Biodegradable materials: Foundation of transient and sustainable electronics
Biodegradable materials are designed to degrade in a desired time either through the action of microorganisms or under certain physical conditions. The driving force behind the rise of biodegradable materials is the growing problem of electronic waste (e-waste), low recyclability, and toxicity of electronic materials. Transient response of biodegradable materials has found application in next-generation health-care and biomedical devices. Advances in material science and manufacturing technique have pushed the envelope of innovation further. This review discusses different biodegradable material classes that have emerged to replace the traditional non-biodegradable materials in electronics. Focus has been given to conversion of biodegradable materials to inks and pastes that find use in printed electronics to create flexible, bendable, soft, and degradable devices. Material degradation behavior and dissolution chemistries have been illustrated to understand their impact on electrical performance of devices. Finally, some short-term and long-term challenges are pointed out to overcome the commercialization barrier.
Shweta Agarwala serves as the Editorial Board Member of the journal, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly.
Forti V, Balde CP, Kuehr R, et al., 2020, The Global E-waste Monitor 2020: Quantities, Flows and the Circular Economy Potential. Available from: https://ewastemonitor. info/gem-2020 [Last accessed on 2022 Jul 21].
Li R, Cheng H, Su Y, et al., 2013, An analytical model of reactive diffusion for transient electronics. Adv Funct Mater, 23: 3106–3114. https://doi.org/10.1002/adfm.201203088
Yin L, Cheng H, Mao S, et al., 2014, Dissolvable metals for transient electronics. Adv Funct Mater, 24: 645–658. https://doi.org/10.1002/adfm.201301847
Song G, Atrens A, 2003, Understanding magnesium corrosion a framework for improved alloy performance. Adv Eng Mater, 5: 837–858. https://doi.org/10.1002/adem.200310405
Li W, Liu Q, Zhang Y, et al., 2020, Biodegradable materials and green processing for green electronics. Adv Mater, 32: 2001591. https://doi.org/10.1002/adma.202001591
Dagdeviren C, Hwang SW, Su Y, et al., 2013, Transient, biocompatible electronics and energy harvesters based on ZnO. Small, 9: 3398–3404. https://doi.org/10.1002/smll.201300146
Oikawa H, 1975, Ellipsometric investigation of corrosion of deposited thin molybdenum film. Jpn J Appl Phys, 14: 629–635. https://doi.org/10.1143/jjap.14.629
Sherif ESM, Erasmus RM, Comins JD, 2010, In situ Raman spectroscopy and electrochemical techniques for studying corrosion and corrosion inhibition of iron in sodium chloride solutions. Electrochim Acta, 55: 3657–3663. https://doi.org/10.1016/j.electacta.2010.01.117
Kang SK, Hwang SW, Yu S, et al., 2015, Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv Funct Mater, 25: 1789–1797. https://doi.org/10.1002/adfm.201403469
Hwang SW, Song JK, Huang X, et al., 2014, High-performance biodegradable/transient electronics on biodegradable polymers. Adv Mater, 26: 3905–3911. https://doi.org/10.1002/adma.201306050
Kim BH, Kim JH, Persano L, et al., 2017, Dry transient electronic systems by use of materials that sublime. Adv Funct Mater, 27: 1606008. https://doi.org/10.1002/adfm.201606008
Hwang SW, Park G, Edwards C, et al., 2014, Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano, 8: 5843–5851. https://doi.org/10.1021/nn500847g
Hwang SW, Park G, Cheng H, et al., 2014, 25th anniversary article: Materials for high-performance biodegradable semiconductor devices. Adv Mater, 26: 1992–2000. https://doi.org/10.1002/adma.201304821
Yin L, Farimani AB, Min K, et al., 2015, Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics. Adv Mater, 27: 1857–1864. https://doi.org/10.1002/adma.201404579
Lee YK, Yu KJ, Song E, et al., 2017, Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano, 11: 12562–12572. https://doi.org/10.1021/acsnano.7b06697
Yang SM, Shim JH, Cho HU, et al., 2022, Hetero-integration of silicon nanomembranes with 2D materials for bioresorbable, wireless neurochemical system. Adv Mater, 34: 2108203. https://doi.org/10.1002/adma.202108203
Hwang SW, Tao H, Kim DH, et al., 2012, A physically transient form of silicon electronics. Science, 337: 1640–1644. https://doi.org/10.1126/science.1226325
Seidel H, Csepregi L, Heuberger A, et al., 1990, Anisotropic etching of crystalline silicon in alkaline solutions: II. Influence of dopants. J Electrochem Soc, 137: 3626–3632. https://doi.org/10.1149/1.2086278
Kang SK, Park G, Kim K, et al., 2015, Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Appl Mater Interfaces, 7: 9297–9305. https://doi.org/10.1021/acsami.5b02526
Kang SK, Hwang SW, Cheng H, et al., 2014, Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv Funct Mater, 24: 4427–4434. https://doi.org/10.1002/adfm.201304293
Hwang SW, Kang SK, Huang X, et al., 2015, Materials for programmed, functional transformation in transient electronic systems. Adv Mater, 27: 47–52. https://doi.org/10.1002/adma.201403051
Manivasagam G, Suwas S, 2014, Biodegradable Mg and Mg based alloys for biomedical implants. Mater Sci Technol, 30: 515–520. https://doi.org/10.1179/1743284713Y.0000000500
Patrick E, Orazem ME, Sanchez JC, et al., 2011, Corrosion of tungsten microelectrodes used in neural recording applications. J Neurosci Methods, 198: 158–171. https://doi.org/10.1016/j.jneumeth.2011.03.012
Dahiya AS, Zumeit A, Christou A, et al., 2022, High-performance n-channel printed transistors on biodegradable substrate for transient electronics. Adv Electron Mater, 8: 2200098. https://doi.org/10.1002/aelm.202200098
Feng S, Tian Z, Wang J, et al., 2019, Laser sintering of Zn microparticles and its application in printable biodegradable electronics. Adv Electron Mater, 5: 1800693. https://doi.org/10.1002/aelm.201800693
Li J, Liu J, Lu W, et al., 2021, Water-sintered transient nanocomposites used as electrical interconnects for dissolvable consumer electronics. ACS Appl Mater Interfaces, 13: 32136–32148. https://doi.org/10.1021/acsami.1c07102
Pandey V, Haider T, Jain P, et al., 2020, Silk as a leading-edge biological macromolecule for improved drug delivery. J Drug Deliv Sci Technol, 55: 101294. https://doi.org/10.1016/j.jddst.2019.101294
Li J, Luo S, Liu J, et al., 2018, Processing techniques for bioresorbable nanoparticles in fabricating flexible conductive interconnects. Materials, 11: 1102. https://doi.org/10.3390/ma11071102
Li H, Peng Q, Li X, et al., 2014, Microstructures, mechanical and cytocompatibility of degradable Mg-Zn based orthopedic biomaterials. Mater Des, 58: 43–51. https://doi.org/10.1016/j.matdes.2014.01.031
Wang S, Guan S, Wang J, et al., 2017, Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application. J Biosci Bioeng, 123: 116–125. https://doi.org/10.1016/j.jbiosc.2016.07.010
Li L, Ge J, Guo B, et al., 2014, In situ forming biodegradable electroactive hydrogels. Polym Chem, 5: 2880–2890. https://doi.org/10.1039/C3PY01634J
Tran RT, Thevenot P, Gyawali D, et al., 2010, Synthesis and characterization of a biodegradable elastomer featuring a dual crosslinking mechanism. Soft Matter, 6: 2449–2461. https://doi.org/10.1039/C001605E
Jia X, Wang C, Ranganathan V, et al., 2017, A biodegradable thin-film magnesium primary battery using silk fibroin-ionic liquid polymer electrolyte. ACS Energy Lett, 2: 831–836. https://doi.org/10.1021/acsenergylett.7b00012
Zhou J, Zhang R, Xu R, et al., 2022, Super-assembled hierarchical cellulose aerogel-gelatin solid electrolyte for implantable and biodegradable zinc ion battery. Adv Funct Mater, 32: 2111406. https://doi.org/10.1002/adfm.202111406
Boutry CM, Nguyen A, Lawal QO, et al., 2015, Fully Biodegradable Pressure Sensor, Viscoelastic Behavior of PGS Dielectric Elastomer Upon Degradation. 2015 IEEE SENSORS, 1-4 Nov.
Zhao D, Wu J, Chou DT, et al., 2020, Visual hydrogen mapping sensor for noninvasive monitoring of bioresorbable magnesium implants in vivo. JOM, 72: 1851–1858. https://doi.org/10.1007/s11837-020-04052-4
Curry EJ, Ke K, Chorsi MT, et al., 2018, Biodegradable piezoelectric force sensor. Proc Natl Acad Sci, 115: 909–914. https://doi.org/10.1073/pnas.1710874115
Suvarnaphaet P, Sasivimolkul S, Sukkasem C, et al., 2019, Biodegradable Electrode Patch Made of Graphene/PHA for ECG Detecting Applications, 2019 12th Biomedical Engineering International Conference (BMEiCON), 19-22 Nov.
Zhu M, Jia C, Wang Y, et al., 2018, Isotropic paper directly from anisotropic wood: Top-down green transparent substrate toward biodegradable electronics. ACS Appl Mater Interfaces, 10: 28566–28571. https://doi.org/10.1021/acsami.8b08055
Liu H, Jiang H, Du F, et al., 2017, Flexible and degradable paper-based strain sensor with low cost. ACS Sustain Chem Eng, 5: 10538–10543. https://doi.org/10.1021/acssuschemeng.7b02540
Abdelkader AM, Karim N, Vallés C, et al., 2017, Ultraflexible and robust graphene supercapacitors printed on textiles for wearable electronics applications. 2D Materials, 4: 035016. https://doi.org/10.1088/2053-1583/aa7d71
Edupuganti V, Solanki R, 2016, Fabrication, characterization, and modeling of a biodegradable battery for transient electronics. J Power Sources, 336: 447–454. https://doi.org/10.1016/j.jpowsour.2016.11.004
Zhang Q, Liang Q, Rogers JA, 2020, Water-soluble energy harvester as a promising power solution for temporary electronic implants. APL Mater, 8: 120701. https://doi.org/10.1063/5.0031151
Krężel A, Maret W, 2016, The biological inorganic chemistry of zinc ions. Arch Biochem Biophys, 611: 3–19. https://doi.org/10.1016/j.abb.2016.04.010
Presuel-Moreno FJ, Jakab MA, Scully JR, 2005, Inhibition of the oxygen reduction reaction on copper with cobalt, cerium, and molybdate ions. J Electrochem Soc, 152: B376. https://doi.org/10.1149/1.1997165
Tolouei R, Harrison J, Paternoster C, et al., 2016, The use of multiple pseudo-physiological solutions to simulate the degradation behavior of pure iron as a metallic resorbable implant: A surface-characterization study. Phys Chem Chem Phys, 18: 19637–19646. https://doi.org/10.1039/C6CP02451C
Zhang T, Tao Z, Chen J, 2014, Magnesium–air batteries: From principle to application. Mater Horiz, 1: 196–206. https://doi.org/10.1039/C3MH00059A
Yu X, Shou W, Mahajan BK, et al., 2018, Materials, processes, and facile manufacturing for bioresorbable electronics: A review. Adv Mater, 30: 1707624. https://doi.org/10.1002/adma.201707624
Fernandes C, Taurino I, 2022, Biodegradable molybdenum (Mo) and tungsten (W) devices: One step closer towards fully-transient biomedical implants. Sensors (Basel), 22: 3062. https://doi.org/10.3390/s22083062
Laing PG, 1979, Clinical experience with prosthetic materials: Historical perspectives, current problems, and future directions. USA: ASTM Int, 199–211. https://doi.org/10.1520/STP35945S
Cao Y, Wang S, Lv J, et al., 2022, Fully physically transient volatile memristor based on mg/magnesium oxide for biodegradable neuromorphic electronics. IEEE Trans Electron Devices, 69: 3118–3123. https://doi.org/10.1109/TED.2022.3166868
Xiang W, Hongmei L, Xinlin L, et al., 2007, Effect of cooling rate and composition on microstructures and properties of Zn-Mg alloys. Trans Nonferrous Metals Soc China, 17: 122–125.
Han WB, Yang SM, Rajaram K, et al., 2022, Materials and fabrication strategies for biocompatible and biodegradable conductive polymer composites toward bio-integrated electronic systems. Adv Sustain Syst, 6: 2100075. https://doi.org/10.1002/adsu.202100075
Machado JM, Karasz FE, Lenz RW, 1988, Electrically conducting polymer blends. Polymer, 29: 1412–1417. https://doi.org/10.1016/0032-3861(88)90304-7
Cao Y, Smith P, Heeger AJ, 1992, Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth Met, 48: 91–97. https://doi.org/10.1016/0379-6779(92)90053-L
Knackstedt MA, Roberts AP, 1996, Morphology and macroscopic properties of conducting polymer blends. Macromolecules, 29: 1369–1371. https://doi.org/10.1021/ma951295h
Worfolk BJ, Andrews SC, Park S, et al., 2015, Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc Natl Acad Sci, 112: 14138–14143. https://doi.org/10.1073/pnas.1509958112
Wang YF, Sekine T, Takeda Y, et al., 2020, Fully printed PEDOT: PSS-based temperature sensor with high humidity stability for wireless healthcare monitoring. Sci Rep, 10: 2467. https://doi.org/10.1038/s41598-020-59432-2
Shi G, Rouabhia M, Wang Z, et al., 2004, A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials, 25: 2477–2488. https://doi.org/10.1016/j.biomaterials.2003.09.032
Pradhan S, Yadavalli VK, 2021, Photolithographically printed flexible silk/PEDOT: PSS temperature sensors. ACS Appl Electron Mater, 3: 21–29. https://doi.org/10.1021/acsaelm.0c01017
Lawes S, Sun Q, Lushington A, et al., 2017, Inkjet-printed silicon as high performance anodes for Li-ion batteries. Nano Energy, 36: 313–321. https://doi.org/10.1016/j.nanoen.2017.04.041
Li M, Guo Y, Wei Y, et al., 2006, Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials, 27: 2705–2715. https://doi.org/10.1016/j.biomaterials.2005.11.037
Jeong SI, Jun ID, Choi MJ, et al., 2008, Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-ε-caprolactone) for the control of cell adhesion. Macromol Biosci, 8: 627–637. https://doi.org/10.1002/mabi.200800005
Subramanian A, Krishnan UM, Sethuraman S, 2012, Axially aligned electrically conducting biodegradable nanofibers for neural regeneration. J Mater Sci Mater Med, 23: 1797–1809. https://doi.org/10.1007/s10856-012-4654-y
Mahajan BK, Ludwig B, Shou W, et al., 2018, Aerosol printing and photonic sintering of bioresorbable zinc nanoparticle ink for transient electronics manufacturing. Sci China Inf Sci, 61: 060412. https://doi.org/10.1007/s11432-018-9366-5
Li J, Xu H, Zhang Z, et al., 2020, Anhydride-assisted spontaneous room temperature sintering of printed bioresorbable electronics. Adv Funct Mater, 30: 1905024. https://doi.org/10.1002/adfm.201905024
Huang X, Liu Y, Hwang SW, et al., 2014, Biodegradable materials for multilayer transient printed circuit boards. Adv Mater, 26: 7371–7377. https://doi.org/10.1002/adma.201403164
Iwai H, Ohmi SI, 2002, Silicon integrated circuit technology from past to future. Microelectron Reliab, 42: 465–491. https://doi.org/10.1016/S0026-2714(02)00032-X
Snell AJ, Spear WE, Le Comber PG, et al., 1981, Application of amorphous silicon field effect transistors in integrated circuits. Appl Phys A, 26: 83–86. https://doi.org/10.1007/BF00616653
Bowman DR, Hammond RB, Dutton RW, 1985, Polycrystalline-silicon integrated photoconductors for picosecond pulsing and gating. IEEE Electron Device Lett, 6: 502–504. https://doi.org/10.1109/EDL.1985.26209
Guha S, Yang J, Banerjee A, 2000, Amorphous silicon alloy photovoltaic research—present and future. Prog Photovolt: Res Appl, 8: 141–150. https://doi.org/10.1002/(SICI)1099-159X(200001/ 02)8:1<141:AID-PIP305>3.0.CO;2-I
Kang SK, Koo J, Lee YK, et al., 2018, Advanced materials and devices for bioresorbable electronics. Acc Chem Res, 51: 988–998. https://doi.org/10.1021/acs.accounts.7b00548
Fu KK, Wang Z, Dai J, et al., 2016, Transient electronics: Materials and devices. Chem Mater, 28: 3527–3539. https://doi.org/10.1021/acs.chemmater.5b04931
Li R, Wang L, Kong D, et al., 2018, Recent progress on biodegradable materials and transient electronics. Bioact Mater, 3: 322–333. https://doi.org/10.1016/j.bioactmat.2017.12.001
Li R, Wang L, Yin L, 2018, Materials and devices for biodegradable and soft biomedical electronics. Materials, 11: 2108.
Madrigal MM, Giannotti MI, Oncins G, et al., 2013, Bioactive nanomembranes of semiconductor polythiophene and thermoplastic polyurethane: Thermal, nanostructural and nanomechanical properties. Polym Chem, 4: 568–583. https://doi.org/10.1039/c2py20654d
Pérez-Madrigal MM, Giannotti MI, Armelin E, et al., 2014, Electronic, electric and electrochemical properties of bioactive nanomembranes made of polythiophene: Thermoplastic polyurethane. Polym Chem, 5: 1248–1257. https://doi.org/10.1039/C3PY01313H
Lei T, Guan M, Liu J, et al., 2017, Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proc Natl Acad Sci, 114: 5107–5112. https://doi.org/10.1073/pnas.1701478114
Xu C, Huang Y, Yepez G, et al., 2016, Development of dopant-free conductive bioelastomers. Sci Rep, 6: 34451. https://doi.org/10.1038/srep34451
Mostert AB, Powell BJ, Pratt FL, et al., 2012, Role of semiconductivity and ion transport in the electrical conduction of melanin. Proc Natl Acad Sci, 109: 8943–8947. https://doi.org/10.1073/pnas.1119948109
Bettinger CJ, Bruggeman JP, Misra A, et al., 2009, Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials, 30: 3050–3057. https://doi.org/10.1016/j.biomaterials.2009.02.018
Irimia-Vladu M, Głowacki ED, Troshin PA, et al., 2012, Indigo a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv Mater, 24: 375–380. https://doi.org/10.1002/adma.201102619
Ramachandran GK, Tomfohr JK, Li J, et al., 2003, Electron transport properties of a carotene molecule in a metal- (single molecule)-metal junction. J Phys Chem B, 107: 6162–6169. https://doi.org/10.1021/jp0343786
Irimia-Vladu M, Troshin PA, Reisinger M, et al., 2010, Biocompatible and biodegradable materials for organic field-effect transistors. Adv Funct Mater, 20: 4069–4076. https://doi.org/10.1002/adfm.201001031
Guo B, Finne-Wistrand A, Albertsson AC, 2010, Enhanced electrical conductivity by macromolecular architecture: Hyperbranched electroactive and degradable block copolymers based on poly(ε-caprolactone) and aniline pentamer. Macromolecules, 43: 4472–4480. https://doi.org/10.1021/ma100530k
Cui H, Liu Y, Deng M, et al., 2012, Synthesis of biodegradable and electroactive tetraaniline grafted poly(ester amide) copolymers for bone tissue engineering. Biomacromolecules, 13: 2881–2889. https://doi.org/10.1021/bm300897j
Champion JA, Walker A, Mitragotri S, 2008, Role of particle size in phagocytosis of polymeric microspheres. Pharm Res, 25: 1815–1821. https://doi.org/10.1007/s11095-008-9562-y
Temenoff JS, Mikos AG, 2008, Biomaterials: The Intersection of Biology and Materials Science. Pearson/Prentice Hall, London, United Kingdom.
Shou W, Mahajan BK, Ludwig B, et al., 2017, Low-cost manufacturing of bioresorbable conductors by evaporation– condensation-mediated laser printing and sintering of Zn nanoparticles. Adv Mater, 29: 1700172. https://doi.org/10.1002/adma.201700172
Feng S, Cao S, Tian Z, et al., 2019, Maskless patterning of biodegradable conductors by selective laser sintering of microparticle inks and its application in flexible transient electronics. ACS Appl Mater Interfaces, 11: 45844–45852. https://doi.org/10.1021/acsami.9b14431
Shin SR, Farzad R, Tamayol A, et al., 2016, A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv Mater, 28: 3280–3289. https://doi.org/10.1002/adma.201506420
Leng T, Huang X, Chang K, et al., 2016, Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications. IEEE Antennas Wirel Propag Lett, 15: 1565–1568. https://doi.org/10.1109/LAWP.2016.2518746
Deshmukh K, Ahamed MB, Deshmukh RR, et al., 2017, Newly developed biodegradable polymer nanocomposites of cellulose acetate and Al2O3 nanoparticles with enhanced dielectric performance for embedded passive applications. J Mater Sci Mater Electron, 28: 973–986. https://doi.org/10.1007/s10854-016-5616-9
Zeng X, Deng L, Yao Y, et al., 2016, Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. J Mater Chem C, 4: 6037–6044. https://doi.org/10.1039/C6TC01501H
Mukai Y, Suh M, 2020, Relationships between structure and microwave dielectric properties in cotton fabrics. Mater Res Express, 7: 015105. https://doi.org/10.1088/2053-1591/ab653c
Liu Z, Liang T, Xin Y, et al., 2021, Natural bamboo leaves as dielectric layers for flexible capacitive pressure sensors with adjustable sensitivity and a broad detection range. RSC Adv, 11: 17291–17300. https://doi.org/10.1039/D1RA03207K
Larguech S, Triki A, Ramachandran M, et al., 2021, Dielectric properties of jute fibers reinforced poly(lactic acid)/poly(butylene succinate) blend matrix. J Polym Environ, 29: 1240–1256. https://doi.org/10.1007/s10924-020-01927-0
Ivanovska A, Cerovic D, Tadic N, et al., 2019, Sorption and dielectric properties of jute woven fabrics: Effect of chemical composition. Ind Crops Prod, 140: 111632. https://doi.org/10.1016/j.indcrop.2019.111632
Doddashamachar M, Setty RNV, Reddy MVH, et al., 2022, Dielectric properties of banana fiber filled polypropylene composites: Effect of coupling agent. Fibers Polym, 23: 1387–1395. https://doi.org/10.1007/s12221-022-4395-6
Joseph S, Thomas S, 2008, Electrical properties of banana fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci, 109: 256–263. https://doi.org/10.1002/app.27452
Hemstreet JM, 1982, Dielectric constant of cotton. J Electrostat, 13: 345–353. https://doi.org/10.1016/0304-3886(82)90052-3
Jayamani E, Hamdan S, Rahman MR, et al., 2014, Comparative study of dielectric properties of hybrid natural fiber composites. Proc Eng, 97: 536–544. https://doi.org/10.1016/j.proeng.2014.12.280
Boutry CM, Nguyen A, Lawal QO, et al., 2015, A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv Mater, 27: 6954–6961. https://doi.org/10.1002/adma.201502535
Barone C, Maccagnani P, Dinelli F, et al., 2022, Electrical conduction and noise spectroscopy of sodium-alginate gold-covered ultrathin films for flexible green electronics. Sci Rep, 12: 9861. https://doi.org/10.1038/s41598-022-14030-2
Guo J, Liu J, Yang B, et al., 2015, Low-voltage transient/ biodegradable transistors based on free-standing sodium alginate membranes. IEEE Electron Device Lett, 36: 576–578. https://doi.org/10.1109/LED.2015.2424982
