AccScience Publishing / MI / Online First / DOI: 10.36922/MI025410114
ORIGINAL RESEARCH ARTICLE

Diagnostic performance of an RNA extraction-free dilution and heating method for the detection of severe acute respiratory syndrome coronavirus 2

Getnet Hailu1,2* Molalegne Bitew3* Girmay Medhin1 Adamu Tayachew1,2 Nebiyou Yemanebirhan1,2 Andargachew Gashu1,2 Samuel Ayele4 Admikew Agune2 Assefa Konda2 Mengistu Legesse1
Show Less
1 Department of Tropical and Infectious Diseases, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
2 Department of Infectious Diseases, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
3 Department of Health Biotechnology, Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
4 USAID Eliminate TB Project, Addis Ababa, Ethiopia
Received: 9 October 2025 | Revised: 21 November 2025 | Accepted: 25 November 2025 | Published online: 10 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Real-time quantitative polymerase chain reaction remains the gold standard for COVID-19 diagnosis, but RNA extraction is time-consuming, expensive, and associated with increased biosafety requirements. This study evaluated an extraction-free dilution and heating (EFDH) method as a simplified alternative to conventional extraction-based (EB) real-time quantitative polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 detection. A total of 300 archived nasopharyngeal specimens, including 190 positives and 110 negatives, from the National Virology Reference Laboratory at the Ethiopian Public Health Institute, were analyzed. Samples were diluted 1:2 with RNase-free water, heated at 72°C for 15 min, and analyzed using an ABI 7500 Fast instrument. The EFDH method showed a sensitivity of 92%, a specificity of 100%, and an overall accuracy of 85.8%, producing 15 false-negative and 12 invalid results. Agreement with the EB method was high, with 95% concordance and a kappa coefficient of 0.89. Performance was strongest in samples with high viral loads (cycle threshold [Ct] < 20) and declined in those with low viral loads (Ct > 35). A significant correlation was observed between the two methods (R2 = 0.99, p=0.001). These findings indicate that the EFDH approach reliably detects moderate-to-high viral loads and may serve as a practical testing option in resource-limited settings, especially during outbreaks when rapid and simplified workflows are needed.

Keywords
SARS-CoV-2
Extraction free
Heating
Dilution
Diagnostic performance
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020;27(3):325-328. doi: 10.1016/j.chom.2020.02.001

 

  1. Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141-1149. doi: 10.1038/s41401-020-0485-4

 

  1. Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409-424. doi: 10.1038/s41579-021-00573-0

 

  1. Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045. doi: 10.2807/1560-7917.es.2020.25.3.2000045

 

  1. Liu AB, Lee D, Jalihal AP, Hanage WP, Springer M. Quantitatively assessing early detection strategies for mitigating COVID-19 and future pandemics. Nat Commun. 2023;14(1):8479. doi: 10.1038/s41467-023-44199-7

 

  1. Zhang C, Zhou C, Xu W, et al. Transmission risk of asymptomatic SARS-CoV-2 infection: A systematic review and meta-analysis. Infect Med (Beijing). 2022;2(1):11-18. doi: 10.1016/j.imj.2022.12.001

 

  1. Joynt GM, Wu WK. Understanding COVID-19: What does viral RNA load really mean? Lancet Infect Dis. 2020;20(6):635-636. doi: 10.1016/S1473-3099(20)30237-1

 

  1. Sethuraman N, Jeremiah SS, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. JAMA. 2020;323(22):2249-2251. doi: 10.1001/jama.2020.8259

 

  1. Loeffelholz MJ, Tang YW. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg Microbes Infect. 2020;9(1):747-756. doi: 10.1080/22221751.2020.1745095

 

  1. Cheng VCC, Lau SKP, Woo PCY, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007;20(4):660-694. doi: 10.1128/CMR.00023-07

 

  1. Ferrari D, Motta A, Strollo M, Banfi G, Locatelli M. Routine blood tests as a potential diagnostic tool for COVID-19. Clin Chem Lab Med. 2020;58(7):1095-1099. doi: 10.1515/cclm-2020-0398

 

  1. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez- Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623. doi: 10.1016/j.tmaid.2020.101623

 

  1. Salamanna F, Maglio M, Landini MP, Fini M. Body localization of ACE-2: On the trail of the keyhole of SARS-CoV-2. Front Med. 2020;7:594495. doi: 10.3389/fmed.2020.594495

 

  1. Wang MY, Zhao R, Gao LJ, Gao XF, Wang DP, Cao JM. SARS-CoV-2: Structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol. 2020;10:587269. doi: 10.3389/fcimb.2020.587269

 

  1. Marty FM, Chen K, Verrill KA. How to obtain a nasopharyngeal swab specimen. N Engl J Med. 2020;382(22):e76. doi: 10.1056/NEJMvcm2010260

 

  1. Böger B, Fachi MM, Vilhena RO, Cobre AF, Tonin FS, Pontarolo R. Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19. Am J Infect Control. 2021;49(1):21-29. doi: 10.1016/j.ajic.2020.07.011

 

  1. Smyrlaki I, Ekman M, Lentini A, et al. Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nat Commun. 2020;11(1):4812. doi: 10.1038/s41467-020-18611-5

 

  1. Bruce EA, Huang ML, Perchetti GA, et al. Direct RT-qPCR detection of SARS-CoV-2 RNA from patient nasopharyngeal swabs without an RNA extraction step. PLoS Biol. 2020;18(10):e3000896. doi: 10.1371/journal.pbio.3000896

 

  1. Alhamid G, Tombuloglu H, Rabaan AA, Al-Suhaimi E. SARS-CoV-2 detection methods: A comprehensive review. Saudi J Biol Sci. 2022;29(11):103465. doi: 10.1016/j.sjbs.2022.103465

 

  1. Bustin SA, Nolan T. RT-qPCR testing of SARS-CoV-2: A primer. Int J Mol Sci. 2020;21(8):3004. doi: 10.3390/ijms21083004

 

  1. Aoki MN, Coelho BO, Góes LGB, et al. Colorimetric RT-LAMP SARS-CoV-2 diagnostic sensitivity relies on color interpretation and viral load. Sci Rep. 2021;11:9026. doi: 10.1038/s41598-021-88506-y

 

  1. Tombuloglu H, Sabit H, Al-Suhaimi E, Al Jindan R, Alkharsah KR. Development of multiplex real-time RT-PCR assay for the detection of SARS-CoV-2. PLoS One. 2021;16(4):e0250942. doi: 10.1371/journal.pone.0250942

 

  1. Lv DF, Ying QM, Weng YS, et al. Dynamic change process of target genes by RT-PCR testing of SARS-Cov-2 during the course of a coronavirus disease 2019 patient. Clin Chim Acta. 2020;506:172-175. doi: 10.1016/j.cca.2020.03.032

 

  1. Tahmasebi S, Khosh E, Esmaeilzadeh A. The outlook for diagnostic purposes of the 2019-novel coronavirus disease. J Cell Physiol. 2020;235(12):9211-9219. doi: 10.1002/jcp.29804

 

  1. Mouliou DS. Managing viral emerging infectious diseases via current molecular diagnostics in the emergency department: The Tricky cases. Expert Rev Anti Infect Ther. 2022;20(9):1163-1169. doi: 10.1080/14787210.2022.2089653

 

  1. Mouliou DS, Gourgoulianis KI. COVID-19 ‘asymptomatic’ patients: An old wives’ tale. Expert Rev Respir Med. 2022;16(4):399-407. doi: 10.1080/17476348.2022.2030224

 

  1. Mouliou DS, Gourgoulianis KI. False-positive and false-negative COVID-19 cases: Respiratory prevention and management strategies, vaccination, and further perspectives. Expert Rev Repir Med. 2021;15(8):993- 1002. doi: 10.1080/17476348.2021.1917389

 

  1. Pizzol JLD, Hora VP, Reis AJ, et al. Laboratory diagnosis for Covid-19: A mini-review. Rev Soc Bras Med Trop. 2020;53:e20200451. doi: 10.1590/0037-8682-0451-2020

 

  1. Zhao Y, Cui C, Zhang K, et al. COVID19: A systematic approach to early identification and healthcare worker protection. Front Public Health. 2020;8:205. doi: 10.3389/fpubh.2020.00205

 

  1. Fomsgaard AS, Rosenstierne MW. An alternative workflow for molecular detection of SARS-CoV-2 - escape from the NA extraction kit-shortage, Copenhagen, Denmark, March 2020. Eur Surveill. 2020;25(14):2000398. doi: 10.2807/1560-7917.es.2020.25.14.2000398

 

  1. Villota SD, Nipaz VE, Carrazco-Montalvo A, et al. Alternative RNA extraction-free techniques for the real-time RT-PCR detection of SARS-CoV-2 in nasopharyngeal swab and sputum samples. J Virol Methods. 2021;298:114302. doi: 10.1016/j.jviromet.2021.114302

 

  1. QIAGEN. QIAamp® Viral RNA Mini Handbook; 2020. Available from: https://www.qiagen.com [Last accessed on 2023 Aug 21].

 

  1. Jayaprakasam M, Aggarwal S, Mane A, et al. RNA-extraction-free diagnostic method to detect SARS-CoV-2: An assessment from two states, India. Epidemiol Infect. 2021;149:e245. doi: 10.1017/s0950268821002302

 

  1. Byrnes SA, Gallagher R, Steadman A, et al. Multiplexed and extraction-free amplification for simplified SARS-CoV-2 RT-PCR tests. Anal Chem. 2021;93(9):4160-4165. doi: 10.1021/acs.analchem.0c03918

 

  1. Morecchiato F, Coppi M, Baccani I, et al. Evaluation of extraction-free RT-PCR methods for faster and cheaper detection of SARS-CoV-2 using two commercial systems. Int J Infect Dis. 2021;112:264-268. doi: 10.1016/j.ijid.2021.09.046

 

  1. Mahmoud SA, Ganesan S, Ibrahim E, et al. Evaluation of RNA extraction-free method for detection of SARS-CoV-2 in salivary samples for mass screening for COVID-19. Biomed Res Int. 2021;2021:5568350. doi: 10.1155/2021/5568350

 

  1. Mokhtar KM. Improved COVID-19 Testing by Extraction Free SARS-Cov-2 RT-PCR; 2020. Available from: https://medrxiv.org/lookup/doi/10.1101/2020.08.10.20171512 [Last accessed on 2024 May 02].

 

  1. Domnich A, De Pace V, Pennati BM, et al. Evaluation of extraction-free RT-qPCR methods for SARS-CoV-2 diagnostics. Arch Virol. 2021;166(10):2825-2828. doi: 10.1007/s00705-021-05165-0

 

  1. Bastola MM, Locatis C, Fontelo P. Diagnostic Laboratory Tests for COVID-19 in US: Methodology and Performance. Research Square [Preprint]; 2020. doi: 10.21203/rs.3.rs-43374/v1

 

  1. Hasan MR, Mirza F, Al-Hail H, et al. Detection of SARS-CoV-2 RNA by direct RT-qPCR on nasopharyngeal specimens without extraction of viral RNA. PLoS One. 2020;15(7):e0236564. doi: 10.1371/journal.pone.0236564
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing