3D printing soft robots integrated with low-melting-point alloys
Soft robots are developed and applied in aspects such as grasping delicate objects. Their inherent flexibility also enables applications that are unattainable by humans, especially those in life-threatening environments. However, the object grasping performed by most pneumatic soft robotics during transportation requires continuous external power/force, a highly energy-consuming process, particularly for long-distance transportation. In this paper, we propose a low-melting-point alloy (LMPA)-integrated soft robot, manufactured by material extrusion additive manufacturing, requiring no power/force for holding objects during the moving process and thus presenting energy-saving characteristics. The working principles of the LMPA-integrated soft robot are as follows: (1) The LMPA is injected inside the soft robot using material extrusion. (2) The LMPA is heated to above its melting temperature so that the soft robot can change its shape. (3) At this stage, the soft robot is able to grasp an object. (4) While the soft robot is holding or grasping the object, the LMPA is cooled down to room temperature so that it turns into a solid state, and from this point onward, the soft robot can hold the object without relying on extra power for object grasping. (5) Once the soft robot arrives at the destination, the LMPA will be melted again to change the shape of the soft robot for releasing the grip and/or getting ready for another object grasping. In summary, this paper presents a case study of soft grippers, using 3D printing, specifically material extrusion, for fabricating an LMPA-integrated soft robot.
- Gibson I, Rosen DW, Stucker B, et al. Additive Manufacturing Technologies. Vol. 17. Germany. Springer; 2021. doi: 10.1007/978-1-4939-2113-3
- Zhai X, Jin L, Jiang J. A survey of additive manufacturing reviews. Mater Sci Addit Manuf. 2022;1(4):21. doi: 10.18063/msam.v1i4.21
- Jiang J. A survey of machine learning in additive manufacturing technologies. Int J Comput Integr Manuf. 2023;36(9):1258-1280. doi: 10.1080/0951192X.2023.2177740
- Jin L, Zhai X, Wang K, et al. Big data, machine learning, and digital twin assisted additive manufacturing: A review. Mater Des. 2024;244:113086. doi: 10.1016/j.matdes.2024.113086
- Uriondo A, Esperon-Miguez M, Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proc Inst Mech Eng G J Aerosp Eng. 2015;229(11):2132-2147. doi: 10.1177/0954410014568797
- Lu Z, San SLL, Tan MJ, An J, Zhang Y, Chua CK. Preliminary investigation on tensile and fatigue properties of ti6al4v manufactured by selected laser melting. Mater Sci Addit Manuf. 2023;2(2):0912. doi: 10.36922/msam.0912
- Marchal V, Zhang Y, Labed N, Lachat R, Peyraut F. Fast layer fiber orientation optimization method for continuous fiber-reinforced material extrusion process. Mater Sci Addit Manuf. 2023;2(1):49. doi: 10.36922/msam.49
- Menon V, Aranas C Jr., Saha G. Cold spray additive manufacturing of copper-based materials: Review and future directions. Mater Sci Addit Manuf. 2022;1(2):12. doi: 10.18063/msam.v1i2.12
- Salmi M. Additive manufacturing processes in medical applications. Materials (Basel). 2021;14(1):191. doi: 10.3390/ma14010191
- Fayyazbakhsh F, Tusar MH, Huang YW, Leu MC. Effect of bioactive borate glass on printability and physical properties of hydrogels. Mater Sci Addit Manuf. 2024;3(1):2845. doi: 10.36922/msam.2845
- Rouf S, Malik A, Raina A, et al. Functionally graded additive manufacturing for orthopedic applications. J Orthop. 2022;33:70-80. doi: 10.1016/j.jor.2022.06.013
- Kouhi M, de Souza Araújo IJ, Asa’ad F, et al. Recent advances in additive manufacturing of patient-specific devices for dental and maxillofacial rehabilitation. Dent Mater. 2024;40:700-715. doi: 10.1016/j.dental.2024.02.006
- Lu W, He W, Wu J, Zhang Y. A critical review of additive manufacturing technology in rehabilitation medicine via the use of visual knowledge graph. Virtual Phys Prototyp. 2023;18(1):e2132265. doi: 10.1080/17452759.2023.2248464
- Huang Y, Zhu Q, Liu H, Ren, Zhang L, Gou M. Current materials for 3D-printed flexible medical electrodes. Mater Sci Addit Manuf. 2023;2(4):2084. doi: 10.36922/msam.2084
- Kuzmanić I, Vujović I, Terzić V, Petković M, Šoda J. Additive manufacturing in marine engineering education. Prog Addit Manuf. 2022;7(3):521-530.