Kumar R, Ranwa S, Kumar G, 2020, Biodegradable flexible substrate based on chitosan/PVP blend polymer for disposable electronics device applications. J Phys Chem B, 124: 149–155. https://doi.org/10.1021/acs.jpcb.9b08897
Peng X, Dong K, Zhang Y, et al., 2022, Sweat-permeable, biodegradable, transparent and self-powered chitosan-based electronic skin with ultrathin elastic gold nanofibers. Adv Funct Mater, 32: 2112241. https://doi.org/10.1002/adfm.202112241
Baumgartner M, Hartmann F, Drack M, et al., 2020, Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat Mater, 19: 1102–1109. https://doi.org/10.1038/s41563-020-0699-3
Wang C, Yokota T, Someya T, 2021, Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem Rev, 121: 2109–2146. https://doi.org/10.1021/acs.chemrev.0c00897
Yang Y, Sun H, Zhao X, et al., 2022, High-mobility fungus-triggered biodegradable ultraflexible organic transistors. Adv Sci, 9: 2105125. https://doi.org/10.1002/advs.202105125
Hwang SW, Lee CH, Cheng H, et al., 2015, Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett, 15: 2801–2808. https://doi.org/10.1021/nl503997m
Jung YH, Chang TH, Zhang H, et al., 2015, High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun, 6: 7170. https://doi.org/10.1038/ncomms8170
Jin SH, Kang SK, Cho IT, et al., 2015, Water-soluble thin film transistors and circuits based on amorphous indium–gallium–zinc oxide. ACS Appl Mater Interfaces, 7: 8268–8274. https://doi.org/10.1021/acsami.5b00086
Liu Q, Jiang L, Shi R, et al., 2012, Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers a review. Prog Polym Sci, 37: 715–765. https://doi.org/10.1016/j.progpolymsci.2011.11.001
Nijst CL, Bruggeman JP, Karp JM, et al., 2007, Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules, 8: 3067–3073. https://doi.org/10.1021/bm070423u
Benfenati V, Toffanin S, Capelli R, et al., 2010, A silk platform that enables electrophysiology and targeted drug delivery in brain astroglial cells. Biomaterials, 31: 7883–7891. https://doi.org/10.1016/j.biomaterials.2010.07.013
Tao H, Hwang SW, Marelli B, et al., 2014, Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc Natl Acad Sci, 111: 17385–17389. https://doi.org/10.1073/pnas.1407743111
Zhu M, Liu Y, Jiang F, et al., 2020, Combined silk fibroin microneedles for insulin delivery. ACS Biomater Sci Eng, 6: 3422–3429. https://doi.org/10.1021/acsbiomaterials.0c00273
Kim HJ, Kim JH, Jun KW, et al., 2016, Silk nanofiber-networked bio-triboelectric generator: silk bio-TEG. Adv Energy Mater, 6: 1502329. https://doi.org/10.1002/aenm.201502329
Mi HY, Li H, Jing X, et al., 2020, Silk and silk composite aerogel-based biocompatible triboelectric nanogenerators for efficient energy harvesting. Ind Eng Chem Res, 59: 12399–12408. https://doi.org/10.1021/acs.iecr.0c01117
Ye C, Dong S, Ren J, et al., 2019, Ultrastable and high-performance silk energy harvesting textiles. Nanomicro Lett, 12: 12. https://doi.org/10.1007/s40820-019-0348-z
Lee CP, Lai KY, Lin CA, et al., 2017, A paper-based electrode using a graphene dot/PEDOT: PSS composite for flexible solar cells. Nano Energy, 36: 260–267. https://doi.org/10.1016/j.nanoen.2017.04.044
Castro-Hermosa S, Dagar J, Marsella A, et al., 2017, Perovskite solar cells on paper and the role of substrates and electrodes on performance. IEEE Electron Device Lett, 38: 1278–1281. https://doi.org/10.1109/LED.2017.2735178
Jia C, Li T, Chen C, et al., 2017, Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy, 36: 366–373. https://doi.org/10.1016/j.nanoen.2017.04.059
Jayaraman E, Iyer SS, 2020, Organic photovoltaic modules built on paper substrates. Adv Mater Technol, 5: 2000664. https://doi.org/10.1002/admt.202000664
Cinti S, Colozza N, Cacciotti I, et al., 2018, Electroanalysis moves towards paper-based printed electronics: Carbon black nanomodified inkjet-printed sensor for ascorbic acid detection as a case study. Sens Actuators B Chem, 265: 155–160. https://doi.org/10.1016/j.snb.2018.03.006
Hui CY, Liu M, Li Y, et al., 2018, A paper sensor printed with multifunctional bio/nano materials. Angew Chem Int Ed, 57: 4549–4553. https://doi.org/10.1002/anie.201712903
Tao LQ, Zhang KN, Tian H, et al., 2017, Graphene-paper pressure sensor for detecting human motions. ACS Nano, 11: 8790–8795. https://doi.org/10.1021/acsnano.7b02826
Carvalho JT, Dubceac V, Grey P, et al., 2019, Fully printed zinc oxide electrolyte-gated transistors on paper. Nanomaterials, 9: 169.
Lee CJ, Chang YC, Wang LW, et al., 2019, Biodegradable materials for organic field-effect transistors on a paper substrate. IEEE Electron Device Lett, 40: 236–239. https://doi.org/10.1109/LED.2018.2890618
Raghuwanshi V, Bharti D, Mahato AK, et al., 2019, Solution-processed organic field-effect transistors with high performance and stability on paper substrates. ACS Appl Mater Interfaces, 11: 8357–8364. https://doi.org/10.1021/acsami.8b21404
Zschieschang U, Klauk H, 2019, Organic transistors on paper: A brief review. J Mater Chem C, 7: 5522–5533. https://doi.org/10.1039/C9TC00793H
Mohammadifar M, Yazgan I, Zhang J, et al., 2018, Green biobatteries: Hybrid paper-polymer microbial fuel cells. Adv Sustain Syst, 2: 1800041. https://doi.org/10.1002/adsu.201800041
Kim S, Georgiadis A, Tentzeris MM, 2018, Design of inkjet-printed RFID-based sensor on paper: single- and dual-tag sensor topologies. Sensors (Basel), 18: 1958.
Wang Y, Yan C, Cheng SY, et al., 2019, Flexible RFID tag metal antenna on paper-based substrate by inkjet printing technology. Adv Funct Mater, 29: 1902579. https://doi.org/10.1002/adfm.201902579
Zhu H, Fang Z, Preston C, et al., 2014, Transparent paper: Fabrications, properties, and device applications. Energy Environ Sci, 7: 269–287. https://doi.org/10.1039/C3EE43024C
Hsieh MC, Kim C, Nogi M, et al., 2013, Electrically conductive lines on cellulose nanopaper for flexible electrical devices. Nanoscale, 5: 9289–9295. https://doi.org/10.1039/C3NR01951A
Miller RA, Brady JM, Cutright DE, 1977, Degradation rates of oral resorbable implants (polylactates and polyglycolates): Rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res, 11: 711–719. https://doi.org/10.1002/jbm.820110507
Najafabadi AH, Tamayol A, Annabi N, et al., 2014, Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics. Adv Mater, 26: 5823–5830. https://doi.org/10.1002/adma.201401537
Luoma E, Välimäki M, Ollila J, et al., 2022, Bio-based polymeric substrates for printed hybrid electronics. Polymers (Basel), 14: 1863. https://doi.org/10.3390/polym14091863
Hao XP, Zhang CW, Zhang XN, et al., 2022, Healable, recyclable, and multifunctional soft electronics based on biopolymer hydrogel and patterned liquid metal. Small, 18: 2201643. https://doi.org/10.1002/smll.202201643
Moon J, Diaz V, Patel D, et al., 2022, Dissolvable conducting polymer supercapacitor for transient electronics. Org Electron, 101: 106412. https://doi.org/10.1016/j.orgel.2021.106412
Gao Y, Zhang Y, Wang X, et al., 2017, Moisture-triggered physically transient electronics. Sci Adv, 3: e1701222. https://doi.org/10.1126/sciadv.1701222
Park CW, Kang SK, Hernandez HL, et al., 2015, Thermally triggered degradation of transient electronic devices. Adv Mater, 27: 3783–3788. https://doi.org/10.1002/adma.201501180
Hernandez HL, Kang SK, Lee OP, et al., 2014, Triggered transience of metastable poly(phthalaldehyde) for transient electronics. Adv Mater, 26: 7637–7642. https://doi.org/10.1002/adma.201403045
Kang SK, Murphy RK, Hwang SW, et al., 2016, Bioresorbable silicon electronic sensors for the brain. Nature, 530: 71–76. https://doi.org/10.1038/nature16492
Park S, Yun WM, Kim LH, et al., 2013, Inorganic/organic multilayer passivation incorporating alternating stacks of organic/inorganic multilayers for long-term air-stable organic light-emitting diodes. Org Electron, 14: 3385–3391. https://doi.org/10.1016/j.orgel.2013.09.045
Feiner R, Fleischer S, Shapira A, et al., 2018, Multifunctional degradable electronic scaffolds for cardiac tissue engineering. J Control Release, 281: 189–195. https://doi.org/10.1016/j.jconrel.2018.05.023
