The gastric microbiome in carcinogenesis and therapy: From mechanisms to engineered microbial therapeutics
The tumor-associated microbiome has emerged as a novel hallmark of cancer. Gastric cancer (GC) serves as a paradigm for microbiome-associated carcinogenesis, with well-established roles for specific pathogens such as Helicobacter pylori and Epstein–Barr virus. However, the detailed molecular and cellular mechanisms by which microbial communities drive gastric tumorigenesis remain incompletely understood. Recent technological advancements have unveiled a broader spectrum of microorganisms implicated in GC, highlighting the emerging roles of the mycobiome (fungal microbiome) and bacterial-fungal interactions in shaping the tumor microenvironment. This review comprehensively summarizes recent progress in GC-associated pathogens, with a particular emphasis on how bacteria and fungi contribute to GC through direct carcinogenic effects, modulation of host immune responses, and influencing the efficacy of immune checkpoint inhibitors. We critically analyze the “double-edged sword” nature of the microbiome in GC and discuss the potential of multi-omics approaches to unravel complex microbe-host interactions. Finally, we explore the frontier of leveraging synthetic biology to develop engineered microbes (including bacteria and oncolytic viruses) as novel anticancer therapeutics, while addressing the challenges in translating these strategies into clinical practice. A deeper understanding of the gastric microbiome, particularly the multi-kingdom microbial network, is poised to open new avenues for microbiome-based precision diagnosis and innovative therapies for GC management.
- Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi: 10.3322/caac.21660
- Iwu CD, Iwu-Jaja CJ. Gastric cancer epidemiology: Current trend and future direction. Hygiene. 2023;3(3):256-268. doi: 10.3390/hygiene3030019
- Stock M, Otto F. Gene deregulation in gastric cancer. Gene. 2005;360(1):1-19. doi: 10.1016/j.gene.2005.06.026
- Arnold M, Park JY, Camargo MC, Lunet N, Forman D, Soerjomataram I. Is gastric cancer becoming a rare disease? A global assessment of predicted incidence trends to 2035. Gut. 2020;69(5):823-829. doi: 10.1136/gutjnl-2019-320234
- Pivetta G, Dottori L, Fontana F, et al. Gastric microbiota gender differences in subjects with healthy stomachs and autoimmune atrophic gastritis. Microorganisms. 2023;11(8):1938. doi: 10.3390/microorganisms11081938
- Peng C, Li X, Li Y, et al. Sex-specific effects of gastrointestinal microbiome disruptions on Helicobacter pylori-induced gastric carcinogenesis in INS-GAS mice. Biol Sex Differ. 2025;16(1):15. doi: 10.1186/s13293-025-00700-z
- Jiang S, Li M, Fu T, Shan F, Jiang L, Shao Z. Clinical characteristics of infections caused by Streptococcus anginosus group. Sci Rep. 2020;10(1):9032. doi: 10.1038/s41598-020-65977-z
- Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut. 2018;67(2):226-236. doi: 10.1136/gutjnl-2017-314205
- Väkeväinen S, Mentula S, Nuutinen H, et al. Ethanol-derived microbial production of carcinogenic acetaldehyde in achlorhydric atrophic gastritis. Scand J Gastroenterol. 2002;37(6):648-655. doi: 10.1080/00365520212500
- Wang Y, Liu H, Peng Y, Tong L, Feng L, Ma K. Characterization of the diethyl phthalate-degrading bacterium Sphingobium yanoikuyae SHJ. Data Brief. 2018;20:1758-1763. doi: 10.1016/j.dib.2018.09.033
- Wang L, Miao C, He Y, et al. The influence of heavy metals on gastric tumorigenesis. J Oncol. 2022;2022:6425133. doi: 10.1155/2022/6425133
- Morozzi G, Cenci G, Scardazza F, Pitzurra M. Cadmium uptake by growing cells of gram-positive and gram-negative bacteria. Microbios. 1986;48(194):27-35.