- Jia Y, Abdelrahman S, Hauser CA. Developing a sustainable resin for 3D printing in coral restoration. Mater Sci Addit Manuf. 2024;3(2):3125. doi: 10.36922/msam.3125
- Wang Z, Zhang B, He Q, et al. Multimaterial embedded 3D printing of composite reinforced soft actuators. Research (Wash D C). 2023;6:0122. doi: 10.34133/research.0122
- Rouway M, Tarfaoui M, Chakhchaoui N, Omari LEH, Fraija F, Cherkaoui O. Additive manufacturing and composite materials for marine energy: Case of tidal turbine. 3D Print Addit Manuf. 2023;10(6):1309-1319. doi: 10.1089/3dp.2021.0194
- Garbatov Y, Marchese SS, Epasto G, Crupi V. Flexural response of additive-manufactured honeycomb sandwiches for marine structural applications. Ocean Eng. 2024;302:117732. doi: 10.1016/j.oceaneng.2024.117732
- Wang M, Li D, Zang Z, et al. 3D food printing: Applications of plant-based materials in extrusion-based food printing. Crit Rev Food Sci Nutr. 2022;62(26):7184-7198. doi: 10.1080/10408398.2021.1911929
- Silva LRG, Stefano JS, Nocelli RCF, Janegitz BC. 3D electrochemical device obtained by additive manufacturing for sequential determination of paraquat and carbendazim in food samples. Food Chem. 2023;406:135038. doi: 10.1016/j.foodchem.2022.135038
- Oliveira SM, Martins AJ, Fucinos P, Cerqueira MA, Pastrana LM. Food additive manufacturing with lipid-based inks: Evaluation of phytosterol-lecithin oleogels. J Food Eng. 2023;341:111317. doi: 10.1016/j.jfoodeng.2022.111317
- Yu Q, Zhang M, Bhandari B, Li J. Future perspective of additive manufacturing of food for children. Trends Food Sci Technol. 2023;136:120-134. doi: 10.1016/j.tifs.2023.04.009
- Hu G, Damanpack A, Bodaghi M, Liao WH. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling. Smart Mater Struct. 2017;26(12):125023. doi: 10.1088/1361-665X/aa95e
- Zhang K, Gao Q, Jiang J, et al. High energy dissipation and self-healing auxetic foam by integrating shear thickening gel. Compos Sci Technol. 249 (2024) 110475. doi: 10.1016/j.compscitech.2024.110475
- Jin L, Yu S, Cheng J, et al. Machine learning-driven forward prediction and inverse design for 4d printed hierarchical architecture with arbitrary shapes. Appl Mater Today. 2024;40:102373. doi: 10.1016/j.apmt.2024.102373
- Li X, Wang X, Mei D, Xu C, Wang Y. Acoustic-assisted DLP 3D printing process for carbon nanofiber reinforced honeycomb structures. J Manuf Processes. 2024;121:374-381. doi: 10.1016/j.jmapro.2024.05.047
- Yu C, Jiang J. A perspective on using machine learning in 3D bioprinting. Int J Bioprint. 2020;6(1):253. doi: 10.18063/ijb.v6i1.253
- Kryou C, Leva V, Chatzipetrou M, Zergioti I. Bioprinting for liver transplantation. Bioengineering. 2019;6(4):95. doi: 10.3390/bioengineering6040095
- Jo HJ, Kang MS, Jang HJ, et al. Advanced approaches with combination of 2D nanomaterials and 3D printing for exquisite neural tissue engineering. Mater Sci Addit Manuf. 2023;2(2):0620. doi: 10.36922/msam.0620
- Liu C, Ling C, Chen C, et al. Laser additive manufacturing of magnesium alloys and its biomedical applications. Mater Sci Addit Manuf. 2022;1(4):24. doi: 10.18063/msam.v1i4.24
- Xu W, Nassehi A, Liu F. Metal additive manufacturing of orthopedic bone plates: An overview. Mater Sci Addit Manuf. 2023;2(4):2113. doi: 10.36922/msam.2113
- Stano G, Percoco G. Additive manufacturing aimed to soft robots fabrication: A review. Extreme Mech Lett. 2021;42:101079. doi: 10.1016/j.eml.2020.101079
- Sparrman B, Du Pasquier C, Thomsen C, et al. Printed silicone pneumatic actuators for soft robotics. Addit Manuf. 2021;40:101860. doi: 10.1016/j.addma.2021.101860
