AccScience Publishing / MSAM / Volume 3 / Issue 1 / DOI: 10.36922/msam.2753
Cite this article
Journal Browser
Volume | Year
News and Announcements
View All

Porous titanium alloys for medical application: Progress in preparation process and surface modification research

Binghao Wang1,2 Miao Luo1,2 Zheng Shi3 Yuwei Cui4 Yuting Lv3 Chengliang Yang1,2,4* Liqiang Wang4,5*
Show Less
1 Life Sciences and Clinical Medicine Research Centre, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
2 Guangxi Key Laboratory for Preclinical and Translational Research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, Guangxi, China
3 College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
4 State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, China
5 National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
Submitted: 16 January 2024 | Accepted: 8 March 2024 | Published: 28 March 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( )

Excellent mechanical properties and biocompatibility are the most sought-after attributes in biomedical materials for the regeneration of damaged tissues. However, conventional dense titanium alloys possess a modulus significantly higher than that of human tissues, leading to potential stress-shielding effects. Medical porous titanium alloys can reduce the elastic modulus of the material, promote tissue fixation and vascular regeneration, and improve the suitability for human tissue properties. With the continuous development of technology, the preparation process of porous titanium alloys has undergone a series of multifaceted transformations and improvements in the aspects of powder sintering, fiber preparation, and additive manufacturing processes, and its structural characteristics and mechanical properties are constantly evolving in a controllable direction. Alongside the enhancement of the material’s mechanical properties through porous design, optimization of the properties at the implant-tissue interface also leads to improved antimicrobial and osteogenic properties of porous titanium. Due to the complex internal structure of porous titanium alloys, surface modification is mainly carried out in fluid media, which is realized by morphological modification and the introduction of functional substances. Over time, the surface modification of porous titanium alloys for medical applications has progressed from morphological modification and introduction of chemical composition to the loading of bioactive substances. This evolution aims to enhance safety and efficiency in the use of these materials. This paper reviews the preparation and surface modification processes of porous titanium alloys for medical use and summarizes the advantages, disadvantages, and influencing factors among different processes, with a view to providing new ideas for the development of porous implants for medical use.

Medical implants
Porous titanium alloy
Preparation process
Surface modification
  1. Evans JT, Evans JP, Walker RW, Blom AW, Whitehouse MR, Sayers A. How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet. 2019;393:647-654. doi: 10.1016/S0140-6736(18)31665-9.
  2. Gupta K, Meena K. Artificial bone scaffolds and bone joints by additive manufacturing: A review. Bioprinting. 2023;31:e00268. doi: 10.1016/j.bprint.2023.e00268
  3. Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014;93:1235-1242. doi: 10.1177/0022034514553627.
  4. Dong T, Duan C, Wang S, et al. Multifunctional surface with enhanced angiogenesis for improving long-term osteogenic fixation of poly(ether ether ketone) implants. ACS Appl Mater Interfaces. 2020;12:14971-14982. doi: 10.1021/acsami.0c02304
  5. Wang N, Ma Y, Shi H, Song Y, Guo S, Yang S. Mg-, Zn-, and Fe-based alloys with antibacterial properties as orthopedic implant materials. Front Bioeng Biotechnol. 2022;10:888084. doi: 10.3389/fbioe.2022.888084
  6. Liang W, Zhou C, Zhang H, et al. Recent advances in 3D printing of biodegradable metals for orthopaedic applications. J Biol Eng. 2023;17:56. doi: 10.1186/s13036-023-00371-7
  7. Song C, Liu L, Deng Z, et al. Research progress on the design and performance of porous titanium alloy bone implants. J Mater Res Technol. 2023;23:2626-2641. doi: 10.1016/j.jmrt.2023.01.155
  8. Guo AXY, Cheng L, Zhan S, et al. Biomedical applications of the powder‐based 3D printed titanium alloys: A review. J Mater Sci Technol. 2022;125:252-264. doi: 10.1016/j.jmst.2021.11.084
  9. Gao C, Li C, Wang C, et al. Advances in the induction of osteogenesis by zinc surface modification based on titanium alloy substrates for medical implants. J Alloy Compd. 2017;726:1072-1084. doi: 10.1016/j.jallcom.2017.08.078
  10. Sun Y, Hu W, Wu C, et al. Research progress on mechanical properties of 3D printed biomedical titanium alloys. J Mater Eng Perform. 2023;32:9489-9503. doi: 10.1007/s11665-023-08248-y
  11. Liu R, Su Y, Yang W, et al. Novel design and optimization of porous titanium structure for mandibular reconstruction. Appl Bionics Biomech. 2022;2022:8686670. doi: 10.1155/2022/8686670
  12. Long S, Zhu J, Jing Y, He S, Cheng L, Shi Z. A comprehensive review of surface modification techniques for enhancing the biocompatibility of 3D-printed titanium implants. Coatings. 2023;13:1917. doi: 10.3390/coatings13111917
  13. Asri RIM, Harun WSM, Samykano M, et al. Corrosion and surface modification on biocompatible metals: A review. Mater Sci Eng C Mater Biol Appl. 2017;77:1261-1274. doi: 10.1016/j.msec.2017.04.102
  14. Ottria L, Lauritano D, Bassi MA, et al. Mechanical, chemical and biological aspects of titanium and titanium alloys in implant dentistry. J Biol Regul Homeost Agents. 2018;32:81- 90.