Son D, Lee J, Lee DJ, et al., 2015, Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano, 9: 5937–5946. https://doi.org/10.1021/acsnano.5b00651
Pietsch M, Schlisske S, Held M, et al., 2020, Biodegradable inkjet-printed electrochromic display for sustainable short-lifecycle electronics. J Mater Chem C, 8: 16716–16724. https://doi.org/10.1039/D0TC04627B
Williams NX, Bullard G, Brooke N, et al., 2021, Printable and recyclable carbon electronics using crystalline nanocellulose dielectrics. Nat Electron, 4: 261–268. https://doi.org/10.1038/s41928-021-00574-0
Nadeau P, El-Damak D, Glettig D, et al., 2017, Prolonged energy harvesting for ingestible devices. Nat Biomed Eng, 1: 22. https://doi.org/10.1038/s41551-016-0022
Mei T, Wang C, Liao M, et al., 2021, A biodegradable and rechargeable fiber battery. J Mater Chem A, 9: 10104–10109. https://doi.org/10.1039/D1TA01507A
Wang Z, Li X, Yang Z, et al., 2021, Fully transient stretchable fruit-based battery as safe and environmentally friendly power source for wearable electronics. EcoMat, 3: e12073. https://doi.org/10.1002/eom2.12073
Sun J, Wang H, Song F, et al., 2018, Physically transient threshold switching device based on magnesium oxide for security application. Small, 14: 1800945. https://doi.org/10.1002/smll.201800945
Lu L, Yang Z, Meacham K, et al., 2018, Biodegradable monocrystalline silicon photovoltaic microcells as power supplies for transient biomedical implants. Adv Energy Mater, 8: 1703035. https://doi.org/10.1002/aenm.201703035
Song F, Wang H, Sun J, et al., 2018, ZnO-based physically transient and bioresorbable memory on silk protein. IEEE Electron Device Lett, 39: 31–34. https://doi.org/10.1109/LED.2017.2774842
Wang H, Zhu B, Ma X, et al., 2016, Physically transient resistive switching memory based on silk protein. Small, 12: 2715–2719. https://doi.org/10.1002/smll.201502906
Guna VK, Murugesan G, Basavarajaiah BH, et al., 2016, Plant-based completely biodegradable printed circuit boards. IEEE Trans Electron Devices, 63: 4893–4898. https://doi.org/10.1109/TED.2016.2619983
Géczy A, Nagy D, Hajdu I, et al., 2015, Investigating Mechanical Performance of PLA and CA Biodegradable Printed Circuit Boards, 2015 IEEE 21st International Symposium for Design and Technology in Electronic Packaging (SIITME), 2015 22-25 Oct. 201545-49.
Bharath KN, Madhu P, Gowda TGY, et al., 2020, A novel approach for development of printed circuit board from biofiber based composites. Polym Compos, 41: 4550–4558. https://doi.org/10.1002/pc.25732
Abdolmaleki H, Kidmose P, Agarwala S, 2021, Droplet-based techniques for printing of functional inks for flexible physical sensors. Adv Mater, 33: 2006792. https://doi.org/10.1002/adma.202006792
Vaezi M, Seitz H, Yang S, 2013, A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol, 67: 1721–1754. https://doi.org/10.1007/s00170-012-4605-2
Saengchairat N, Tran T, Chua CK, 2017, A review: Additive manufacturing for active electronic components. Virtual Phys Prototyp, 12: 31–46. https://doi.org/10.1080/17452759.2016.1253181
Teng L, Ye S, Handschuh-Wang S, et al., 2019, Liquid metal-based transient circuits for flexible and recyclable electronics. Adv Funct Mater, 29: 1808739. https://doi.org/10.1002/adfm.201808739
Tavakoli M, Lopes PA, Hajalilou A, et al., 2022, 3R Electronics: Scalable fabrication of resilient, repairable, and recyclable soft-matter electronics. Adv Mater, 34: 2203266. https://doi.org/10.1002/adma.202203266
Kwon J, DelRe C, Kang P, et al., 2022, Conductive ink with circular life cycle for printed electronics. Adv Mater, 34: 2202177. https://doi.org/10.1002/adma.202202177