- Roels E, Terryn S, Brancart J, Verhelle R, Van Assche G, Vanderborght B. Additive manufacturing for self-healing soft robots. Soft Robot. 2020;7(6):711-723. doi: 10.1089/soro.2019.0081
- Jin L, Cui W. On technical issues for underwater charging of robotic fish schools using ocean renewable energy. Ships Offshore Struct. 2023:1-11. doi: 10.1080/17445302.2023.2245164
- El-Atab N, Mishra RB, Al-Modaf F, et al. Soft actuators for soft robotic applications: A review. Adv Intell Syst. 2020;2(10):2000128. doi: 10.1002/aisy.202000128
- Usevitch NS, Hammond ZM, Schwager M, Okamura AM, Hawkes EW, Follmer S. An untethered isoperimetric soft robot. Sci Robot. 2020;5(40):eaaz0492. doi: 10.1126/scirobotics.aaz0492
- Tang Y, Chi Y, Sun J, et al. Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots. Sci Adv. 2020;6(19):eaaz6912. doi: 10.1126/sciadv.aaz6912
- Wang Y, Yang Z, Zhou H, et al. Inflatable particle-jammed robotic gripper based on integration of positive pressure and partial filling. Soft Robot. 2022;9(2):309-323. doi: 10.1089/soro.2020.0139
- Li S, Stampfli JJ, Xu HJ, et al. A vacuum-driven origami magic-ball soft gripper. In: 2019 International Conference on Robotics and Automation (ICRA). United States: IEEE; 2019. p. 7401-7408. doi: 10.1109/ICRA.2019.8794068
- Faber JA, Arrieta AF, Studart AR. Bioinspired spring origami. Science. 2018;359(6382):1386-1391. doi: 10.1126/science.aap7753
- Liu Y, Tu K. Low melting point solders based on Sn, Bi, and In elements. Mater Today Adv. 2020;8:100115. doi: 10.1016/j.mtadv.2020.100115
- Daeneke T, Khoshmanesh K, Mahmood N, et al. Liquid metals: Fundamentals and applications in chemistry. Chem Soc Rev. 2018;47(11):4073-4111. doi: 10.1039/c7cs00043j
- Wang X, Guo R, Liu J. Liquid metal based soft robotics: Materials, designs, and applications. Adv Mater Technol. 2019;4(2):1800549. doi: 10.1002/admt.201800549
- Xu S, Yang XH, Tang SS, Liu J. Liquid metal activated hydrogen production from waste aluminum for power supply and its life cycle assessment. Int J Hydrogen Energy. 2019;44(33):17505-17514. doi: 10.1016/j.ijhydene.2019.05.176
- Zhang XD, Yang XH, Zhou YX, et al. Experimental investigation of Galinstan based Minichannel cooling for high heat flux and large heat power thermal management. Energy Convers Manag. 2019;185:248-258. doi: 10.1016/j.enconman.2019.02.010
- Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chem Soc Rev. 2018;47:2518-2533. doi: 10.1039/C7CS00309A
- Zhang M, Zhang P, Zhang C, Wang Y, Chang H, Rao W. Porous and anisotropic liquid metal composites with tunable reflection ratio for low-temperature electromagnetic interference shielding. Appl Mater Today. 2020;19:100612. doi: 10.1016/j.apmt.2020.100612
- Jiang J, Zhai X, Zhang K, et al. Low-melting-point alloys integrated extrusion additive manufacturing. Addit Manuf. 2023;72:103633. doi: 10.1016/j.addma.2023.103633
- Jiang J, Zhai X, Jin L, et al. Design for reversed additive manufacturing low-melting-point alloys. J Eng Des. 2023:1-14.doi: 10.1080/09544828.2023.2261096
- Bartlett JL, Heim FM, Murty YV, Li X. In situ defect detection in selective laser melting via full-field infrared thermography. Addit Manuf. 2018;24:595-605. doi: 10.1016/j.addma.2018.10.045
- Sushchenko A, Scherschel A, Love-Baker C, et al. Evaluating consumer 3D printing nozzles as a low-cost alternative for mesophase pitch-derived carbon fiber production. Carbon. 2024;225:119088. doi: 10.1016/j.carbon.2024.119088
- Bartlett JL, Li X. An overview of residual stresses in metal powder bed fusion. Addit Manuf. 2019;27:131-149. doi: 10.1016/j.addma.2019.02.020