- Wang JJ, Wang J, Pang XY, Zhao LP, Tian L, Wang XP. Sex differences in colonization of gut microbiota from a man with short-term vegetarian and inulin-supplemented diet in germ-free mice. Sci Rep. 2016;6(1):36137. doi: 10.1038/srep36137
- Fusco W, Lorenzo MB, Cintoni M, et al. Short-chain fatty-acid-producing bacteria: Key components of the human gut microbiota. Nutrients. 2023;15(9):2211. doi: 10.3390/nu15092211
- Xie F, Lyu Y, Chen B, et al. STK3 is a transcriptional target of YAP1 and a hub component in the crosstalk between Hippo and Wnt signaling pathways during gastric carcinogenesis. Mol Cancer. 2025;24(1):186. doi: 10.1186/s12943-025-02391-x
- Liu C, Ng SK, Ding Y, et al. Meta-analysis of mucosal microbiota reveals universal microbial signatures and dysbiosis in gastric carcinogenesis. Oncogene. 2022;41(28):3599-3610. doi: 10.1038/s41388-022-02377-9
- Sung JJY, Coker OO, Chu E, et al. Gastric microbes associated with gastric inflammation, atrophy and intestinal metaplasia 1 year after Helicobacter pylori eradication. Gut. 2020;69(9):1572-1580. doi: 10.1136/gutjnl-2019-319826
- Wang Z, Gao X, Zeng R, et al. Changes of the gastric mucosal microbiome associated with histological stages of gastric carcinogenesis. Front Microbiol. 2020;11:997. doi: 10.3389/fmicb.2020.00997
- Park CH, Lee AR, Lee YR, Eun CS, Lee SK, Han DS. Evaluation of gastric microbiome and metagenomic function in patients with intestinal metaplasia using 16S rRNA gene sequencing. Helicobacter. 2019;24(1):e12547. doi: 10.1111/hel.12547
- Zhang Z, Feng H, Qiu Y, et al. Dysbiosis of gastric mucosal fungal microbiota in the gastric cancer microenvironment. J Immunol Res. 2022;2022:6011632. doi: 10.1155/2022/6011632
- Yang P, Zhang X, Xu R, et al. Fungal microbiota dysbiosis and ecological alterations in gastric cancer. Front Microbiol. 2022;13:889694. doi: 10.3389/fmicb.2022.889694
- Hansen AB, Kupcinskas J, Skieceviciene J, et al. Distinct and distribution of the gastric mycobiota observed between dyspeptic and gastric cancer patients evaluated from gastric biopsies. Microbiota Health Dis. 2020;2:e340. doi: 10.26355/mhd_20209_340
- Zhong M, Xiong Y, Zhao J, et al. Candida albicans disorder is associated with gastric carcinogenesis. Theranostics. 2021;11(10):4945-4956. doi: 10.7150/thno.55209
- Dohlman AB, Klug J, Mesko M, et al. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell. 2022;185(20):3807- 3822.e12. doi: 10.1016/j.cell.2022.09.015
- Narunsky-Haziza L, Sepich-Poore GD, Livyatan I, et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell. 2022;185(20):3789-3806.e17. doi: 10.1016/j.cell.2022.09.005
- Coker OO. Non-bacteria microbiome (virus, fungi, and archaea) in gastrointestinal cancer. J Gastroenterol Hepatol. 2022;37(2):256-262. doi: 10.1111/jgh.15738
- Wang H, Chen XL, Liu K, et al. Associations between gastric cancer risk and virus infection other than epstein-barr virus: A systematic review and meta-analysis based on epidemiological studies. Clin Transl Gastroenterol. 2020;11(7):e00201. doi: 10.14309/ctg.0000000000000201
- Forsythe SJ, Dolby JM, Webster AD, Cole JA. Nitrate- and nitrite-reducing bacteria in the achlorhydric stomach. J Med Microbiol. 1988;25(4):253-259. doi: 10.1099/00222615-25-4-253
- Sanduleanu S, Jonkers D, De Bruine A, Hameeteman W, Stockbrügger RW. Non-Helicobacter pylori bacterial flora during acid-suppressive therapy: Differential findings in gastric juice and gastric mucosa. Aliment Pharmacol Ther. 2001;15(3):379-388. doi: 10.1046/j.1365-2036.2001.00888.x
- Wang L, Zhou J, Xin Y, et al. Bacterial overgrowth and diversification of microbiota in gastric cancer. Eur J Gastroenterol Hepatol. 2016;28(3):261-266. doi: 10.1097/meg.0000000000000542
- Chen Y, Peng Y, Yu J, et al. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget. 2017;8(19):31802-31814. doi: 10.18632/oncotarget.15992
- Gantuya B, El Serag HB, Matsumoto T, et al. Gastric mucosal microbiota in a Mongolian population with gastric cancer and precursor conditions. Aliment Pharmacol Ther. 2020;51(8):770-780. doi: 10.1111/apt.15675
- Aviles-Jimenez F, Vazquez-Jimenez F, Medrano-Guzman R, Mantilla A, Torres J. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci Rep. 2014;4:4202. doi: 10.1038/srep04202
- Castaño-Rodríguez N, Goh KL, Fock KM, Mitchell HM, Kaakoush NO. Dysbiosis of the microbiome in gastric carcinogenesis. Sci Rep. 2017;7(1):15957. doi: 10.1038/s41598-017-16289-2
- Sonveaux P, Copetti T, De Saedeleer CJ, et al. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One. 2012;7(3):e33418. doi: 10.1371/journal.pone.0033418
- Berry D, Reinisch W. Intestinal microbiota: A source of novel biomarkers in inflammatory bowel diseases? Best Pract Res Clin Gastroenterol. 2013;27(1):47-58. doi: 10.1016/j.bpg.2013.03.005
- Bik EM, Eckburg PB, Gill SR, et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A. 2006;103(3):732-737. doi: 10.1073/pnas.0506655103
- Liu X, Shao L, Liu X, et al. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine. 2019;40:336-348. doi: 10.1016/j.ebiom.2018.12.034
- Montalban-Arques A, Wurm P, Trajanoski S, et al. Propionibacterium acnes overabundance and natural killer group 2 member D system activation in corpus-dominant lymphocytic gastritis. J Pathol. 2016;240(4):425-436. doi: 10.1002/path.4782
- Zhao Q, Hu H, Wang W, Peng H, Zhang X. Genome sequence of Sphingobium yanoikuyae B1, a polycyclic aromatic hydrocarbon-degrading strain. Genome Announc. 2015;3(1):e01522-14. doi: 10.1128/genomeA.01522-14
- Schulz C, Schütte K, Mayerle J, Malfertheiner P. The role of the gastric bacterial microbiome in gastric cancer: Helicobacter pylori and beyond. Therap Adv Gastroenterol. 2019;12:1756284819894062. doi: 10.1177/1756284819894062
- Baghban A, Gupta S. Parvimonas micra: A rare cause of native joint septic arthritis. Anaerobe. 2016;39:26-27. doi: 10.1016/j.anaerobe.2016.02.004
- Coker OO, Dai Z, Nie Y, et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut. 2018;67(6):1024-1032. doi: 10.1136/gutjnl-2017-314281
- Hu YL, Pang W, Huang Y, Zhang Y, Zhang CJ. The gastric microbiome is perturbed in advanced gastric adenocarcinoma identified through shotgun metagenomics. Front Cell Infect Microbiol. 2018;8:433. doi: 10.3389/fcimb.2018.00433
- Zhou CB, Pan SY, Jin P, et al. Fecal signatures of Streptococcus anginosus and Streptococcus constellatus for noninvasive screening and early warning of gastric cancer. Gastroenterology. 2022;162(7):1933-1947.e18. doi: 10.1053/j.gastro.2022.02.015
- Dai D, Yang Y, Yu J, et al. Interactions between gastric microbiota and metabolites in gastric cancer. Cell Death Dis. 2021;12(12):1104. doi: 10.1038/s41419-021-04396-y
- Peng R, Liu S, You W, et al. Gastric microbiome alterations are associated with decreased CD8+ tissue-resident memory T cells in the tumor microenvironment of gastric cancer. Cancer Immunol Res. 2022;10(10):1224-1240. doi: 10.1158/2326-6066.Cir-22-0107
- Yang Y, Dai D, Jin W, et al. Microbiota and metabolites alterations in proximal and distal gastric cancer patients. J Transl Med. 2022;20(1):439. doi: 10.1186/s12967-022-03650-x
- Zhang X, Li C, Cao W, Zhang Z. Alterations of gastric microbiota in gastric cancer and precancerous stages. Front Cell Infect Microbiol. 2021;11:559148. doi: 10.3389/fcimb.2021.559148
- Oosterlinck B, Ceuleers H, Arras W, et al. Mucin-microbiome signatures shape the tumor microenvironment in gastric cancer. Microbiome. 2023;11(1):86. doi: 10.1186/s40168-023-01534-w
- Wu F, Yang L, Hao Y, et al. Oral and gastric microbiome in relation to gastric intestinal metaplasia. Int J Cancer. 2022;150(6):928-940. doi: 10.1002/ijc.33848
- Dong Z, Chen B, Pan H, et al. Detection of microbial 16S rRNA gene in the serum of patients with gastric cancer. Front Oncol. 2019;9:608. doi: 10.3389/fonc.2019.00608
- Yu D, Yang J, Jin M, et al. Fecal Streptococcus alteration is associated with gastric cancer occurrence and liver metastasis. mBio. 2021;12(6):e0299421. doi: 10.1128/mBio.02994-21
- Park JY, Seo H, Kang CS, et al. Dysbiotic change in gastric microbiome and its functional implication in gastric carcinogenesis. Sci Rep. 2022;12(1):4285. doi: 10.1038/s41598-022-08288-9
- Nikitina D, Lehr K, Vilchez-Vargas R, et al. Comparison of genomic and transcriptional microbiome analysis in gastric cancer patients and healthy individuals. World J Gastroenterol. 2023;29(7):1202-1218. doi: 10.3748/wjg.v29.i7.1202
- Png CW, Lee WJJ, Chua SJ, et al. Mucosal microbiome associates with progression to gastric cancer. Theranostics. 2022;12(1):48-58. doi: 10.7150/thno.65302
- Kim HN, Kim MJ, Jacobs JP, Yang HJ. Altered gastric microbiota and inflammatory cytokine responses in patients with Helicobacter pylori-negative gastric cancer. Nutrients. 2022;14(23):4981. doi: 10.3390/nu14234981
- Li F, Zhu H, Tao K, et al. Mucosal microbial microenvironment in early gastric neoplasia and non-neoplastic gastric disease. J Gastroenterol Hepatol. 2021;36(11):3092-3101. doi: 10.1111/jgh.15565
- Liu D, Chen S, Gou Y, et al. Gastrointestinal microbiota changes in patients with gastric precancerous lesions. Front Cell Infect Microbiol. 2021;11:749207. doi: 10.3389/fcimb.2021.749207
- Chen XH, Wang A, Chu AN, Gong YH, Yuan Y. Mucosa-associated microbiota in gastric cancer tissues compared with non-cancer tissues. Front Microbiol. 2019;10:1261. doi: 10.3389/fmicb.2019.01261
- He C, Peng C, Shu X, et al. Convergent dysbiosis of gastric mucosa and fluid microbiome during stomach carcinogenesis. Gastric Cancer. 2022;25(5):837-849. doi: 10.1007/s10120-022-01302-z
- Huang K, Gao X, Wu L, et al. Salivary microbiota for gastric cancer prediction: An exploratory study. Front Cell Infect Microbiol. 2021;11:640309. doi: 10.3389/fcimb.2021.640309
- Peng X, Yao S, Huang J, et al. Alterations in bacterial community dynamics from noncancerous to Gastric cancer. Front Microbiol. 2023;14:1138928. doi: 10.3389/fmicb.2023.1138928
- Zhang C, Hu A, Li J, et al. Combined non-invasive prediction and new biomarkers of oral and fecal microbiota in patients with gastric and colorectal cancer. Front Cell Infect Microbiol. 2022;12:830684. doi: 10.3389/fcimb.2022.830684
- Li Y, Jiang L, Li Z, et al. Differences in gastric microbiota and mucosal function between patients with chronic superficial gastritis and intestinal metaplasia. Front Microbiol. 2022;13:950325. doi: 10.3389/fmicb.2022.950325
- Jeong S, Liao YT, Tsai MH, et al. Microbiome signatures associated with clinical stages of gastric Cancer: Whole metagenome shotgun sequencing study. BMC Microbiol. 2024;24(1):139. doi: 10.1186/s12866-024-03219-2
- Shi L, Fan Q, Zhou B, et al. The composition and functional profile of the microbial communities in human gastric cancer tissues and adjacent normal tissues. Acta Biochim Biophys Sin (Shanghai). 2022;54(1):47-54. doi: 10.3724/abbs.2021010
- Zhang Z, Zhu L, Ma Y, et al. Correction to: Study on the characteristics of intestinal flora composition in gastric cancer patients and healthy people in the Qinghai-Tibet Plateau. Appl Biochem Biotechnol. 2022;194(7):3330-3331. doi: 10.1007/s12010-022-03874-z
- Sun QH, Zhang J, Shi YY, Zhang J, Fu WW, Ding SG. Microbiome changes in the gastric mucosa and gastric juice in different histological stages of Helicobacter pylori-negative gastric cancers. World J Gastroenterol. 2022;28(3):365-380. doi: 10.3748/wjg.v28.i3.365
- He S, Sun Y, Sun W, et al. Oral microbiota disorder in GC patients revealed by 2b-RAD-M. J Transl Med. 2023;21(1):831. doi: 10.1186/s12967-023-04599-1
- Wang B, Luan J, Zhao W, et al. Comprehensive multiomics analysis of the signatures of gastric mucosal bacteria and plasma metabolites across different stomach microhabitats in the development of gastric cancer. Cell Oncol (Dordr). 2025;48(1):139-159. doi: 10.1007/s13402-024-00965-3
- Shao D, Vogtmann E, Liu A, et al. Microbial characterization of esophageal squamous cell carcinoma and gastric cardia adenocarcinoma from a high-risk region of China. Cancer. 2019;125(22):3993-4002. doi: 10.1002/cncr.32403
- Liu AQ, Vogtmann E, Shao DT, et al. A comparison of biopsy and mucosal swab specimens for examining the microbiota of upper gastrointestinal carcinoma. Cancer Epidemiol Biomarkers Prev. 2019;28(12):2030-2037. doi: 10.1158/1055-9965.Epi-18-1210
- Backert S, Tegtmeyer N, Fischer W. Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future Microbiol. 2015;10(6):955-965. doi: 10.2217/fmb.15.32
- Maleki Kakelar H, Barzegari A, Dehghani J, et al. Pathogenicity of Helicobacter pylori in cancer development and impacts of vaccination. Gastric Cancer. 2019;22(1):23-36. doi: 10.1007/s10120-018-0867-1
- Gangwer KA, Mushrush DJ, Stauff DL, et al. Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proc Natl Acad Sci U S A. 2007;104(41):16293- 16298. doi: 10.1073/pnas.0707447104
- Oleastro M, Ménard A. The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology (Basel). 2013;2(3):1110-1134. doi: 10.3390/biology2031110
- Alm RA, Bina J, Andrews BM, Doig P, Hancock RE, Trust TJ. Comparative genomics of Helicobacter pylori: Analysis of the outer membrane protein families. Infect Immun. 2000;68(7):4155-4168. doi: 10.1128/iai.68.7.4155-4168.2000
- Cao Z, An L, Han Y, Jiao S, Zhou Z. The Hippo signaling pathway in gastric cancer. Acta Biochim Biophys Sin (Shanghai). 2023;55(6):893-903. doi: 10.3724/abbs.2023038
- Fu K, Cheung AHK, Wong CC, et al. Streptococcus anginosus promotes gastric inflammation, atrophy, and tumorigenesis in mice. Cell. 2024;187(4):882-896.e17. doi: 10.1016/j.cell.2024.01.004
- Aykut B, Pushalkar S, Chen R, et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature. 2019;574(7777):264-267. doi: 10.1038/s41586-019-1608-2
- Alam A, Levanduski E, Denz P, et al. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell. 2022;40(2):153-167.e11. doi: 10.1016/j.ccell.2022.01.003
- Zhu W, Phan QT, Boontheung P, Solis NV, Loo JA, Filler SG. EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection. Proc Natl Acad Sci U S A. 2012;109(35):14194-14199. doi: 10.1073/pnas.1117676109
- Phan QT, Myers CL, Fu Y, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007;5(3):e64. doi: 10.1371/journal.pbio.0050064
- Reyna-Beltrán E, Iranzo M, Calderón-González KG, et al. The Candida albicans ENO1 gene encodes a transglutaminase involved in growth, cell division, morphogenesis, and osmotic protection. J Biol Chem. 2018;293(12):4304-4323. doi: 10.1074/jbc.M117.810440
- Tsang PW, Fong WP, Samaranayake LP. Candida albicans orf19.3727 encodes phytase activity and is essential for human tissue damage. PLoS One. 2017;12(12):e0189219. doi: 10.1371/journal.pone.0189219
- Kuriyama T, Williams DW, Lewis MA. In vitro secreted aspartyl proteinase activity of Candida albicans isolated from oral diseases and healthy oral cavities. Oral Microbiol Immunol. 2003;18(6):405-407. doi: 10.1046/j.0902-0055.2002.00100.x
- Lim SJ, Mohamad Ali MS, Sabri S, Muhd Noor ND, Salleh AB, Oslan SN. Opportunistic yeast pathogen Candida spp.: Secreted and membrane-bound virulence factors. Med Mycol. 2021;59(12):1127-1144. doi: 10.1093/mmy/myab053
- Luo G, Zhang J, Wang T, et al. A human commensal-pathogenic fungus suppresses host immunity via targeting TBK1. Cell Host Microbe. 2024;32(9):1536-1551.e6. doi: 10.1016/j.chom.2024.07.003
- Deng R, Zheng H, Cai H, Li M, Shi Y, Ding S. Effects of helicobacter pylori on tumor microenvironment and immunotherapy responses. Front Immunol. 2022;13:923477. doi: 10.3389/fimmu.2022.923477
- Pagliari M, Munari F, Toffoletto M, et al. Helicobacter pylori affects the antigen presentation activity of macrophages modulating the expression of the immune receptor CD300E through miR-4270. Front Immunol. 2017;8:1288. doi: 10.3389/fimmu.2017.01288
- Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: A look under the hood of miRISC. Nat Struct Mol Biol. 2012;19(6):586-593. doi: 10.1038/nsmb.2296
- Lewis ND, Asim M, Barry DP, et al. Immune evasion by Helicobacter pylori is mediated by induction of macrophage arginase II. J Immunol. 2011;186(6):3632-3641. doi: 10.4049/jimmunol.1003431
- Krakowiak MS, Noto JM, Piazuelo MB, et al. Matrix metalloproteinase 7 restrains Helicobacter pylori-induced gastric inflammation and premalignant lesions in the stomach by altering macrophage polarization. Oncogene. 2015;34(14):1865-1871. doi: 10.1038/onc.2014.135
- Lin R, Ma H, Ding Z, et al. Bone marrow-derived mesenchymal stem cells favor the immunosuppressive T cells skewing in a Helicobacter pylori model of gastric cancer. Stem Cells Dev. 2013;22(21):2836-2848. doi: 10.1089/scd.2013.0166
- He L, Wang W, Shi H, et al. THBS4/integrin α2 axis mediates BM-MSCs to promote angiogenesis in gastric cancer associated with chronic Helicobacter pylori infection. Aging (Albany NY). 2021;13(15):19375-19396. doi: 10.18632/aging.203334
- Shi H, Qi C, Meng L, et al. Bone marrow-derived mesenchymal stem cells promote Helicobacter pylori-associated gastric cancer progression by secreting thrombospondin-2. Cell Prolif. 2021;54(10):e13114. doi: 10.1111/cpr.13114
- Xiang X, Wu Y, Li H, Li C, Yan L, Li Q. Plasmacytoid dendritic cell-derived type I interferon is involved in Helicobacter pylori infection-induced differentiation of schlafen 4-expressing myeloid-derived suppressor cells. Infect Immun. 2021;89(11):e0040721. doi: 10.1128/iai.00407-21
- Zhuang Y, Cheng P, Liu XF, et al. A pro-inflammatory role for Th22 cells in Helicobacter pylori-associated gastritis. Gut. 2015;64(9):1368-1378. doi: 10.1136/gutjnl-2014-307020
- Kim W, Chu TH, Nienhüser H, et al. PD-1 signaling promotes tumor-infiltrating myeloid-derived suppressor cells and gastric tumorigenesis in mice. Gastroenterology. 2021;160(3):781-796. doi: 10.1053/j.gastro.2020.10.036
- Li BH, Garstka MA, Li ZF. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol. 2020;117:201-215. doi: 10.1016/j.molimm.2019.11.014
- Liu Z, Wu X, Tian Y, et al. H. pylori infection induces CXCL8 expression and promotes gastric cancer progress through downregulating KLF4. Mol Carcinog. 2021;60(8):524-537. doi: 10.1002/mc.23309
- Hayakawa Y, Hirata Y, Hata M, et al. Dysregulated immune responses by ASK1 deficiency alter epithelial progenitor cell fate and accelerate metaplasia development during H. pylori infection. Microorganisms. 2020;8(12):1995. doi: 10.3390/microorganisms8121995
- Raoul P, De Gaetano V, Sciaraffia G, et al. Gastric cancer, immunotherapy, and nutrition: The role of microbiota. Pathogens. 2024;13(5):357. doi: 10.3390/pathogens13050357
- Zhang H, Li R, Cao Y, et al. Poor clinical outcomes and immunoevasive contexture in intratumoral IL-10-producing macrophages enriched gastric cancer patients. Ann Surg. 2022;275(4):e626-e635. doi: 10.1097/sla.0000000000004037
- Polk DB, Peek RM Jr. Helicobacter pylori: Gastric cancer and beyond. Nat Rev Cancer. 2010;10(6):403-414. doi: 10.1038/nrc2857
- Kang BW, Kim JG, Lee IH, Bae HI, Seo AN. Clinical significance of tumor-infiltrating lymphocytes for gastric cancer in the era of immunology. World J Gastrointest Oncol. 2017;9(7):293-299. doi: 10.4251/wjgo.v9.i7.293
- Peng Z, Cheng S, Kou Y, et al. The gut microbiome is associated with clinical response to anti-PD-1/PD-L1 immunotherapy in gastrointestinal cancer. Cancer Immunol Res. 2020;8(10):1251-1261. doi: 10.1158/2326-6066.Cir-19-1014
- Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97-103. doi: 10.1126/science.aan4236
- Lee SY, Jhun J, Woo JS, et al. Gut microbiome-derived butyrate inhibits the immunosuppressive factors PD-L1 and IL-10 in tumor-associated macrophages in gastric cancer. Gut Microbes. 2024;16(1):2300846. doi: 10.1080/19490976.2023.2300846
- Li Y, Huang X, Tong D, et al. Relationships among microbiota, gastric cancer, and immunotherapy. Front Microbiol. 2022;13:987763. doi: 10.3389/fmicb.2022.987763
- Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature. 2019;565(7741):600-605. doi: 10.1038/s41586-019-0878-z
- Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084-9. doi: 10.1126/science.aac4255
- Sunakawa Y, Matoba R, Inoue E, et al. Genomic pathway of gut microbiome to predict efficacy of nivolumab in advanced gastric cancer: DELIVER trial (JACCRO GC-08). J Clin Oncol. 2021;39(3_suppl):161. doi: 10.1200/JCO.2021.39.3_suppl.161
- Wang L, Xin Y, Zhou J, et al. Gastric mucosa-associated microbial signatures of early gastric cancer. Front Microbiol. 2020;11:1548. doi: 10.3389/fmicb.2020.01548
- Erawijantari PP, Mizutani S, Shiroma H, et al. Influence of gastrectomy for gastric cancer treatment on faecal microbiome and metabolome profiles. Gut. 2020;69(8):1404-1415. doi: 10.1136/gutjnl-2019-319188
- Chen C, Shen J, Du Y, et al. Characteristics of gut microbiota in patients with gastric cancer by surgery, chemotherapy and lymph node metastasis. Clin Transl Oncol. 2022;24(11):2181-2190. doi: 10.1007/s12094-022-02875-y
- Bertolini M, Dongari-Bagtzoglou A. The relationship of Candida albicans with the oral bacterial microbiome in health and disease. Adv Exp Med Biol. 2019;1197:69-78. doi: 10.1007/978-3-030-28524-1_6
- Bertolini M, Dongari-Bagtzoglou A. The dysbiosis and inter-kingdom synergy model in oropharyngeal candidiasis, a new perspective in pathogenesis. J Fungi (Basel). 2019;5(4):87. doi: 10.3390/jof5040087
- Bertolini M, Ranjan A, Thompson A, et al. Candida albicans induces mucosal bacterial dysbiosis that promotes invasive infection. PLoS Pathog. 2019;15(4):e1007717. doi: 10.1371/journal.ppat.1007717
- Du Q, Yuan S, Zhao S, et al. Coexistence of Candida albicans and Enterococcus faecalis increases biofilm virulence and periapical lesions in rats. Biofouling. 2021;37(9-10):964-974. doi: 10.1080/08927014.2021.1993836
- Sztukowska MN, Dutton LC, Delaney C, et al. Community development between Porphyromonas gingivalis and Candida albicans mediated by InlJ and Als3. mBio. 2018;9(2):e00202-18. doi: 10.1128/mBio.00202-18
- Chen X, Zhou X, Liao B, Zhou Y, Cheng L, Ren B. The cross-kingdom interaction between Helicobacter pylori and Candida albicans. PLoS Pathog. 2021;17(5):e1009515. doi: 10.1371/journal.ppat.1009515
- Arzmi MH, Cirillo N, Lenzo JC, et al. Monospecies and polymicrobial biofilms differentially regulate the phenotype of genotype-specific oral cancer cells. Carcinogenesis. 2019;40(1):184-193. doi: 10.1093/carcin/bgy137
- Strus M, Kucharska A, Kukla G, Brzychczy-Włoch M, Maresz K, Heczko PB. The in vitro activity of vaginal Lactobacillus with probiotic properties against Candida. Infect Dis Obstet Gynecol. 2005;13(2):69-75. doi: 10.1080/10647440400028136
- Hogan DA, Kolter R. Pseudomonas-Candida interactions: An ecological role for virulence factors. Science. 2002;296(5576):2229-2232. doi: 10.1126/science.1070784
- Liu NN, Jiao N, Tan JC, et al. Multi-kingdom microbiota analyses identify bacterial-fungal interactions and biomarkers of colorectal cancer across cohorts. Nat Microbiol. 2022;7(2):238-250. doi: 10.1038/s41564-021-01030-7
- Seelbinder B, Chen J, Brunke S, et al. Antibiotics create a shift from mutualism to competition in human gut communities with a longer-lasting impact on fungi than bacteria. Microbiome. 2020;8(1):133. doi: 10.1186/s40168-020-00899-6
- Shiao SL, Kershaw KM, Limon JJ, et al. Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy. Cancer Cell. 2021;39(9):1202-1213.e6. doi: 10.1016/j.ccell.2021.07.002
- Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun. 2019;10(1):4841. doi: 10.1038/s41467-019-12798-y
- Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science. 2017;357(6356):1156-1160. doi: 10.1126/science.aah5043
- Zhu X, Xu P, Zhu R, et al. Multi-kingdom microbial signatures in excess body weight colorectal cancer based on global metagenomic analysis. Commun Biol. 2024;7(1):24. doi: 10.1038/s42003-023-05714-0
- Dai Z, Coker OO, Nakatsu G, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018;6(1):70. doi: 10.1186/s40168-018-0451-2
- Drewes JL, Chen J, Markham NO, et al. Human colon cancer-derived clostridioides difficile strains drive colonic tumorigenesis in mice. Cancer Discov. 2022;12(8):1873-1885. doi: 10.1158/2159-8290.Cd-21-1273
- Jia K, Chen Y, Xie Y, et al. Helicobacter pylori and immunotherapy for gastrointestinal cancer. Innovation (Camb). 2024;5(2):100561. doi: 10.1016/j.xinn.2023.100561
- Oster P, Vaillant L, Riva E, et al. Helicobacter pylori infection has a detrimental impact on the efficacy of cancer immunotherapies. Gut. 2022;71(3):457-466. doi: 10.1136/gutjnl-2020-323392
- Shitara K, Van Cutsem E, Bang YJ, et al. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: The KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol. 2020;6(10):1571-1580. doi: 10.1001/jamaoncol.2020.3370
- Sun K, Jia K, Lv H, et al. EBV-positive gastric cancer: Current knowledge and future perspectives. Front Oncol. 2020;10:583463. doi: 10.3389/fonc.2020.583463
- Oster P, Vaillant L, McMillan B, Velin D. The efficacy of cancer immunotherapies is compromised by Helicobacter pylori infection. Front Immunol. 2022;13:899161. doi: 10.3389/fimmu.2022.899161
- Fontes-Lemus JI, Zhao I, Rabkin CS, Fuentes-Pananá EM. Antibodies against epstein-barr virus as disease markers of gastric cancer: A systematic review. Technol Cancer Res Treat. 2023;22:15330338231169875. doi: 10.1177/15330338231169875
- Iizasa H, Nanbo A, Nishikawa J, Jinushi M, Yoshiyama H. Epstein-Barr virus (EBV)-associated gastric carcinoma. Viruses. 2012;4(12):3420-3439. doi: 10.3390/v4123420
- Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4(10):757-768. doi: 10.1038/nrc1452
- Murata T, Tsurumi T. Switching of EBV cycles between latent and lytic states. Rev Med Virol. 2014;24(3):142-153. doi: 10.1002/rmv.1780
- Wen F, Han Y, Zhang H, et al. Epstein-Barr virus infection upregulates extracellular OLFM4 to activate YAP signaling during gastric cancer progression. Nat Commun. 2024;15(1):10543. doi: 10.1038/s41467-024-54850-6
- Lee JWJ, Plichta D, Hogstrom L, et al. Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease. Cell Host Microbe. 2021;29(8):1294-1304.e4. doi: 10.1016/j.chom.2021.06.019
- Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655-662. doi: 10.1038/s41586-019-1237-9
- Su Y, Chen D, Yuan D, et al. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell. 2020;183(6):1479-1495.e20. doi: 10.1016/j.cell.2020.10.037
- Tong M, Zheng W, Li H, et al. Multi-omics landscapes of colorectal cancer subtypes discriminated by an individualized prognostic signature for 5-fluorouracil-based chemotherapy. Oncogenesis. 2016;5(7):e242. doi: 10.1038/oncsis.2016.51
- An L, Yu R, Han Y, Zhou Z. Decoding the intercellular communication network during tumorigenesis. Cancer Biol Med. 2021;19(3):265-272. doi: 10.20892/j.issn.2095-3941.2021.0558
- Park CH, Hong C, Lee AR, Sung J, Hwang TH. Multi-omics reveals microbiome, host gene expression, and immune landscape in gastric carcinogenesis. iScience. 2022;25(3):103956. doi: 10.1016/j.isci.2022.103956
- Shang F, Cao Y, Wan L, et al. Comparison of Helicobacter pylori positive and negative gastric cancer via multi-omics analysis. mBio. 2023;14(6):e01531-23. doi: 10.1128/mbio.01531-23
- Shinnoh M, Horinaka M, Yasuda T, et al. Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8. Int J Oncol. 2013;42(3):903-911. doi: 10.3892/ijo.2013.1790
- Shiratori M, Nagashima I, Takada T, et al. Successful treatment of ruptured hepatocellular carcinoma with intraperitoneal injection of OK-432. J Hepatobiliary Pancreat Surg. 2004;11(6):426-429. doi: 10.1007/s00534-004-0921-8
- Brandão JOSF. Streptococcus pyogenes in tumor treatment: the past, present and future [dissertation]. Porto, Portugal: Faculdade de Medicina da Universidade do Porto; 2020. doi: 10.34626/q3a3-0m79
- Tanaka N, Gouchi A, Ohara T, et al. Intratumoral injection of a streptococcal preparation, OK-432, before surgery for gastric cancer. A randomized trial. Cooperative Study Group of Preoperative Intratumoral Immunotherapy for Cancer. Cancer. 1994;74(12):3097-3103. doi: 10.1002/1097-0142(19941215)74:12<3097::aid-cncr282 0741206>3.0.co;2-p
- Tang Y, Chen F, Fang G, et al. A cofactor-induced repressive type of transcription factor condensation can be induced by synthetic peptides to suppress tumorigenesis. EMBO J. 2024;43(22):5586-5612. doi: 10.1038/s44318-024-00257-4
- Tan XY, Xie YJ, Liu XL, Li XY, Jia B. A systematic review and meta-analysis of randomized controlled trials of fecal microbiota transplantation for the treatment of inflammatory bowel disease. Evid Based Complement Alternat Med. 2022;2022:8266793. doi: 10.1155/2022/8266793
- El-Salhy M, Hausken T, Hatlebakk JG. Current status of fecal microbiota transplantation for irritable bowel syndrome. Neurogastroenterol Motil. 2021;33(11):e14157. doi: 10.1111/nmo.14157
- Zhanel GG, Keynan R, Keynan Y, Karlowsky JA. The role of fecal microbiota transplantation (FMT) in treating patients with multiple sclerosis. Expert Rev Neurother. 2023;23(10):921-930. doi: 10.1080/14737175.2023.2250919
- Madsen M, Kimer N, Bendtsen F, Petersen AM. Fecal microbiota transplantation in hepatic encephalopathy: A systematic review. Scand J Gastroenterol. 2021;56(5):560-569. doi: 10.1080/00365521.2021.1899277
- Baruch EN, Youngster I, Ben-Betzalel G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 2021;371(6529):602-609. doi: 10.1126/science.abb5920
- Porcari S, Baunwall SMD, Occhionero AS, et al. Fecal microbiota transplantation for recurrent C. difficile infection in patients with inflammatory bowel disease: A systematic review and meta-analysis. J Autoimmun. 2023;141:103036. doi: 10.1016/j.jaut.2023.103036
- El-Sayed A, Aleya L, Kamel M. Microbiota’s role in health and diseases. Environ Sci Pollut Res Int. 2021;28(28):36967-36983. doi: 10.1007/s11356-021-14593-z
- Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183-1196. doi: 10.1161/circresaha.117.309715
- Zhang W, Wang S, Zhang H, et al. Modeling human gastric cancers in immunocompetent mice. Cancer Biol Med. 2024;21(7):553-570. doi: 10.20892/j.issn.2095-3941.2024.0124
- Lamm DL, Morales A. A BCG success story: From prevention of tuberculosis to optimal bladder cancer treatment. Vaccine. 2021;39(50):7308-7318. doi: 10.1016/j.vaccine.2021.08.026
- Clairmont C, Lee KC, Pike J, et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis. 2000;181(6):1996-2002. doi: 10.1086/315497
- Toso JF, Gill VJ, Hwu P, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002;20(1):142-152. doi: 10.1200/jco.2002.20.1.142
- Kramer MG, Masner M, Ferreira FA, Hoffman RM. Bacterial therapy of cancer: Promises, limitations, and insights for future directions. Front Microbiol. 2018;9:16. doi: 10.3389/fmicb.2018.00016
- Cheng CM, Lu YL, Chuang KH, et al. Tumor-targeting prodrug-activating bacteria for cancer therapy. Cancer Gene Ther. 2008;15(6):393-401. doi: 10.1038/cgt.2008.10
- Murphy C, Rettedal E, Lehouritis P, Devoy C, Tangney M. Intratumoural production of TNFα by bacteria mediates cancer therapy. PLoS One. 2017;12(6):e0180034. doi: 10.1371/journal.pone.0180034
- Zhang Y, Zhang Y, Xia L, et al. Escherichia coli Nissle 1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of azurin protein. Appl Environ Microbiol. 2012;78(21):7603-7610. doi: 10.1128/aem.01390-12
- Lee CH, Wu CL, Shiau AL. Endostatin gene therapy delivered by Salmonella choleraesuis in murine tumor models. J Gene Med. 2004;6(12):1382-1393. doi: 10.1002/jgm.626
- Scott SR, Din MO, Bittihn P, Xiong L, Tsimring LS, Hasty J. A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis. Nat Microbiol. 2017;2:17083. doi: 10.1038/nmicrobiol.2017.83
- Swofford CA, Van Dessel N, Forbes NS. Quorum-sensing Salmonella selectively trigger protein expression within tumors. Proc Natl Acad Sci U S A. 2015;112(11):3457-3462. doi: 10.1073/pnas.1414558112
- Din MO, Danino T, Prindle A, et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016;536(7614):81-85. doi: 10.1038/nature18930
- Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat Med. 2019;25(7):1057-1063. doi: 10.1038/s41591-019-0498-z
- Dróżdż M, Makuch S, Cieniuch G, Woźniak M, Ziółkowski P. Obligate and facultative anaerobic bacteria in targeted cancer therapy: Current strategies and clinical applications. Life Sci. 2020;261:118296. doi: 10.1016/j.lfs.2020.118296
- Le DT, Brockstedt DG, Nir-Paz R, et al. A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: Phase I studies of safety and immune induction. Clin Cancer Res. 2012;18(3):858-868. doi: 10.1158/1078-0432.Ccr-11-2121
- Konishi H, Fujiya M, Tanaka H, et al. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun. 2016;7:12365. doi: 10.1038/ncomms12365
- Liu Y, Lu Y, Ning B, et al. Intravenous delivery of living listeria monocytogenes elicits gasdmermin-dependent tumor pyroptosis and motivates anti-tumor immune response. ACS Nano. 2022;16(3):4102-4115. doi: 10.1021/acsnano.1c09818
- Coffey MC, Strong JE, Forsyth PA, Lee PW. Reovirus therapy of tumors with activated Ras pathway. Science. 1998;282(5392):1332-1334. doi: 10.1126/science.282.5392.1332
- Balachandran S, Barber GN. Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell. 2004;5(1):51-65. doi: 10.1016/s1535-6108(03)00330-1
- Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996;274(5286):373-376. doi: 10.1126/science.274.5286.373
- Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780-2788. doi: 10.1200/jco.2014.58.3377
- Msaouel P, Opyrchal M, Dispenzieri A, et al. Clinical trials with oncolytic measles virus: Current status and future prospects. Curr Cancer Drug Targets. 2018;18(2):177-187. doi: 10.2174/1568009617666170222125035
- Nardone G, Compare D. The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United European Gastroenterol J. 2015;3(3):255-260. doi: 10.1177/2050640614566846
- Leng Q, Holden VK, Deepak J, Todd NW, Jiang F. Microbiota biomarkers for lung cancer. Diagnostics (Basel). 2021;11(3):407. doi: 10.3390/diagnostics11030407
- Derosa L, Iebba V, Silva CAC, et al. Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome. Cell. 2024;187(13):3373- 3389.e16. doi: 10.1016/j.cell.2024.05.029
- Daillère R, Vétizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. Oct 18 2016;45(4):931-943. doi: 10.1016/j.immuni.2016.09.009
- Matson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104-108. doi: 10.1126/science.aao3290