  15. Sheng X, Wang A, Wang Z, Liu H, Wang J, Li C. Advanced surface modification for 3D-printed titanium alloy implant interface functionalization. Front Bioeng Biotechnol. 2022;10:850110. doi: 10.3389/fbioe.2022.850110
  16. Raman RKS, Wen C, Loeffler JF. Human Body-fluid-assisted fracture of zinc alloys as biodegradable temporary implants: Challenges, research needs and way forward. Materials. 2023;16:4984. doi: 10.3390/ma16144984
  17. Dziaduszewska M, Zieliński A. Structural and material determinants influencing the behavior of porous Ti and its alloys made by additive manufacturing techniques for biomedical applications. Materials. 2021;14:712. doi: 10.3390/ma14040712 
  18. Khodaei M, Fathi M, Meratian M, Savabi O. The effect of porosity on the mechanical properties of porous titanium scaffolds: Comparative study on experimental and analytical values. Mater Res Express. 2018;5:055401. doi: 10.1088/2053-1591/aabfa2
  19. Xiong YZ, Gao RN, Zhang H, Dong LL, Li JT, Li X. Rationally designed functionally graded porous Ti6Al4V scaffolds with high strength and toughness built via selective laser melting for load-bearing orthopedic applications. J Mech Behav Biomed Mater. 2020;104:103673. doi: 10.1016/j.jmbbm.2020.103673
  20. Lv Y, Wang B, Liu G, et al. Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: A review. Front Bioeng Biotechnol. 2021;9:641130. doi: 10.3389/fbioe.2021.641130
  21. Wei G, Tan M, Attarilar S, et al. An overview of surface modification, a way toward fabrication of nascent biomedical Ti–6Al–4V alloys. J Mater Res Technol. 2023;24:5896-5921. doi: 10.1016/j.jmrt.2023.04.046
  22. Oesterle W, Klaffke D, Griepentrog M, Gross U, Kranz I, Knabe C. Potential of wear resistant coatings on Ti-6Al-4V for artificial hip joint bearing surfaces. Wear. 2008;264:505- 517. doi: 10.1016/j.wear.2007.04.001
  23. Bobbert FSL, Lietaert K, Eftekhari AA, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017;53:572-584. doi: 10.1016/j.actbio.2017.02.024
  24. Lv Y, Liu G, Wang B, et al. Pore strategy design of a novel NiTi-Nb biomedical porous scaffold based on a triply periodic minimal surface. Front Bioeng Biotechnol. 2022;10:910475. doi: 10.3389/fbioe.2022.910475
  25. Zhang T, Wang W, Liu J, Wang L, Tang Y, Wang K. A review on magnesium alloys for biomedical applications. Front Bioeng Biotechnol. 2022;10:953344. doi: 10.3389/fbioe.2022.953344
  26. Sidhu SS, Singh H, Gepreel MAH. A review on alloy design, biological response, and strengthening of β-titanium alloys as biomaterials. Mater Sci Eng C Mater Biol Appl. 2021;121:111661. doi: 10.1016/j.msec.2020.111661
  27. Zhang T, Fan Q, Ma X, et al. Effect of laser remelting on microstructural evolution and mechanical properties of Ti-35Nb-2Ta-3Zr alloy. Mater Lett. 2019;253:310-313. doi: 10.1016/j.matlet.2019.06.105
  28. Wang L, Lin Z, Wang X, et al. Effect of aging treatment on microstructure and mechanical properties of Ti27Nb2Ta3Zr β titanium alloy for implant applications. Mater Trans. 2014;55:141-146. doi: 10.2320/matertrans.M2013187
  29. Yuan L, Ding S, Wen C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioactive Mater. 2019;4:56-70. doi: 10.1016/j.bioactmat.2018.12.003
  30. Zhao F, Wang J, Guo H, Liu S, He W. The effects of surface properties of nanostructured bone repair materials on their performances. J Nanomater. 2015;2015:893545. doi: 10.1155/2015/893545
  31. Cao S, Ma N, Zhang Y, Bo R, Lu Y. Fabrication, mechanical properties, and multifunctionalities of particle reinforced foams: A review. Thin Walled Struct. 2023;186:110678. doi: 10.1016/j.tws.2023.110678
  32. Rodriguez-Contreras A, Punset M, Calero JA, Javier Gil F, Ruperez E, Maria Manero J. Powder metallurgy with space holder for porous titanium implants: A review. J Mater Sci Technol. 2021;76:129-149. doi: 10.1016/j.jmst.2020.11.005
  33. Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006;27:2651-2670. doi: 10.1016/j.biomaterials.2005.12.002
  34. Majumdar T, Eisenstein N, Frith JE, Cox SC, Birbilis N. Additive manufacturing of titanium alloys for orthopedic applications: A materials science viewpoint. Adv Eng Mater. 2018;20:1800172. doi: 10.1002/adem.201800172
  35. Babaie E, Bhaduri SB. Fabrication aspects of porous biomaterials in orthopedic applications: A review. ACS Biomater Sci Eng. 2018;4:1-39. doi: 10.1021/acsbiomaterials.7b00615 
  36. Luo SD, Qian M. Microwave processing of titanium and titanium alloys for structural, biomedical and shape memory applications: Current status and challenges. Mater Manuf Process. 2018;33:35-49. doi: 10.1080/10426914.2016.1257800
  37. Oh IH, Nomura N, Masahashi N, Hanada S. Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Mater. 2003;49:1197-1202. doi: 10.1016/j.scriptamat.2003.08.018
  38. Torres Y, Lascano S, Bris J, Pavón J, Rodriguez JA. Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques. Mater Sci Eng C Mater Biol Appl. 2014;37:148- 155. doi: 10.1016/j.msec.2013.11.036
  39. Annur D, Kartika I, Sudiro T, Supriadi S, Suharno B. Microstructure, mechanical properties, and in vitro studies of porous titanium obtained by spark plasma sintering. Trans Indian Inst Metals. 2022;75:3067-3076. doi: 10.1007/s12666-022-02680-9
  40. Saadati A, Aghajani H. Fabrication of porous NiTi biomedical alloy by SHS method. J Mater Sci Mater Med. 2019;30:92. doi: 10.1007/s10856-019-6296-9
  41. Han Q, Wang C, Chen H, Zhao X, Wang J. Porous tantalum and titanium in orthopedics: A review. ACS Biomater Sci Eng. 2019;5:5798-5824. doi: 10.1021/acsbiomaterials.9b00493
  42. Lascano S, Arevalo C, Montealegre-Melendez I, et al. Porous titanium for biomedical applications: Evaluation of the conventional powder metallurgy frontier and space-holder technique. Appl Sci. 2019;9:982. doi: 10.3390/app9050982
  43. Nugroho AW, Leadbeater G, Davies IJ. Fabrication and characterization of the porous titanium alloy by argon filled pore expansion technique. IOP Conf Ser Mater Sci Eng. 2018;403:012096. doi: 10.1088/1757-899X/403/1/012096
  44. Chen YJ, Feng B, Zhu YP, Weng J, Wang JX, Lu X. Fabrication of porous titanium implants with biomechanical compatibility. Mater Lett. 2009;63:2659-2661. doi: 10.1016/j.matlet.2009.09.029
  45. Rao X, Chu CL, Zheng YY. Phase composition, microstructure, and mechanical properties of porous Ti–Nb–Zr alloys prepared by a two-step foaming powder metallurgy method. J Mech Behav Biomed Mater. 2014;34:27-36. doi: 10.1016/j.jmbbm.2014.02.001
  46. Ahn MK, Jo IH, Koh YH, Kim HE. Production of highly porous titanium (Ti) scaffolds by vacuum-assisted foaming of titanium hydride (TiH2) suspension. Mater Lett. 2014;120:228-31. doi: 10.1016/j.matlet.2014.01.065
  47. Gonzalez, Z, Molero, E, Sanchez, J, Ferrari, B. Processing of titanium porous bodies by foaming of gelled aqueous suspensions of powders. Preprints 2021, 2021020099. doi: 10.20944/preprints202102.0099.v1
  48. Haghjoo R, Sadrnezhaad SK, Hassanzadeh-Nemati N. Synthesis, characterization, and biological studies of sintered porous titanium with three different pore morphologies. Int J Mater Res. 2023;114:43-53. doi: 10.1515/ijmr-2022-0053
  49. Luo H, Zhao J, Du H, Yin W, Qu Y. Effect of Mg powder’s particle size on structure and mechanical properties of Ti foam synthesized by space holder technique. Materials. 2022;15:8863. doi: 10.3390/ma15248863
  50. Yang G, Xu B, Lei X, et al. Preparation of porous titanium by direct in-situ reduction of titanium sesquioxide. Vacuum. 2018;157:453-457. doi: 10.1016/j.vacuum.2018.09.021
  51. Chen Z, Wu C, Liu X, Shen T, Zhang L. Fabricating honeycomb titanium by freeze casting and anodizing for biomedical applications. Adv Eng Mater. 2022;24:2101088. doi: 10.1002/adem.202101088
  52. Li J, Li Z, Wang Q, et al. Sintered porous Ti6Al4V scaffolds incorporated with recombinant human bone morphogenetic protein-2 microspheres and thermosensitive hydrogels can enhance bone regeneration. RSC Adv. 2019;9:1541-1550. doi: 10.1039/C8RA10200G 
  53. Yang D, Guo Z, Shao H, Liu X, Ji Y. Mechanical properties of porous Ti-Mo and Ti-Nb alloys for biomedical application by gelcasting. Procedia Eng.2012;36:160-167. doi: 10.1016/j.proeng.2012.03.025
  54. Biasetto L, De Moraes EG, Colombo P, Bonollo F. Ovalbumin as foaming agent for Ti6Al4V foams produced by gelcasting. J Alloys Compd. 2016;687:839-844. doi: 10.1016/j.jallcom.2016.06.218
  55. Liu P, Tan Q, Wu L, He G. Compressive and pseudo-elastic hysteresis behavior of entangled titanium wire materials. Mater Sci Eng A. 2010;527:3301-3309. doi: 10.1016/j.msea.2010.02.071
  56. Wang L, Xie L, Zhang LC, et al. Microstructure evolution and superelasticity of layer-like NiTiNb porous metal prepared by eutectic reaction. Acta Mater. 2018;143:214-226. doi: 10.1016/j.actamat.2017.10.021
  57. Li F, Li J, Xu G, Liu G, Kou H, Zhou L. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications. J Mech Behav Biomed Mater. 2015;46:104-114. doi: 10.1016/j.jmbbm.2015.02.023
  58. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B Eng. 2018;143:172-196. doi: 10.1016/j.compositesb.2018.02.012
  59. Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev. 2015;94:53-62. doi: 10.1016/j.addr.2015.03.013
  60. Structural Characteristics and Mechanical Behavior of Selective Laser Sintered Porous Ti-6Mo Alloy for Biomedical Applications-All Databases, (n.d.). Available from: http:// 756565212abc50b4738e8888c9482a5750aefc5fc6e25954c3 8c5bb888/wos/alldb/full-record/WOS:000379195400020 [Last accessed on 2024 Mar 03].
  61. Davoodi E, Montazerian H, Mirhakimi AS, et al. Additively manufactured metallic biomaterials. Bioactive Mater. 2022;15:214-249. doi: 10.1016/j.bioactmat.2021.12.027
  62. Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue engineering scaffolds. Bioactive Mater. 2020;5:82-91. doi: 10.1016/j.bioactmat.2020.01.004
  63. Huang S, Kumar P, Yeong WY, Narayan RL, Ramamurty U. Fracture behavior of laser powder bed fusion fabricated Ti41Nb via in-situ alloying. Acta Mater. 2022;225:117593. doi: 10.1016/j.actamat.2021.117593
  64. Huang S, Narayan RL, Tan JHK, Sing SL, Yeong WL. Resolving the porosity-unmelted inclusion dilemma during in-situ alloying of Ti34Nb via laser powder bed fusion. Acta Mater. 2021;204:116522. doi: 10.1016/j.actamat.2020.116522
  65. Zadpoor AA. Additively manufactured porous metallic biomaterials. J Mater Chem B. 2019;7:4088-4117. doi: 10.1039/C9TB00420C
  66. Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: A critical review. Int J Adv Manuf Technol. 2016;83:389-405. doi: 10.1007/s00170-015-7576-2
  67. Slámečka K, Kashimbetova A, Pokluda J, et al. Fatigue behaviour of titanium scaffolds with hierarchical porosity produced by material extrusion additive manufacturing. Mater Des. 2023;225:111453.
  68. Sing SL, An J, Yeong WY, Wiria FE. Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs. J Orthop Res. 2016;34:369-385. doi: 10.1002/jor.23075
  69. Qu H. Additive manufacturing for bone tissue engineering scaffolds. Mater Today Commun. 2020;24:101024. doi: 10.1016/j.mtcomm.2020.101024 
  70. Hara D, Nakashima Y, Sato T, et al. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique. Mater Sci Eng C Mater Biol Appl. 2016;59:1047-1052. doi: 10.1016/j.msec.2015.11.025
  71. Sing SL, Yeong WY, Wiria FE. Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties. J Alloys Compd. 2016;660:461-470. doi: 10.1016/j.jallcom.2015.11.141
  72. Ataee A, Li Y, Wen C. A comparative study on the nanoindentation behavior, wear resistance and in vitro biocompatibility of SLM manufactured CP–Ti and EBM manufactured Ti64 gyroid scaffolds. Acta Biomater. 2019;97:587-596. doi: 10.1016/j.actbio.2019.08.008
  73. Gómez S, Vlad MD, López J, Fernández E. Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater. 2016;42:341-350. doi: 10.1016/j.actbio.2016.06.032
  74. Zieliński TG, Opiela KC, Pawłowski P, et al. Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study. Addit Manufact. 2020;36:101564. doi: 10.1016/j.addma.2020.101564
  75. Kou XY, Tan ST. A simple and effective geometric representation for irregular porous structure modeling. Comput Aided Des. 2010;42:930-941. doi: 10.1016/j.cad.2010.06.006
  76. Zhao J, Zhang M, Zhu Y, Li X, Wang L, Hu C. Concurrent optimization of additive manufacturing fabricated lattice structures for natural frequencies. Int J Mech Sci. 2019;163:105153. doi: 10.1016/j.ijmecsci.2019.105153
  77. Ma S, Song K, Lan J, Ma L. Biological and mechanical property analysis for designed heterogeneous porous scaffolds based on the refined TPMS. J Mech Behav Biomed Mater. 2020;107:103727. doi: 10.1016/j.jmbbm.2020.103727
  78. Lv Y, Wang B, Liu G, et al. Design of bone-like continuous gradient porous scaffold based on triply periodic minimal surfaces. J Mater Res Technol. 2022;21:3650-3665. doi: 10.1016/j.jmrt.2022.10.160
  79. Lv Y, Guo J, Zhang Q, Wei G, Yu H. Design of low elastic modulus and high strength TC4 porous scaffolds via new variable gradient strategies. Mater Lett. 2022;325:132616. doi: 10.1016/j.matlet.2022.132616
  80. Zhao D, Huang Y, Ao Y, et al. Effect of pore geometry on the fatigue properties and cell affinity of porous titanium scaffolds fabricated by selective laser melting. J Mech Behav Biomed Mater. 2018;88:478-487. doi: 10.1016/j.jmbbm.2018.08.048
  81. Novel‐Ink‐Based Direct Ink Writing of Ti6al4v Scaffolds with Sub‐300 μm Structural Pores for Superior Cell Proliferation And Differentiation - Xu - Advanced Healthcare Materials. Wiley Online Library, (n.d.). Available from: https:// [Last accessed on 2024 Jan 13.
  82. Zhao G, Shao X, Zhang Q, et al. Porous bio-high entropy alloy scaffolds fabricated by direct ink writing. J Mater Sci Technol. 2023;157:21-29. doi: 10.1016/j.jmst.2023.02.015
  83. Li Z, Yang F, Wang H, Li Y, Chen C, Guo Z. Direct ink writing of porous Ti6Al4V alloys via UV light curing. Adv Eng Mater. 2022;24:2200176. doi: 10.1002/adem.202200176
  84. Coffigniez M, Gremillard L, Balvay S, Lachambre J, Adrien J, Boulnat X. Direct-ink writing of strong and biocompatible titanium scaffolds with bimodal interconnected porosity. Addit Manuf. 2021;39:101859. doi: 10.1016/j.addma.2021.101859
  85. Direct ink Writing to Fabricate Porous Acetabular Cups from Titanium Alloy. Bio-Design and Manufacturing, (n.d.). Available from: s42242-022-00222-2 [Last accessed on 2024 Jan 13.
  86. Xu Q, Gabbitas B, Matthews S, Zhang D. The development of porous titanium products using slip casting. J Mater Process Technol. 2013;213:1440-1446. doi: 10.1016/j.jmatprotec.2013.03.011 
  87. Liu Y, Jiang G, He G. Enhancement of entangled porous titanium by BisGMA for load-bearing biomedical applications. Mater Sci Eng C Mater Biol Appl. 2016;61:37-41. doi: 10.1016/j.msec.2015.12.018
  88. Fiocchi J, Tuissi A, Biffi CA. Heat treatment of aluminium alloys produced by laser powder bed fusion: A review. Mater Des. 2021;204:109651. doi: 10.1016/j.matdes.2021.109651
  89. Chen LY, Liang SX, Liu Y, Zhang LC. Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges. Mater Sci Eng R Rep. 2021;146:100648. doi: 10.1016/j.mser.2021.100648
  90. Zhang LC, Chen LY, Wang L. Surface modification of titanium and titanium alloys: Technologies, developments, and future interests. Adv Eng Mater. 2020;22:1901258. doi: 10.1002/adem.201901258
  91. Fang Y, Wang Q, Yang Z, et al. An efficient approach to endow TiNbTaZr implant with osteogenic differentiation and antibacterial activity in vitro. Mater Des. 2022;221:110987. doi: 10.1016/j.matdes.2022.110987
  92. Guo Y, Hu B, Tang C, et al. Increased osteoblast function in vitro and in vivo through surface nanostructuring by ultrasonic shot peening. Int J Nanomed. 2015;10:4593-4603. doi: 10.2147/IJN.S83788
  93. Sypniewska J, Szkodo M. Influence of laser modification on the surface character of biomaterials: Titanium and its alloys-a review. Coatings. 2022;12:1371. doi: 10.3390/coatings12101371
  94. Surmeneva MA, Khrapov D, Prosolov K, et al. The influence of chemical etching on porous structure and mechanical properties of the Ti6AL4V Functionally Graded Porous Scaffolds fabricated by EBM. Mater Chem Phys. 2022;275:125217. doi: 10.1016/j.matchemphys.2021.125217
  95. Civantos A, Domínguez C, Pino RJ, et al. Designing bioactive porous titanium interfaces to balance mechanical properties and in vitro cells behavior towards increased osseointegration. Surf Coat Technol. 2019;368:162-174. doi: 10.1016/j.surfcoat.2019.03.001
  96. Wang D, He G, Tian Y, Ren N, Liu W, Zhang X. Dual effects of acid etching on cell responses and mechanical properties of porous titanium with controllable open‐porous structure. J Biomed Mater Res. 2020;108:2386-2395. doi: 10.1002/jbm.b.34571
  97. Montazerian M, Hosseinzadeh F, Migneco C, Fook MVL, Baino F. Bioceramic coatings on metallic implants: An overview. Ceram Int. 2022;48:8987-9005. doi: 10.1016/j.ceramint.2022.02.055
