull.2010.12.023
- Zhu Y, Tang Y, Ruan Z, et al. Mg(OH)2 nanoparticles enhance the antibacterial activities of macrophages by activating the reactive oxygen species. J Biomed Mater Res A. 2021;109:2369-2380. doi: 10.1002/jbm.a.37219
- Alkarri S, Sharma D, Bergholz TM, Rabnawaz M. Fabrication methodologies for antimicrobial polypropylene surfaces with leachable and nonleachable antimicrobial agents. J Appl Polym Sci. 2023;141:e54757. doi: 10.1002/app.54757
- ISO - International Organization for Standardization. ASTM Additive Manufacturing Processes, ISO/ASTM 52900:2015. Switzerland: International Organization for Standardization; 2015.
- Beaman JJ, Deckard CR. Selective Laser Sintering with Assisted Powder Handling. U.S. Patent 4,938,816A; 1986.
- Schmid M. Selektives Lasersintern (SLS) Mit Kunststoffen: Technologie, Prozesse und Werkstoffe. Ohio: Hanser; 2015.
- Bashir Z, Gu H, Yang L. Evaluation of poly (ethylene terephthalate) powder as a material for selective laser sintering, and characterization of printed part. Polym Eng Sci. 2018;58:1888-1900. doi: 10.1002/pen.24797
- Fahad M, Hopkinson N. Evaluation and comparison of geometrical accuracy of parts produced by sintering-based additive manufacturing processes. Int J Adv Manuf Technol. 2017;88:3389-3394. doi: 10.1007/s00170-016-9036-z
- Hopkinson N, Erasenthiran P. Method and Apparatus for Combining Particulate Material. US Patent 7,879,282 B2; 2011.
- Hopkinson N, Hague R, Dickens P. Rapid Manufacturing: An Industrial Revolution for a Digital Age. Hoboken, New Jersey: Wiley-Blackwell; 2005.
- Ellis A. The effect of build orientation and surface modification on mechanical properties of high speed sintered parts. Surface Topogr Metrol Prop. 2015;3(3):34005. doi: 10.1088/2051-672X/3/3/034005
- Brown R, Morgan CT, Majewski CE. Not Just Nylon Improving the Range of Materials for High Speed Sintering. In: Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference; 2018.
- Pezold D, Wimmer M, Alfayez F, Bashir Z, Döpper F. Evaluation of polyethylene terephthalate powder in high speed sintering. Polymers (Basel). 2022;14:2095. doi: 10.3390/polym14102095
- Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(1(5):10212-10290. doi: 10.1021/acs.chemrev.7b00074
- Gu H, Bashir Z, Yang L. The re-usability of heat-exposed poly (ethylene terephthalate) powder for laser sintering. Addit Manuf. 2019;28:194-204. doi: 10.1016/j.addma.2019.05.004
- Pham DT, Dotchev KD, Yusoff W. Deterioration of polyamide powder properties in the laser sintering process. Proc Inst Mech Eng C J Mech Eng Sci. 2008;222:2163-2176. doi: 10.1243/09544062jmes839
- Alkarri S, Frame M, Cairney J, Maddan L, Kim JH, Rayner JO. Investigating anti-bacterial and anti-COVID-19 virus properties and mode of action of pure Mg (OH)2 and copper-infused Mg (OH)2 nanoparticles and coated polypropylene surfaces. Int J Clin Virol. 2024;8(1):8-23. doi: 10.29328/journal.ijcv.1001057
- Alkarri S, Naveed M, Alali F, Vachon J, Walworth A, Vanderberg A. Anti-microbial, thermal, mechanical, and gas barrier properties of linear low-density polyethylene extrusion blow-molded bottles. Polymers (Basel). 2024;16:1914. doi: 10.3390/polym16131914
- Alkarri S. Developing Methods for Incorporating Anti-microbial Biocidal Nanoparticles in Thermoplastics. Michigan State University; 2023. Available from: https:// www.proquest.com/openview/3d3600d8ed0e1614fa1c801e 2fdf9dc3/1?pq-origsite=gscholar&cbl=18750&diss=y [Last accessed on 2024 Aug 15].
- Halbus AF, Horozov TS, Paunov VN. Controlling the antimicrobial action of surface modified magnesium hydroxide nanoparticle. Biomimetics (Basel). 2019;4:41. doi: 10.3390/biomimetics4020041
- Pan X, Wang Y, Chen Z, et al. Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)₂. ACS Appl Mater Interfaces. 2013;5(3):1137-1142. doi: 10.1021/am302910q
- Gu H, Al Fayez F, Yang L, Ahmad T, Bashir Z. Powder bed fusion of aluminum-poly(ethylene terephthalate) hybrid powder: Process behavior and characterization of printed parts. Addit Manuf. 2022;51:102616. doi: 10.1016/j.addma.2022.102616
- Anis A, Elnour AY, Alam MA, Al-Zahrani SM, AlFayez F, Bashir Z. Aluminum-filled amorphous-PET, a composite showing simultaneous increase in modulus and impact resistance. Polymers (Basel). 2020;12:2038. doi: 10.3390/polym12092038
- Zhang J, Wang F, Yalamarty SSK, Filipczak N, Jin Y, Li X. Nano silver-induced toxicity and associated mechanisms. Int J Nanomedicine. 2022;17:1851-1864. doi: 10.2147/IJN.S355131
- Wang Y, Liu Y, Li, X, et al. Investigation of the biosafety of antibacterial Mg(OH)2 nanoparticles to a normal biological system. J Funct Biomater. 2023;14:229. doi: 10.3390/jfb14040229
- Singh R, Smitha MS, Singh SP. The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol. 2014;14:4745-4756. doi: 10.1166/jnn.2014.9527
- Guerrero Correa M, Martínez FB, Vidal CP, Streitt C, Escrig J, de Dicastillo CL. Antimicrobial metal-based nanoparticles: A review on their synthesis, types and antimicrobial action. Beilstein J Nanotechnol. 2020;11:1450-1469. doi: 10.3762/bjnano.11.129
- Campos MD, Zucchi PC, Phung A, Leonard SN, Hirsch EB. The activity of antimicrobial surfaces varies by testing protocol utilized. PLoS One. 2016;11(8):e0160728. doi: 10.1371/journal.pone.0160728