  98. Wang X, Li Y, Hodgson PD, Wen C. Biomimetic modification of porous TiNbZr alloy scaffold for bone tissue engineering. Tissue Eng A. 2010;16:309-316. doi: 10.1089/ten.tea.2009.0074
  99. Chudinova E, Koptyug A, Mukhortova Y, et al. Functionalization of additive-manufactured Ti6Al4V scaffolds with poly(allylamine hydrochloride)/poly(styrene sulfonate) bilayer microcapsule system containing dexamethasone. Mater Chem Phys. 2021;273:125099. doi: 10.1016/j.matchemphys.2021.125099
  100. Li L, Li Y, Yang L, et al. Polydopamine coating promotes early osteogenesis in 3D printing porous Ti6Al4V scaffolds. Ann Transl Med. 2019;7:240. doi: 10.21037/atm.2019.04.79
  101. Jiao Y, Li X, Zhang X, et al. Silver antibacterial surface adjusted by hierarchical structure on 3D printed porous titanium alloy. Appl Surf Sci. 2023;610:155519. doi: 10.1016/j.apsusc.2022.155519
  102. Vignesh R, Sakthinathan G, Velusamy R, Ramakrishna S. An in-vitro evaluation study on the effects of surface modification via physical vapor deposition on the degradation rates of magnesium-based biomaterials. Surf Coat Technol. 2021;411:126972. doi: 10.1016/j.surfcoat.2021.126972
  103. Diez-Escudero A, Andersson B, Carlsson E, et al. 3D-printed porous Ti6Al4V alloys with silver coating combine osteocompatibility and antimicrobial properties. Biomater Adv. 2022;133:112629. doi: 10.1016/j.msec.2021.112629 
  104. Wang F, Wang L, Feng Y, et al. Evaluation of an artificial vertebral body fabricated by a tantalum-coated porous titanium scaffold for lumbar vertebral defect repair in rabbits. Sci Rep. 2018;8:8927. doi: 10.1038/s41598-018-27182-x
  105. MetalsFree Full-Text Electrochemical Surface Treatment of a β-titanium Alloy to Realize an Antibacterial Property and Bioactivity, (n.d.). Available from: https://www.mdpi. com/2075-4701/6/4/76 [Last accessed on 2024 Jan 13.
  106. Vidal E, Guillem-Marti J, Ginebra MP, Combes C, Ruperez E, Rodriguez D. Multifunctional homogeneous calcium phosphate coatings: Toward antibacterial and cell adhesive titanium scaffolds. Surf Coat Technol. 2021;405:126557. doi: 10.1016/j.surfcoat.2020.126557
  107. Guo Y, Ren L, Xie K, et al. Functionalized TiCu/Ti-Cu-N-coated 3D-printed porous Ti6Al4V scaffold promotes bone regeneration through BMSC recruitment. Adv Mater Interf. 2020;7:1901632. doi: 10.1002/admi.201901632
  108. Zhang Z, Li Y, He P, et al. Nanotube-decorated hierarchical tantalum scaffold promoted early osseointegration. Nanomedicine. 2021;35:102390. doi: 10.1016/j.nano.2021.102390
  109. Shokuhfar T, Hamlekhan A, Chang JY, Choi CK, Sukotjo C, Friedrich C. Biophysical evaluation of cells on nanotubular surfaces: The effects of atomic ordering and chemistry. Int J Nanomedicine. 2014;9:3737-3748. doi: 10.2147/IJN.S67344
  110. Makurat-Kasprolewicz B, Ossowska A. Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods. Mater Today Commun. 2023;34:105425. doi: 10.1016/j.mtcomm.2023.105425
  111. Liang CY, Jiang XJ, Ji RL, et al. Preparation and surface modification of 3D printed Ti–6Al–4V porous implant. Rare Met. 2021;40:1164-1172. doi: 10.1007/s12598-020-01413-5
  112. Li G, Ma F, Liu P, et al. Review of micro-arc oxidation of titanium alloys: Mechanism, properties and applications. J Alloys Compd. 2023;948:169773. doi: 10.1016/j.jallcom.2023.169773
  113. Ming X, Wu Y, Zhang Z, Li Y. Micro-arc oxidation in titanium and its alloys: Development and potential of implants. Coatings. 2023;13:2064. doi: 10.3390/coatings13122064
  114. Wen X, Liu Y, Xi F, Zhang X, Kang Y. Micro-arc oxidation (MAO) and its potential for improving the performance of titanium implants in biomedical applications. Front Bioeng Biotechnol. 2023;11:1282590. doi: 10.3389/fbioe.2023.1282590
  115. Yan Y, Sun J, Han H, Li D, Cui K. Microstructure and bioactivity of Ca, P and Sr doped TiO2 coating formed on porous titanium by micro-arc oxidation. Surf Coat Technol. 2010;205:1702-1713. doi: 10.1016/j.surfcoat.2010.09.040
  116. Sun X, Tong S, Yang S, Guo S. The effects of graphene on the biocompatibility of a 3D-printed porous titanium alloy. Coatings. 2021;11:1509. doi: 10.3390/coatings11121509
  117. Huang H, Wu Z, Yang Z, et al. In vitro application of drug-loaded hydrogel combined with 3D-printed porous scaffolds. Biomed Mater. 2022;17:065019. doi: 10.1088/1748-605X/ac9943
  118. Chen H, Feng R, Xia T, et al. Progress in surface modification of titanium implants by hydrogel coatings. Gels. 2023;9:423. doi: 10.3390/gels9050423
  119. Bai H, Cui Y, Wang C, et al. 3D printed porous biomimetic composition sustained release zoledronate to promote osteointegration of osteoporotic defects. Mater Des. 2020;189:108513. doi: 10.1016/j.matdes.2020.108513
  120. Yu L, Wu Y, Liu J, et al. 3D Culture of bone marrow-derived mesenchymal stem cells (BMSCs) could improve bone regeneration in 3D-printed porous Ti6Al4V scaffolds. Stem Cells Int. 2018;2018:2074021. doi: 10.1155/2018/2074021 
  121. Qiao S, Sheng Q, Li Z, et al. 3D-printed Ti6Al4V scaffolds coated with freeze-dried platelet-rich plasma as bioactive interface for enhancing osseointegration in osteoporosis. Mater Des. 2020;194:108825. doi: 10.1016/j.matdes.2020.108825
  122. Kumar A, Nune KC, Misra RDK. Biological functionality and mechanistic contribution of extracellular matrix‐ornamented three dimensional Ti‐6Al‐4V mesh scaffolds. J Biomed Mater Res. 2016;104:2751-2763. doi: 10.1002/jbm.a.35809
  123. Croes M, Bakhshandeh S, Van Hengel IAJ, et al. Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium. Acta Biomater. 2018;81:315-327. doi: 10.1016/j.actbio.2018.09.051
  124. Wei X, Chen Q, Bu L, et al. Improved muscle regeneration into a joint prosthesis with mechano-growth factor loaded within mesoporous silica combined with carbon nanotubes on a porous titanium alloy. ACS Nano. 2022;16:14344-14361. doi: 10.1021/acsnano.2c04591
  125. Jiang P, Zhang Y, Shi B, et al. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater. 2023;27:15-57. doi: 10.1016/j.bioactmat.2023.03.006
  126. Wu H, Dong H, Tang Z, et al. Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation. Biomaterials. 2023;293:121990. doi: 10.1016/j.biomaterials.2022.121990
  127. Lascano S, Chávez-Vásconez R, Muñoz-Rojas D, et al. Graphene-coated Ti-Nb-Ta-Mn foams: A promising approach towards a suitable biomaterial for bone replacement. Surf Coat Technol. 2020;401:126250. doi: 10.1016/j.surfcoat.2020.126250
Conflict of interest
The authors declare that they have no competing interests
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing