AccScience Publishing / MI / Online First / DOI: 10.36922/MI025270060
REVIEW ARTICLE

Decoding phosphoinositide signaling in viral pathogenesis and autoimmune disorders

Chang Ren1,2 Fengting Liu1,2,3,4 Xinrui Li1,2 Yichuan Zhang1,2 Xulei Liu1,2 Jigang Wang3,4,5* Jichao Sun3,4* Mo Chen1,2*
Show Less
1 Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine and SUSTech Homeostatic Medicine Institute, Southern University of Science and Technology, Shenzhen, Guangdong, China
2 Laboratory of Oral Homeostatic Medicine, School of Medicine and SUSTech Homeostatic Medicine Institute, Southern University of Science and Technology, Shenzhen, Guangdong, China
3 Department of Critical Care Medicine, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
4 Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
5 State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
Received: 30 June 2025 | Revised: 11 August 2025 | Accepted: 14 August 2025 | Published online: 9 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Phosphoinositide (PIP) lipids are master regulators of cellular signaling, membrane dynamics, and trafficking. Dysregulation of PIP signaling contributes critically to autoimmune disorders, where it disrupts immune tolerance and promotes inflammatory tissue damage. Similarly, viruses extensively exploit host PIP signaling pathways for entry, replication, and immune evasion. However, a comprehensive analysis linking PIP dysregulation across specific viral infections to autoimmune mechanisms is lacking. This review bridges this gap by decoding the intricate roles of PIP signaling in both viral pathogenesis and autoimmunity. We detail how eight distinct viral pathogens manipulate PIP networks and explore the resulting implications for autoimmune initiation or exacerbation. We synthesize findings on key PIP species, their effector proteins, and the modulated immune pathways central to both disease contexts. By elucidating these shared and unique mechanisms, this review identifies promising PIP-centric targets for therapeutic intervention in viral diseases and autoimmune disorders.

Graphical abstract
Keywords
Phosphoinositides
Viral pathogenesis
Autoimmune diseases
Stress signaling
Funding
M.C. is supported by Shenzhen Natural Science Foundation (JCYJ20240813094605008), Shenzhen Medical Research Fund (D2301007), Guangdong Province Basic and Applied Basic Research Foundation (2023A1515110237), and National Natural Science Foundation of China (32400577). J.S. is supported by the Science and Technology Foundation of Shenzhen (JCYJ20220818102611025, RCYX20210706092040044), National Natural Science Foundation of China (82071193), and Guangdong Zhujiang Program (0920220233).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Balla T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol Rev. 2013;93(3):1019-1137. doi: 10.1152/physrev.00028.2012

 

  1. Hou X, Ren C, Jin J, et al. Phosphoinositide signalling in cell motility and adhesion. Nat Cell Biol. 2025;27(5):736-748. doi: 10.1038/s41556-025-01647-4

 

  1. Itoh T, Takenawa T. Phosphoinositide-binding domains: Functional units for temporal and spatial regulation of intracellular signalling. Cell Signal. 2002;14(9):733-743. doi: 10.1016/s0898-6568(02)00028-1

 

  1. Hou X, Chen Y, Carrillo ND, et al. Phosphoinositide signaling at the cytoskeleton in the regulation of cell dynamics. Cell Death Dis. 2025;16(1):296. doi: 10.1038/s41419-025-07616-x

 

  1. Levin R, Grinstein S, Schlam D. Phosphoinositides in phagocytosis and macropinocytosis. Biochim Biophys Acta. 2015;1851(6):805-823. doi: 10.1016/j.bbalip.2014.09.005

 

  1. Hawkins PT, Stephens LR. PI3K signalling in inflammation. Biochim Biophys Acta. 2015;1851(6):882-897. doi: 10.1016/j.bbalip.2014.12.006

 

  1. Ren C, Carrillo ND, Cryns VL, Anderson RA, Chen M. Environmental pollutants and phosphoinositide signaling in autoimmunity. J Hazard Mater. 2024;465:133080. doi: 10.1016/j.jhazmat.2023.133080

 

  1. Rattay S, Hufbauer M, Hoboth P, Sztacho M, Akgul B. Viruses and phospholipids: Friends and foes during infection. J Med Virol. 2023;95(3):e28658. doi: 10.1002/jmv.28658

 

  1. Lu W, Helou YA, Shrinivas K, Liou J, Au-Yeung BB, Weiss A. The phosphatidylinositol-transfer protein Nir3 promotes PI(4,5)P(2) replenishment in response to TCR signaling during T cell development and survival. Nat Immunol. 2023;24(1):136-147. doi: 10.1038/s41590-022-01372-2

 

  1. Kakar R, Ghosh C, Sun Y. Phosphoinositide signaling in immune cell migration. Biomolecules. 2023;13(12):1705. doi: 10.3390/biom13121705

 

  1. Chen M, Wen T, Horn HT, et al. The nuclear phosphoinositide response to stress. Cell Cycle. 2020;19(3):268-289. doi: 10.1080/15384101.2019.1711316

 

  1. Posor Y, Jang W, Haucke V. Phosphoinositides as membrane organizers. Nat Rev Mol Cell Biol. 2022;23(12):797-816. doi: 10.1038/s41580-022-00490-x

 

  1. Wang X, Boyken SE, Hu J, et al. Calmodulin and PI(3,4,5) P(3) cooperatively bind to the Itk pleckstrin homology domain to promote efficient calcium signaling and IL-17A production. Sci Signal. 2014;7(337):ra74. doi: 10.1126/scisignal.2005147

 

  1. Li D, Sun F, Yang Y, Tu H, Cai H. Gradients of PI(4,5)P(2) and PI(3,5)P(2) jointly participate in shaping the back state of dictyostelium cells. Front Cell Dev Biol. 2022;10:835185. doi: 10.3389/fcell.2022.835185

 

  1. Sato TK, Overduin M, Emr SD. Location, location, location: Membrane targeting directed by PX domains. Science. 2001;294(5548):1881-1885. doi: 10.1126/science.1065763

 

  1. Eitzen G, Smithers CC, Murray AG, Overduin M. Structure and function of the Fgd family of divergent FYVE domain proteins (1). Biochem Cell Biol. 2019;97(3):257-264. doi: 10.1139/bcb-2018-0185

 

  1. Lai CL, Jao CC, Lyman E, et al. Membrane binding and self-association of the epsin N-terminal homology domain. J Mol Biol. 2012;423(5):800-817. doi: 10.1016/j.jmb.2012.08.010

 

  1. Thapa N, Chen M, Horn HT, Choi S, Wen T, Anderson RA. Phosphatidylinositol-3-OH kinase signalling is spatially organized at endosomal compartments by microtubule-associated protein 4. Nat Cell Biol. 2020;22(11):1357-1370. doi: 10.1038/s41556-020-00596-4

 

  1. Thapa N, Chen M, Cryns VL, Anderson R. A p85 isoform switch enhances PI3K activation on endosomes by a MAP4- and PI3P-dependent mechanism. Cell Rep. 2024;43(5):114119. doi: 10.1016/j.celrep.2024.114119

 

  1. Tribble EK, Ivanova PT, Grabon A, et al. Quantitative profiling of the endonuclear glycerophospholipidome of murine embryonic fibroblasts. J Lipid Res. 2016;57(8):1492-1506. doi: 10.1194/jlr.M068734

 

  1. Sobol M, Krausova A, Yildirim S, et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J Cell Sci. 2018;131(8):jcs211094. doi: 10.1242/jcs.211094

 

  1. Carrillo ND, Awasthi P, Lee JH, et al. Linking phosphoinositides to proteins: A novel signaling PIPeline. J Cell Signal. 2024;5(3):114-121. doi: 10.33696/signaling.5.118

 

  1. Chen M, Horn HT, Wen T, Cryns VL, Anderson RA. Assessing in situ phosphoinositide-protein interactions through fluorescence proximity ligation assay in cultured cells. Methods Mol Biol. 2021;2251:133-142. doi: 10.1007/978-1-0716-1142-5_9

 

  1. Wen T, Chen M, Cryns VL, Anderson RA. The poly(A) polymerase star-PAP is regulated by stably associated phosphoinositide messengers. J Biol Chem. 2025;301:110412. doi: 10.1016/j.jbc.2025.110412

 

  1. Hou X, Chen Y, Zhou B, et al. The nuclear phosphoinositide-p53 signalosome in the regulation of cell motility. Protein Cell. 2025:pwaf043. doi: 10.1093/procel/pwaf043

 

  1. Manning BD, Toker A. AKT/PKB signaling: Navigating the network. Cell. 2017;169(3):381-405. doi: 10.1016/j.cell.2017.04.001

 

  1. Chen M, Tan JX, Sun Y, Thapa N, Cryns VL, Anderson RA. Agonist- and stress-driven compartmentalized phosphoinositide signaling in cells. Biochim Biophys Acta Mol Cell Biol Lipids. 2025;1870(6):159662. doi: 10.1016/j.bbalip.2025.159662

 

  1. Currie RA, Walker KS, Gray A, et al. Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J. 1999;337(Pt 3):575-583.

 

  1. Yuan HX, Guan KL. The SIN1-ph domain connects mTORC2 to PI3K. Cancer Discov. 2015;5(11):1127-1129. doi: 10.1158/2159-8290.CD-15-1125

 

  1. Wang S, Qin L. Homeostatic medicine: A strategy for exploring health and disease. Curr Med (Cham). 2022;1(1):16. doi: 10.1007/s44194-022-00016-9

 

  1. Bankaitis VA, Carman GM. The role of phosphoinositides in signaling and disease: Introduction to the thematic review series. J Lipid Res. 2019;60(2):227-228. doi: 10.1194/jlr.e091355

 

  1. Pendaries C, Tronchere H, Plantavid M, Payrastre B. Phosphoinositide signaling disorders in human diseases. FEBS Lett. 2003;546(1):25-31. doi: 10.1016/s0014-5793(03)00437-x

 

  1. Thapa N, Tan X, Choi S, Lambert PF, Rapraeger AC, Anderson RA. The hidden conundrum of phosphoinositide signaling in cancer. Trends Cancer. 2016;2(7):378-390. doi: 10.1016/j.trecan.2016.05.009

 

  1. Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta. 2015;1851(8):1066-1082. doi: 10.1016/j.bbalip.2015.02.002

 

  1. Pisetsky DS. Pathogenesis of autoimmune disease. Nat Rev Nephrol. 2023;19(8):509-524. doi: 10.1038/s41581-023-00720-1

 

  1. Neamtu M, Bild V, Vasincu A, et al. Inflammasome molecular insights in autoimmune diseases. Curr Issues Mol Biol. 2024;46(4):3502-3532. doi: 10.3390/cimb46040220

 

  1. Richard-Miceli C, Criswell LA. Emerging patterns of genetic overlap across autoimmune disorders. Genome Med. 2012;4:6. doi: 10.1186/gm305

 

  1. Yasmeen F, Pirzada RH, Ahmad B, Choi B, Choi S. Understanding autoimmunity: Mechanisms, predisposing factors, and cytokine therapies. Int J Mol Sci. 2024;25(14):7666. doi: 10.3390/ijms25147666

 

  1. Vergouwen DPC, Rothova A, Ten Berge JC, et al. Current insights in the pathogenesis of scleritis. Exp Eye Res. 2020;197:108078. doi: 10.1016/j.exer.2020.108078

 

  1. Korman BD, Kastner DL, Gregersen PK, Remmers EF. STAT4: Genetics, mechanisms, and implications for autoimmunity. Curr Allergy Asthma Rep. 2008;8(5):398-403. doi: 10.1007/s11882-008-0077-8

 

  1. Mustelin T, Bottini N, Stanford SM. The contribution of PTPN22 to rheumatic disease. Arthritis Rheumatol. 2019;71(4):486-495. doi: 10.1002/art.40790

 

  1. Sundas A, Contreras I, Mujahid O, Beneyto A, Vehi J. The effects of environmental factors on general human health: A scoping review. Healthcare (Basel). 2024;12(21):2123. doi: 10.3390/healthcare12212123

 

  1. Dejaco C, Duftner C, Grubeck-Loebenstein B, Schirmer M. Imbalance of regulatory T cells in human autoimmune diseases. Immunology. 2006;117(3):289-300. doi: 10.1111/j.1365-2567.2005.02317.x

 

  1. Moulton VR, Tsokos GC. T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J Clin Invest. 2015;125(6):2220-2227. doi: 10.1172/Jci78087

 

  1. IJspeert H, Dalm V, Van Zelm MC, Edwards ESJ. Hyperactivation of the PI3K pathway in inborn errors of immunity: Current understanding and therapeutic perspectives. Immunother Adv. 2024;4(1):ltae009. doi: 10.1093/immadv/ltae009

 

  1. Foster JG, Blunt MD, Carter E, Ward SG. Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Pharmacol Rev. 2012;64(4):1027-1054. doi: 10.1124/pr.110.004051

 

  1. Wu T, Mohan C. The AKT axis as a therapeutic target in autoimmune diseases. Endocr Metab Immune Disord Drug Targets. 2009;9(2):145-150. doi: 10.2174/187153009788452417

 

  1. Besliu AN, Pistol G, Marica CM, et al. PI3K/Akt signaling in peripheral T lymphocytes from systemic lupus erythematosus patients. Roum Arch Microbiol Immunol. 2009;68(2):69-79.

 

  1. Roy T, Boateng ST, Uddin MB, et al. The PI3K-Akt-mTOR and associated signaling pathways as molecular drivers of immune-mediated inflammatory skin diseases: Update on therapeutic strategy using natural and synthetic compounds. Cells Basel. 2023;12(12):1671. doi: 10.3390/cells12121671

 

  1. Getts DR, Chastain EM, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. 2013;255(1):197-209. doi: 10.1111/imr.12091

 

  1. Gowthaman U, Eswarakumar VP. Molecular mimicry: Good artists copy, great artists steal. Virulence. 2013;4(6):433-434. doi: 10.4161/viru.25780

 

  1. Maguire C, Wang C, Ramasamy A, et al. Molecular mimicry as a mechanism of viral immune evasion and autoimmunity. Nat Commun. 2024;15(1):9403. doi: 10.1038/s41467-024-53658-8

 

  1. Laurynenka V, Ding L, Kaufman KM, James JA, Harley JB. A high prevalence of anti-EBNA1 heteroantibodies in systemic lupus erythematosus (SLE) supports anti-EBNA1 as an origin for SLE autoantibodies. Front Immunol. 2022;13:830993. doi: 10.3389/fimmu.2022.830993

 

  1. Trier NH, Valdarnini N, Fanelli I, et al. Peptide antibody reactivity to homologous regions in glutamate decarboxylase isoforms and coxsackievirus B4 P2C. Int J Mol Sci. 2022;23(8):4424. doi: 10.3390/ijms23084424

 

  1. Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and autoimmunity: A review on the potential interaction and molecular mechanisms. Viruses. 2019;11(8):762. doi: 10.3390/v11080762

 

  1. Kim TS, Shin EC. The activation of bystander CD8+ T cells and their roles in viral infection. Exp Mol Med. 2019;51(12):1-9. doi: 10.1038/s12276-019-0316-1

 

  1. Stoian A, Stoian M, Bajko Z, et al. Autoimmune encephalitis in COVID-19 infection: Our experience and systematic review of the literature. Biomedicines. 2022;10(4):774. doi: 10.3390/biomedicines10040774

 

  1. Yosri M, Dokhan M, Aboagye E, Al Moussawy M, Abdelsamed HA. Mechanisms governing bystander activation of T cells. Front Immunol. 2024;15:1465889. doi: 10.3389/fimmu.2024.1465889

 

  1. Whiteside SK, Snook JP, Williams MA, Weis JJ. Bystander T cells: A balancing act of friends and foes. Trends Immunol. 2018;39(12):1021-1035. doi: 10.1016/j.it.2018.10.003

 

  1. Ramanathan S, Dubois S, Chen XL, Leblanc C, Ohashi PS, Ilangumaran S. Exposure to IL-15 and IL-21 enables autoreactive CD8 T cells to respond to weak antigens and cause disease in a mouse model of autoimmune diabetes. J Immunol. 2011;186(9):5131-5141. doi: 10.4049/jimmunol.1001221

 

  1. Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The role of viral infections in the onset of autoimmune diseases. Viruses. 2023;15(3):782. doi: 10.3390/v15030782

 

  1. Tsunoda I, Fujinami RS. Two models for multiple sclerosis: Experimental allergic encephalomyelitis and Theiler’s murine encephalomyelitis virus. J Neuropathol Exp Neurol. 1996;55(6):673-686. doi: 10.1097/00005072-199606000-00001

 

  1. Katz-Levy Y, Neville KL, Girvin AM, et al. Endogenous presentation of self myelin epitopes by CNS-resident APCs in Theiler’s virus-infected mice. J Clin Invest. 1999;104(5):599-610. doi: 10.1172/jci7292

 

  1. Katz-Levy Y, Neville KL, Padilla J, et al. Temporal development of autoreactive Th1 responses and endogenous presentation of self myelin epitopes by central nervous system-resident APCs in Theiler’s virus-infected mice. J Immunol. 2000;165(9):5304-5314. doi: 10.4049/jimmunol.165.9.5304

 

  1. Croxford JL, Olson JK, Miller SD. Epitope spreading and molecular mimicry as triggers of autoimmunity in the Theiler’s virus-induced demyelinating disease model of multiple sclerosis. Autoimmun Rev. 2002;1(5):251-260. doi: 10.1016/s1568-9972(02)00080-0

 

  1. Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13(1):25-36. doi: 10.1038/nrneurol.2016.187

 

  1. Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296-301. doi: 10.1126/science.abj8222

 

  1. Soldan SS, Lieberman PM. Epstein-barr virus and multiple sclerosis. Nat Rev Microbiol. 2023;21(1):51-64. doi: 10.1038/s41579-022-00770-5

 

  1. Lanz TV, Brewer RC, Ho PP, et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature. 2022;603(7900):321-327. doi: 10.1038/s41586-022-04432-7

 

  1. Fava A, Petri M. Systemic lupus erythematosus: Diagnosis and clinical management. J Autoimmun. 2019;96:1-13. doi: 10.1016/j.jaut.2018.11.001

 

  1. Majka DS, Holers VM. Cigarette smoking and the risk of systemic lupus erythematosus and rheumatoid arthritis. Ann Rheum Dis. 2006;65(5):561-563. doi: 10.1136/ard.2005.046052

 

  1. Barbhaiya M, Tedeschi SK, Lu B, et al. Cigarette smoking and the risk of systemic lupus erythematosus, overall and by anti-double stranded DNA antibody subtype, in the nurses’ health study cohorts. Ann Rheum Dis. 2018;77(2):196-202. doi: 10.1136/annrheumdis-2017-211675

 

  1. Chen J, Liao S, Pang W, et al. Life factors acting on systemic lupus erythematosus. Front Immunol. 2022;13:986239. doi: 10.3389/fimmu.2022.986239

 

  1. Jog NR, James JA. Epstein barr virus and autoimmune responses in systemic lupus erythematosus. Front Immunol. 2020;11:623944. doi: 10.3389/fimmu.2020.623944

 

  1. Filippi C, Von Herrath M. How viral infections affect the autoimmune process leading to type 1 diabetes. Cell Immunol. 2005;233(2):125-132. doi: 10.1016/j.cellimm.2005.04.009

 

  1. Op de Beeck A, Eizirik DL. Viral infections in type 1 diabetes mellitus--why the beta cells? Nat Rev Endocrinol. 2016;12(5):263-273. doi: 10.1038/nrendo.2016.30

 

  1. Antonelli A, Ferrari SM, Ruffilli I, Fallahi P. Cytokines and HCV-related autoimmune disorders. Immunol Res. 2014;60(2-3):311-319. doi: 10.1007/s12026-014-8569-1

 

  1. Killeen RB, Awais M, Mikes BA. Cryoglobulinemia. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2025.

 

  1. Ramroodi N, Sanadgol N, Ganjali Z, Niazi AA, Sarabandi V, Moghtaderi A. Monitoring of active human herpes virus 6 infection in Iranian patients with different subtypes of multiple sclerosis. J Pathog. 2013;2013:194932. doi: 10.1155/2013/194932

 

  1. Zorena K, Michalska M, Kurpas M, Jaskulak M, Murawska A, Rostami S. Environmental factors and the risk of developing type 1 diabetes-old disease and new data. Biology (Basel). 2022;11(4):608. doi: 10.3390/biology11040608

 

  1. Dezayee ZM. The status of serum gamma-interferonand antiviral antibodies in patients with type I and type 2 diabetes: A comparative study. J Res Med Sci. 2012;17(9):855-858.

 

  1. Meidaninikjeh S, Sabouni N, Taheri M, et al. SARS-CoV-2 and guillain-barre syndrome: Lessons from viral infections. Viral Immunol. 2022;35(6):404-417. doi: 10.1089/vim.2021.0187

 

  1. Garmendia JV, Garcia AH, De Sanctis CV, Hajduch M, De Sanctis JB. Autoimmunity and immunodeficiency in severe SARS-CoV-2 infection and prolonged COVID-19. Curr Issues Mol Biol. 2022;45(1):33-50. doi: 10.3390/cimb45010003

 

  1. Jin YH, Kim CX, Huang J, Kim BS. Infection and activation of B cells by theiler’s murine encephalomyelitis virus (TMEV) leads to autoantibody production in an infectious model of multiple sclerosis. Cells Basel. 2020;9(8):1787. doi: 10.3390/cells9081787

 

  1. Hirano Y, Kobayashi K, Tomiki H, et al. The role of alpha4 integrin in Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease: An infectious animal model for multiple sclerosis (MS). Int Immunol. 2016;28(12):575-584. doi: 10.1093/intimm/dxw045

 

  1. Jaidane H, Halouani A, Jmii H, et al. In-utero coxsackievirus B4 infection of the mouse thymus. Clin Exp Immunol. 2017;187(3):399-407. doi: 10.1111/cei.12893

 

  1. Rasquinha MT, Lasrado N, Petro-Turnquist E, et al. PhIP-Seq reveals autoantibodies for ubiquitously expressed antigens in viral myocarditis. Biology (Basel). 2022;11(7):1055. doi: 10.3390/biology11071055

 

  1. Delang L, Paeshuyse J, Neyts J. The role of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate during viral replication. Biochem Pharmacol. 2012;84(11):1400-1408. doi: 10.1016/j.bcp.2012.07.034

 

  1. Chang H, Li X, Cai Q, et al. The PI3K/Akt/mTOR pathway is involved in CVB3-induced autophagy of HeLa cells. Int J Mol Med. 2017;40(1):182-192. doi: 10.3892/ijmm.2017.3008

 

  1. Ogawa J, Koike R, Sugihara T, et al. An autopsied case of chronic active Epstein-Barr virus infection complicated in systemic lupus erythematosus and antiphospholipid antibody syndrome. Nihon Rinsho Meneki Gakkai Kaishi. 2002;25(6):458-465. doi: 10.2177/jsci.25.458

 

  1. Kwok YFR, Asti D, Mudduluru BM, Skaradinskiy Y. Catastrophic antiphospholipid syndrome post-Epstein-Barr virus infection: A case report. Hematol Transfus Cell Ther. 2022;44(3):419-421. doi: 10.1016/j.htct.2020.09.153

 

  1. Fadlallah S, Hussein H, Jallad MA, et al. Effect of epstein-barr virus DNA on the incidence and severity of arthritis in a rheumatoid arthritis mouse model. Front Immunol. 2021;12:672752. doi: 10.3389/fimmu.2021.672752

 

  1. Svendsen AJ, Westergaard MCW, Draborg AH, et al. Altered antibody response to epstein-barr virus in patients with rheumatoid arthritis and healthy subjects predisposed to the disease. A twin study. Front Immunol. 2021;12:650713. doi: 10.3389/fimmu.2021.650713

 

  1. Kroos S, Kampstra ASB, Toes REM, Slot LM, Scherer HU. Absence of epstein-barr virus DNA in anti-citrullinated protein antibody-expressing B cells of patients with rheumatoid arthritis. Arthritis Res Ther. 2022;24(1):230. doi: 10.1186/s13075-022-02919-2

 

  1. Drozdzik A, Dziedziejko V, Kurzawski M. IL-1 and TNF-alpha regulation of aryl hydrocarbon receptor (AhR) expression in HSY human salivary cells. Arch Oral Biol. 2014;59(4):434-439. doi: 10.1016/j.archoralbio.2014.02.003

 

  1. Inoue H, Mishima K, Yamamoto-Yoshida S, et al. Aryl hydrocarbon receptor-mediated induction of EBV reactivation as a risk factor for Sjogren’s syndrome. J Immunol. 2012;188(9):4654-462. doi: 10.4049/jimmunol.1101575

 

  1. Farina A, Peruzzi G, Lacconi V, et al. Epstein-Barr virus lytic infection promotes activation of Toll-like receptor 8 innate immune response in systemic sclerosis monocytes. Arthritis Res Ther. 2017;19(1):39. doi: 10.1186/s13075-017-1237-9

 

  1. Suzuki Y, Ohsugi K, Ono Y. EBV increases phosphoinositide kinase activities in human B cells. J Immunol. 1992;149(1):207-213.

 

  1. Luo Y, Liu Y, Wang C, Gan R. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int. 2021;21(1):93. doi: 10.1186/s12935-021-01793-3

 

  1. Wang L, Ren J, Li G, Moorman JP, Yao ZQ, Ning S. LMP1 signaling pathway activates IRF4 in latent EBV infection and a positive circuit between PI3K and Src is required. Oncogene. 2017;36(16):2265-2274. doi: 10.1038/onc.2016.380

 

  1. Yang CF, Yang GD, Huang TJ, et al. EB-virus latent membrane protein 1 potentiates the stemness of nasopharyngeal carcinoma via preferential activation of PI3K/AKT pathway by a positive feedback loop. Oncogene. 2016;35(26):3419-3431. doi: 10.1038/onc.2015.402

 

  1. D’Addario M, Ahmad A, Xu JW, Menezes J. Epstein-Barr virus envelope glycoprotein gp350 induces NF-kappaB activation and IL-1beta synthesis in human monocytes-macrophages involving PKC and PI3-K. FASEB J. 1999;13(15):2203-2213. doi: 10.1096/fasebj.13.15.2203

 

  1. Pan ZK, Zuraw BL, Lung CC, Prossnitz ER, Browning DD, Ye RD. Bradykinin stimulates NF-kappaB activation and interleukin 1beta gene expression in cultured human fibroblasts. J Clin Invest. 1996;98(9):2042-2049. doi: 10.1172/JCI119009

 

  1. Halenius A, Hengel H. Human cytomegalovirus and autoimmune disease. Biomed Res Int. 2014;2014:472978. doi: 10.1155/2014/472978

 

  1. Rauwel B, Degboe Y, Nigon D, et al. Reduced progression of bone erosion in cytomegalovirus seropositive rheumatoid arthritis patients. Arthritis Res Ther. 2020;22(1):13. doi: 10.1186/s13075-020-2098-1

 

  1. Rauwel B, Degboe Y, Diallo K, et al. Inhibition of osteoclastogenesis by the RNA-binding protein QKI5: A novel approach to protect from bone resorption. J Bone Miner Res. 2020;35(4):753-765. doi: 10.1002/jbmr.3943

 

  1. Neo JYJ, Wee SYK, Bonne I, et al. Characterisation of a human antibody that potentially links cytomegalovirus infection with systemic lupus erythematosus. Sci Rep. 2019;9(1):9998. doi: 10.1038/s41598-019-46329-y

 

  1. Barshad G, Zlotnikov-Poznianski N, Gal L, Schuldiner M, Mishmar D. Disease-causing mutations in subunits of OXPHOS complex I affect certain physical interactions. Sci Rep. 2019;9(1):9987. doi: 10.1038/s41598-019-46446-8

 

  1. Cassaniti I, Cavagna L, Calarota SA, et al. Evaluation of EBV- and HCMV-specific T cell responses in systemic lupus erythematosus (SLE) Patients using a normalized enzyme-linked immunospot (ELISPOT) assay. J Immunol Res. 2019;2019:4236503. doi: 10.1155/2019/4236503

 

  1. Soffritti I, D’Accolti M, Ravegnini G, et al. Modulation of microRNome by human cytomegalovirus and human herpesvirus 6 infection in human dermal fibroblasts: Possible significance in the induction of fibrosis in systemic sclerosis. Cells Basel. 2021;10(5):1060. doi: 10.3390/cells10051060

 

  1. Arcangeletti MC, Maccari C, Vescovini R, et al. A paradigmatic interplay between human cytomegalovirus and host immune system: Possible involvement of viral antigen-driven CD8+ T cell responses in systemic sclerosis. Viruses. 2018;10(9):508. doi: 10.3390/v10090508

 

  1. Hiemstra HS, Schloot NC, Van Veelen PA, et al. Cytomegalovirus in autoimmunity: T cell crossreactivity to viral antigen and autoantigen glutamic acid decarboxylase. Proc Natl Acad Sci U S A. 2001;98(7):3988-3991. doi: 10.1073/pnas.071050898

 

  1. Johnson RA, Wang X, Ma XL, Huong SM, Huang ES. Human cytomegalovirus up-regulates the phosphatidylinositol 3-kinase (PI3-K) pathway: Inhibition of PI3-K activity inhibits viral replication and virus-induced signaling. J Virol. 2001;75(13):6022-6032. doi: 10.1128/jvi.75.13.6022-6032.2001

 

  1. Ferri C, Antonelli A, Mascia MT, et al. HCV-related autoimmune and neoplastic disorders: The HCV syndrome. Dig Liver Dis. 2007;39(Suppl 1):S13-S21. doi: 10.1016/s1590-8658(07)80005-3

 

  1. Liu Z, Tian Y, Machida K, et al. Transient activation of the PI3K-AKT pathway by hepatitis C virus to enhance viral entry. J Biol Chem. 2012;287(50):41922-41930. doi: 10.1074/jbc.M112.414789

 

  1. Awad A, Gassama-Diagne A. PI3K/SHIP2/PTEN pathway in cell polarity and hepatitis C virus pathogenesis. World J Hepatol. 2017;9(1):18-29. doi: 10.4254/wjh.v9.i1.18

 

  1. Wang H, Perry JW, Lauring AS, Neddermann P, De Francesco R, Tai AW. Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking. Gastroenterology. 2014;146(5):1373-85.e1-11. doi: 10.1053/j.gastro.2014.02.002

 

  1. Cho NJ, Lee C, Pang PS, et al. Phosphatidylinositol 4,5-bisphosphate is an HCV NS5A ligand and mediates replication of the viral genome. Gastroenterology. 2015;148(3):616-625. doi: 10.1053/j.gastro.2014.11.043

 

  1. Sultanova A, Cistjakovs M, Sokolovska L, Todorova K, Cunskis E, Murovska M. HHV-6 infection and chemokine RANTES signaling pathway disturbance in patients with autoimmune thyroiditis. Viruses. 2020;12(6):689. doi: 10.3390/v12060689

 

  1. Axelrad JE, Cadwell KH, Colombel JF, Shah SC. The role of gastrointestinal pathogens in inflammatory bowel disease: A systematic review. Therap Adv Gastroenterol. 2021;14:1-17. doi: 10.1177/17562848211004493

 

  1. Caselli E, Soffritti I, D’Accolti M, et al. HHV-6A infection and systemic sclerosis: Clues of a possible association. Microorganisms. 2019;8(1):39. doi: 10.3390/microorganisms8010039

 

  1. Sabouri S, Benkahla MA, Kiosses WB, et al. Human herpesvirus-6 is present at higher levels in the pancreatic tissues of donors with type 1 diabetes. J Autoimmun. 2020;107:102378. doi: 10.1016/j.jaut.2019.102378

 

  1. Housley WJ, Fernandez SD, Vera K, et al. Genetic variants associated with autoimmunity drive NFκB signaling and responses to inflammatory stimuli. Sci Transl Med. 2015;7(291):291ra93. doi: 10.1126/scitranslmed.aaa9223

 

  1. Sun W, Wang Q, Zhang R, Zhang N. Ketogenic diet attenuates neuroinflammation and induces conversion of M1 microglia to M2 in an EAE model of multiple sclerosis by regulating the NF-κB/NLRP3 pathway and inhibiting HDAC3 and P2X7R activation. Food Funct. 2023;14(15):7247-7269. doi: 10.1039/d3fo00122a

 

  1. Cooray S, Jin L, Best JM. The involvement of survival signaling pathways in rubella-virus induced apoptosis. Virol J. 2005;2:1. doi: 10.1186/1743-422X-2-1

 

  1. Fallahi P, Ferrari SM, Elia G, et al. Thyroid autoimmunity and SARS-CoV-2 infection: Report of a large Italian series. Autoimmun Rev. 2022;21(11):103183. doi: 10.1016/j.autrev.2022.103183

 

  1. Appelberg S, Gupta S, Svensson Akusjarvi S, et al. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg Microbes Infect. 2020;9(1):1748-1760. doi: 10.1080/22221751.2020.1799723

 

  1. Fattahi S, Khalifehzadeh-Esfahani Z, Mohammad- Rezaei M, Mafi S, Jafarinia M. PI3K/Akt/mTOR pathway: A potential target for anti-SARS-CoV-2 therapy. Immunol Res. 2022;70(3):269-275. doi: 10.1007/s12026-022-09268-x

 

  1. Ahmad F, Keshri V, Singh SK. ORF3a of SARS-CoV-2 modulates PI3K/AKT signaling in human lung epithelial cells via hsa-miR-155-5p. Int J Biol Macromol. May 2024;268(Pt 1):131734. doi: 10.1016/j.ijbiomac.2024.131734

 

  1. Pedicone C, Meyer ST, Chisholm JD, Kerr WG. Targeting SHIP1 and SHIP2 in cancer. Cancers (Basel). 2021;13(4):269-275. doi: 10.3390/cancers13040890

 

  1. Silva MJA, Ribeiro LR, Gouveia MIM, et al. Hyperinflammatory response in COVID-19: A systematic review. Viruses. 2023;15(2):553. doi: 10.3390/v15020553

 

  1. Kang YL, Chou YY, Rothlauf PW, et al. Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. Proc Natl Acad Sci U S A. 2020;117(34):20803-20813. doi: 10.1073/pnas.2007837117

 

  1. Mestre L, Correa F, Docagne F, Clemente D, Guaza C. The synthetic cannabinoid WIN 55,212-2 increases COX-2 expression and PGE2 release in murine brain-derived endothelial cells following Theiler’s virus infection. Biochem Pharmacol. 2006;72(7):869-880. doi: 10.1016/j.bcp.2006.06.037

 

  1. Sin J, Mangale V, Thienphrapa W, Gottlieb RA, Feuer R. Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis. Virology. 2015;484:288-304. doi: 10.1016/j.virol.2015.06.006

 

  1. Nekoua MP, Alidjinou EK, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol. 2022;18(8):503-516. doi: 10.1038/s41574-022-00688-1

 

  1. Archard LC, Richardson PJ, Olsen EG, Dubowitz V, Sewry C, Bowles NE. The role of Coxsackie B viruses in the pathogenesis of myocarditis, dilated cardiomyopathy and inflammatory muscle disease. Biochem Soc Symp. 1987;53:51-62.

 

  1. Fairweather D, Stafford KA, Sung YK. Update on coxsackievirus B3 myocarditis. Curr Opin Rheumatol. 2012;24(4):401-407. doi: 10.1097/bor.0b013e328353372d

 

  1. Gonzalez G, Carr MJ, Kobayashi M, Hanaoka N, Fujimoto T. Enterovirus-associated hand-foot and mouth disease and neurological complications in japan and the rest of the world. Int J Mol Sci. 2019;20(20):5201. doi: 10.3390/ijms20205201

 

  1. Henke A, Jarasch N, Martin U, Zell R, Wutzler P. Characterization of the protective capability of a recombinant coxsackievirus B3 variant expressing interferon-gamma. Viral Immunol. 2008;21(1):38-48. doi: 10.1089/vim.2007.0077

 

  1. Fung G, Luo H, Qiu Y, Yang D, McManus B. Myocarditis. Circ Res. 2016;118(3):496-514. doi: 10.1161/circresaha.115.306573

 

  1. Kindermann I, Barth C, Mahfoud F, et al. Update on myocarditis. J Am Coll Cardiol. 2012;59(9):779-792. doi: 10.1016/j.jacc.2011.09.074

 

  1. Archard LC, Bowles NE, Cunningham L, et al. Molecular probes for detection of persisting enterovirus infection of human heart and their prognostic value. Eur Heart J. 1991;12(Suppl D):56-59. doi: 10.1093/eurheartj/12.suppl_d.56

 

  1. Cihakova D, Rose NR. Pathogenesis of myocarditis and dilated cardiomyopathy. Adv Immunol. 2008;99:95-114. doi: 10.1016/S0065-2776(08)00604-4

 

  1. Kuhl U, Pauschinger M, Noutsias M, et al. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation. 2005;111(7):887-893. doi: 10.1161/01.cir.0000155616.07901.35

 

  1. Chapman NM, Kim KS. Persistent coxsackievirus infection: Enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. Curr Top Microbiol Immunol. 2008;323:275-292. doi: 10.1007/978-3-540-75546-3_13

 

  1. Esfandiarei M, Luo H, Yanagawa B, et al. Protein kinase B/Akt regulates coxsackievirus B3 replication through a mechanism which is not caspase dependent. J Virol. 2004;78(8):4289-4298. doi: 10.1128/jvi.78.8.4289-4298.2004

 

  1. Li X, Li Z, Zhou W, et al. Overexpression of 4EBP1, p70S6K, Akt1 or Akt2 differentially promotes coxsackievirus B3-induced apoptosis in HeLa cells. Cell Death Dis. 2013;4(9):e803-e809. doi: 10.1038/cddis.2013.331

 

  1. Song Y, Ge W, Cai H, Zhang H. Curcumin protects mice from coxsackievirus B3-induced myocarditis by inhibiting the phosphatidylinositol 3 kinase/Akt/nuclear factor-kappaB pathway. J Cardiovasc Pharmacol Ther. 2013;18(6):560-569. doi: 10.1177/1074248413503044

 

  1. Yuan L, Zhong L, Krummenacher C, Zhao Q, Zhang X. Epstein-Barr virus-mediated immune evasion in tumor promotion. Trends Immunol. 2025;46(5):386-402. doi: 10.1016/j.it.2025.03.007

 

  1. Shannon-Lowe C, Rickinson A. The global landscape of EBV-associated tumors. Front Oncol. 2019;9:713. doi: 10.3389/fonc.2019.00713

 

  1. Sánchez-Ponce Y, Fuentes-Pananá EM. The role of coinfections in the EBV-Host broken equilibrium. Viruses. 2021;13(7):1399. doi: 10.3390/v13071399

 

  1. Münz C. Modulation of epstein-barr-virus (EBV)-associated cancers by Co-infections. Cancers (Basel). 2023;15(24):5739. doi: 10.3390/cancers15245739

 

  1. Yang J, Liu Z, Zeng B, Hu G, Gan R. Epstein-Barr virus-associated gastric cancer: A distinct subtype. Cancer Lett. 2020;495:191-199. doi: 10.1016/j.canlet.2020.09.019

 

  1. Tsao SW, Tsang CM, Lo KW. Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos Trans R Soc Lond B Biol Sci. 2017;372(1732):20160270. doi: 10.1098/rstb.2016.0270

 

  1. Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell. 2022;185(20):3652-3670. doi: 10.1016/j.cell.2022.08.026

 

  1. Bednarska K, Chowdhury R, Tobin JWD, et al. Epstein- Barr virus-associated lymphomas decoded. Br J Haematol. 2024;204(2):415-433. doi: 10.1111/bjh.19255

 

  1. Yu H, Robertson ES. Epstein-barr virus history and pathogenesis. Viruses. 2023;15(3):714. doi: 10.3390/v15030714

 

  1. Tan H, Gong Y, Liu Y, et al. Advancing therapeutic strategies for Epstein-Barr virus-associated malignancies through lytic reactivation. Biomed Pharmacother. 2023;164:114916. doi: 10.1016/j.biopha.2023.114916

 

  1. Alibrahim MN, Gloghini A, Carbone A. immune deficiency/ dysregulation-associated EBV-positive classic hodgkin lymphoma. Cancers (Basel). 2025;17(9):1433. doi: 10.3390/cancers17091433

 

  1. Fang H, Wang W, Medeiros LJ. Burkitt lymphoma. Hum Pathol. 2025;156:105703. doi: 10.1016/j.humpath.2024.105703

 

  1. Wang SS. Epidemiology and etiology of diffuse large B-cell lymphoma. Semin Hematol. 2023;60(5):255-266. doi: 10.1053/j.seminhematol.2023.11.004

 

  1. Castillo JJ, Bibas M, Miranda RN. The biology and treatment of plasmablastic lymphoma. Blood. 2015;125(15):2323-2330. doi: 10.1182/blood-2014-10-567479

 

  1. Carbone A, Cesarman E, Spina M, Gloghini A, Schulz TF. HIV-associated lymphomas and gamma-herpesviruses. Blood. 2009;113(6):1213-1224. doi: 10.1182/blood-2008-09-180315

 

  1. He X, Gao Y, Li Z, Huang H. Review on natural killer/T-cell lymphoma. Hematol Oncol. 2023;41(2):221-229. doi: 10.1002/hon.2944

 

  1. Atallah-Yunes SA, Salman O, Robertson MJ. Post-transplant lymphoproliferative disorder: Update on treatment and novel therapies. Br J Haematol. 2023;201(3):383-395. doi: 10.1111/bjh.18763

 

  1. Sausen DG, Bhutta MS, Gallo ES, Dahari H, Borenstein R. Stress-induced epstein-barr virus reactivation. Biomolecules. 2021;11(9):1380. doi: 10.3390/biom11091380

 

  1. Munir A, Khan S, Saleem A, et al. The role of epstein-barr virus molecular mimicry in various autoimmune diseases. Scand J Immunol. 2025;101(4):e70016. doi: 10.1111/sji.70016

 

  1. Borghol AH, Bitar ER, Hanna A, Naim G, Rahal EA. The role of Epstein-Barr virus in autoimmune and autoinflammatory diseases. Crit Rev Microbiol. 2025;51(2):296-316. doi: 10.1080/1040841x.2024.2344114

 

  1. Bjornevik K, Münz C, Cohen JI, Ascherio A. Epstein-Barr virus as a leading cause of multiple sclerosis: Mechanisms and implications. Nat Rev Neurol. 2023;19(3):160-171. doi: 10.1038/s41582-023-00775-5

 

  1. Msheik AN, Al Mokdad Z, Hamed F, et al. Epstein-Barr virus flare: A multiple sclerosis attack. Surg Neurol Int. 2024;15:355. doi: 10.25259/sni_457_2024

 

  1. Robinson WH, Younis S, Love ZZ, Steinman L, Lanz TV. Epstein-Barr virus as a potentiator of autoimmune diseases. Nat Rev Rheumatol. 2024;20(11):729-740. doi: 10.1038/s41584-024-01167-9

 

  1. Yang L, Pu J, Cai F, et al. Chronic Epstein-Barr virus infection: A potential junction between primary Sjögren’s syndrome and lymphoma. Cytokine. 2023;168:156227. doi: 10.1016/j.cyto.2023.156227

 

  1. Farina A, Farina GA. Fresh insights into disease etiology and the role of microbial pathogens. Curr Rheumatol Rep. 2016;18(1):1. doi: 10.1007/s11926-015-0552-x

 

  1. Kerr JR. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors. J Clin Pathol. 2019;72(10):651-658. doi: 10.1136/jclinpath-2019-205822

 

  1. Chen J. Roles of the PI3K/Akt pathway in Epstein-Barr virus-induced cancers and therapeutic implications. World J Virol. 2012;1(6):154-161. doi: 10.5501/wjv.v1.i6.154

 

  1. Shaffer AL, Emre NC, Romesser PB, Staudt LM. IRF4: Immunity. Malignancy! therapy? Clin Cancer Res. 2009;15(9):2954-2961. doi: 10.1158/1078-0432.CCR-08-1845

 

  1. Xiao ZX, Liang R, Olsen N, Zheng SG. Roles of IRF4 in various immune cells in systemic lupus erythematosus. Int Immunopharmacol. 2024;133:112077. doi: 10.1016/j.intimp.2024.112077

 

  1. Chawra HS, Agarwal M, Mishra A, et al. MicroRNA-21’s role in PTEN suppression and PI3K/AKT activation: Implications for cancer biology. Pathol Res Pract. 2024;254:155091. doi: 10.1016/j.prp.2024.155091

 

  1. Cai LM, Lyu XM, Luo WR, et al. EBV-miR-BART7-3p promotes the EMT and metastasis of nasopharyngeal carcinoma cells by suppressing the tumor suppressor PTEN. Oncogene. 2015;34(17):2156-2166. doi: 10.1038/onc.2014.341

 

  1. Sun C, Fang XY, Bu GL, et al. Structural basis of Epstein- Barr virus gp350 receptor recognition and neutralization. Cell Rep. 2025;44(1):115168. doi: 10.1016/j.celrep.2024.115168

 

  1. Young KA, Chen XS, Holers VM, Hannan JP. Isolating the Epstein-Barr virus gp350/220 binding site on complement receptor type 2 (CR2/CD21). J Biol Chem. 2007;282(50):36614-3625. doi: 10.1074/jbc.M706324200

 

  1. Joyce MG, Bu W, Chen WH, et al. Structural basis for complement receptor engagement and virus neutralization through Epstein-Barr virus gp350. Immunity. 2025;58(2):295-308.e5. doi: 10.1016/j.immuni.2025.01.010

 

  1. D’Addario M, Ahmad A, Morgan A, Menezes J. Binding of the Epstein-Barr virus major envelope glycoprotein gp350 results in the upregulation of the TNF-alpha gene expression in monocytic cells via NF-kappaB involving PKC, PI3-K and tyrosine kinases. J Mol Biol. 2000;298(5):765-778. doi: 10.1006/jmbi.2000.3717

 

  1. Bouillie S, Barel M, Frade R. Signaling through the EBV/C3d receptor (CR2, CD21) in human B lymphocytes: Activation of phosphatidylinositol 3-kinase via a CD19-independent pathway. J Immunol. 1999;162(1):136-143.

 

  1. D’Addario M, Libermann TA, Xu J, Ahmad A, Menezes J. Epstein-Barr Virus and its glycoprotein-350 upregulate IL-6 in human B-lymphocytes via CD21, involving activation of NF-kappaB and different signaling pathways. J Mol Biol. 2001;308(3):501-514. doi: 10.1006/jmbi.2001.4589

 

  1. Gugliesi F, Pasquero S, Griffante G, et al. Human cytomegalovirus and autoimmune diseases: Where are we? Viruses. 2021;13(2):260. doi: 10.3390/v13020260

 

  1. Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat Rev Microbiol. 2021;19(12):759-773. doi: 10.1038/s41579-021-00582-z

 

  1. Koenig J, Theobald SJ, Stripecke R. Modeling human cytomegalovirus in humanized mice for vaccine testing. Vaccines (Basel). 2020;8(1):89. doi: 10.3390/vaccines8010089

 

  1. Ren Y, Wang A, Wu D, et al. Dual inhibition of innate immunity and apoptosis by human cytomegalovirus protein UL37x1 enables efficient virus replication. Nat Microbiol. 2022;7(7):1041-1053. doi: 10.1038/s41564-022-01136-6

 

  1. Abdalla AE, Mahjoob MO, Abosalif KOA, Ejaz H, Alameen AAM, Elsaman T. Human cytomegalovirus-encoded MicroRNAs: A master regulator of latent infection. Infect Genet Evol. 2020;78:104119. doi: 10.1016/j.meegid.2019.104119

 

  1. Muryoi T, Kasturi KN, Kafina MJ, et al. Antitopoisomerase I monoclonal autoantibodies from scleroderma patients and tight skin mouse interact with similar epitopes. J Exp Med. 1992;175(4):1103-1109. doi: 10.1084/jem.175.4.1103

 

  1. Gerli R, Schillaci G, Giordano A, et al. CD4+CD28- T lymphocytes contribute to early atherosclerotic damage in rheumatoid arthritis patients. Circulation. 2004;109(22):2744-2748. doi: 10.1161/01.cir.0000131450.66017.b3

 

  1. Gkoutzourelas A, Liaskos C, Simopoulou T, et al. A study of antigen-specific anti-cytomegalovirus antibody reactivity in patients with systemic sclerosis and concomitant anti-Ro52 antibodies. Rheumatol Int. 2020;40(10):1689-1699. doi: 10.1007/s00296-020-04643-z

 

  1. Janahi EMA, Das S, Bhattacharya SN, et al. Cytomegalovirus aggravates the autoimmune phenomenon in systemic autoimmune diseases. Microb Pathog. 2018;120:132-139. doi: 10.1016/j.micpath.2018.04.041

 

  1. Zhu Y, Song D, Song Y, Wang X. Interferon gamma induces inflammatory responses through the interaction of CEACAM1 and PI3K in airway epithelial cells. J Transl Med. 2019;17(1):147. doi: 10.1186/s12967-019-1894-3

 

  1. Wu J, Zhao X, Sun Q, et al. Synergic effect of PD-1 blockade and endostar on the PI3K/AKT/mTOR-mediated autophagy and angiogenesis in Lewis lung carcinoma mouse model. Biomed Pharmacother. 2020;125:109746. doi: 10.1016/j.biopha.2019.109746

 

  1. Buehler J, Carpenter E, Zeltzer S, et al. Host signaling and EGR1 transcriptional control of human cytomegalovirus replication and latency. PLoS Pathog. 2019;15(11):e1008037. doi: 10.1371/journal.ppat.1008037

 

  1. Buehler J, Zeltzer S, Reitsma J, et al. Opposing regulation of the egf receptor: A molecular switch controlling cytomegalovirus latency and replication. PLoS Pathog. 2016;12(5):e1005655. doi: 10.1371/journal.ppat.1005655

 

  1. Hancock MH, Crawford LB, Perez W, Struthers HM, Mitchell J, Caposio P. Human cytomegalovirus UL7, miR-US5-1, and miR-UL112-3p inactivation of FOXO3a protects CD34(+) hematopoietic progenitor cells from apoptosis. mSphere. 2021;6(1):e00986-20. doi: 10.1128/mSphere.00986-20

 

  1. Smith NA, Chan GC, O’Connor CM. Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J. 2021;18(1):207. doi: 10.1186/s12985-021-01674-1

 

  1. Hancock MH, Caposio P, Collins-McMillen D, et al. Cytomegalovirus latency-the sum of subtleties. J Virol. 2025:e0066425. doi: 10.1128/jvi.00664-25

 

  1. Moorman NJ, Cristea IM, Terhune SS, Rout MP, Chait BT, Shenk T. Human cytomegalovirus protein UL38 inhibits host cell stress responses by antagonizing the tuberous sclerosis protein complex. Cell Host Microbe. 2008;3(4):253-262. doi: 10.1016/j.chom.2008.03.002

 

  1. Bai Y, Xuan B, Liu H, Zhong J, Yu D, Qian Z. Tuberous sclerosis complex protein 2-independent activation of mTORC1 by human cytomegalovirus pUL38. J Virol. 2015;89(15):7625-7635. doi: 10.1128/jvi.01027-15

 

  1. Domma AJ, Henderson LA, Goodrum FD, Moorman NJ, Kamil JP. Human cytomegalovirus attenuates AKT activity by destabilizing insulin receptor substrate proteins. J Virol. 2023;97(10):e0056323. doi: 10.1128/jvi.00563-23

 

  1. Kuo G, Choo QL, Alter HJ, et al. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science. 1989;244(4902):362-364. doi: 10.1126/science.2496467

 

  1. Dubuisson J, Cosset FL. Virology and cell biology of the hepatitis C virus life cycle: An update. J Hepatol. 2014;61(1 Suppl):S3-S13. doi: 10.1016/j.jhep.2014.06.031

 

  1. Iacobucci G. Hepatitis: WHO publishes warning over rise in global deaths. BMJ. 2024;385:q833. doi: 10.1136/bmj.q833

 

  1. Mazzaro C, Quartuccio L, Adinolfi LE, et al. A review on extrahepatic manifestations of chronic hepatitis C virus infection and the impact of direct-acting antiviral therapy. Viruses. 2021;13(11):2249. doi: 10.3390/v13112249

 

  1. Cacoub P, Comarmond C, Vieira M, Regnier P, Saadoun D. HCV-related lymphoproliferative disorders in the direct-acting antiviral era: From mixed cryoglobulinaemia to B-cell lymphoma. J Hepatol. 2022;76(1):174-185. doi: 10.1016/j.jhep.2021.09.023

 

  1. Roccatello D, Saadoun D, Ramos-Casals M, et al. Cryoglobulinaemia. Nat Rev Dis Primers. 2018;4(1):11. doi: 10.1038/s41572-018-0009-4

 

  1. Libra M, Gloghini A, Malaponte G, et al. Association of t(14;18) translocation with HCV infection in gastrointestinal MALT lymphomas. J Hepatol. 2008;49(2):170-174. doi: 10.1016/j.jhep.2008.03.031

 

  1. Zignego AL, Ferri C, Giannelli F, et al. Prevalence of bcl-2 rearrangement in patients with hepatitis C virus-related mixed cryoglobulinemia with or without B-cell lymphomas. Ann Intern Med. 2002;137(7):571-580. doi: 10.7326/0003-4819-137-7-200210010-00008

 

  1. Boyer O, Saadoun D, Abriol J, et al. CD4+CD25+ regulatory T-cell deficiency in patients with hepatitis C-mixed cryoglobulinemia vasculitis. Blood. 2004;103(9):3428-3430. doi: 10.1182/blood-2003-07-2598

 

  1. Saadoun D, Boyer O, Trebeden-Negre H, et al. Predominance of type 1 (Th1) cytokine production in the liver of patients with HCV-associated mixed cryoglobulinemia vasculitis. J Hepatol. 2004;41(6):1031-1037. doi: 10.1016/j.jhep.2004.08.011

 

  1. Hammerstad SS, Blackard JT, Lombardi A, et al. Hepatitis C virus infection of human thyrocytes: Metabolic, hormonal, and immunological implications. J Clin Endocrinol Metab. 2020;105(4):1157-1168. doi: 10.1210/clinem/dgz241

 

  1. Jadali Z. Autoimmune thyroid disorders in hepatitis C virus infection: Effect of interferon therapy. Indian J Endocrinol Metab. 2013;17(1):69-75. doi: 10.4103/2230-8210.107856

 

  1. Bishe B, Syed G, Siddiqui A. Phosphoinositides in the hepatitis C virus life cycle. Viruses. 2012;4(10):2340-2358. doi: 10.3390/v4102340

 

  1. Mannova P, Beretta L. Activation of the N-Ras-PI3K-Akt-mTOR pathway by hepatitis C virus: Control of cell survival and viral replication. J Virol. 2005;79(14):8742-8749. doi: 10.1128/JVI.79.14.8742-8749.2005

 

 

  1. Barbu MG, Condrat CE, Thompson DC, et al. MicroRNA involvement in signaling pathways during viral infection. Front Cell Dev Biol. 2020;8:143. doi: 10.3389/fcell.2020.00143

 

  1. Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: Targeting phosphoinositide kinases in disease. Nat Rev Drug Discov. 2023;22(5):357-386. doi: 10.1038/s41573-022-00582-5

 

  1. Leivers AL, Tallant M, Shotwell JB, et al. Discovery of selective small molecule type III phosphatidylinositol 4-kinase alpha (PI4KIIIalpha) inhibitors as anti hepatitis C (HCV) agents. J Med Chem. 2014;57(5):2091-2106. doi: 10.1021/jm400781h

 

  1. Chigbu DI, Loonawat R, Sehgal M, Patel D, Jain P. Hepatitis C Virus infection: Host(-)virus interaction and mechanisms of viral persistence. Cells. 2019;8(4):376. doi: 10.3390/cells8040376

 

  1. Michaelides A, Glare EM, Spelman DW, et al. beta- Herpesvirus (human cytomegalovirus and human herpesvirus 6) reactivation in at-risk lung transplant recipients and in human immunodeficiency virus-infected patients. J Infect Dis. 2002;186(2):173-180. doi: 10.1086/341456

 

  1. Salahuddin SZ, Ablashi DV, Markham PD, et al. Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science. 1986;234(4776):596-601. doi: 10.1126/science.2876520

 

  1. Ablashi D, Agut H, Alvarez-Lafuente R, et al. Classification of HHV-6A and HHV-6B as distinct viruses. Arch Virol. 2014;159(5):863-870. doi: 10.1007/s00705-013-1902-5

 

  1. Hill JA, Venna N. Human herpesvirus 6 and the nervous system. Handb Clin Neurol. 2014;123:327-55. doi: 10.1016/b978-0-444-53488-0.00016-x

 

  1. Agut H, Bonnafous P, Gautheret-Dejean A. Laboratory and clinical aspects of human herpesvirus 6 infections. Clin Microbiol Rev. 2015;28(2):313-335. doi: 10.1128/cmr.00122-14

 

  1. Sokolovska L, Cistjakovs M, Matroze A, Murovska M, Sultanova A. From viral infection to autoimmune reaction: Exploring the link between human herpesvirus 6 and autoimmune diseases. Microorganisms. 2024;12(2):362. doi: 10.3390/microorganisms12020362

 

  1. Lai Y, Wang S, Ren T, et al. TIGIT deficiency promotes autoreactive CD4(+) T-cell responses through a metabolic-epigenetic mechanism in autoimmune myositis. Nat Commun. 2025;16(1):4502. doi: 10.1038/s41467-025-59786-z

 

  1. Setz CS, Khadour A, Renna V, et al. Pten controls B-cell responsiveness and germinal center reaction by regulating the expression of IgD BCR. EMBO J. 2019;38(11):e100249. doi: 10.15252/embj.2018100249

 

  1. Goodman AD, Mock DJ, Powers JM, Baker JV, Blumberg BM. Human herpesvirus 6 genome and antigen in acute multiple sclerosis lesions. J Infect Dis. 2003;187(9):1365-1376. doi: 10.1086/368172

 

  1. Knox KK, Brewer JH, Henry JM, Harrington DJ, Carrigan DR. Human herpesvirus 6 and multiple sclerosis: Systemic active infections in patients with early disease. Clin Infect Dis. 2000;31(4):894-903. doi: 10.1086/318141

 

  1. Goldberg SH, Albright AV, Lisak RP, Gonzalez-Scarano F. Polymerase chain reaction analysis of human herpesvirus-6 sequences in the sera and cerebrospinal fluid of patients with multiple sclerosis. J Neurovirol. 1999;5(2):134-139. doi: 10.3109/13550289909021995

 

  1. Keyvani H, Zahednasab H, Aljanabi HAA, et al. The role of human herpesvirus-6 and inflammatory markers in the pathogenesis of multiple sclerosis. J Neuroimmunol. 2020;346:577313. doi: 10.1016/j.jneuroim.2020.577313

 

  1. Guo Q, Jin Y, Chen X, et al. NF-kappaB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther. 2024;9(1):53. doi: 10.1038/s41392-024-01757-9

 

  1. Flamand L, Stefanescu I, Ablashi DV, Menezes J. Activation of the Epstein-Barr virus replicative cycle by human herpesvirus 6. J Virol. 1993;67(11):6768-6777. doi: 10.1128/JVI.67.11.6768-6777.1993

 

  1. Shafiee A, Teymouri Athar MM, Amini MJ, et al. Reactivation of herpesviruses during COVID-19: A systematic review and meta-analysis. Rev Med Virol. 2023;33(3):e2437. doi: 10.1002/rmv.2437

 

  1. Caselli E, Zatelli MC, Rizzo R, et al. Virologic and immunologic evidence supporting an association between HHV-6 and Hashimoto’s thyroiditis. PLoS Pathog. 2012;8(10):e1002951. doi: 10.1371/journal.ppat.1002951

 

  1. Bennett AJ, Paskey AC, Ebinger A, et al. Relatives of rubella virus in diverse mammals. Nature. 2020;586(7829):424-428. doi: 10.1038/s41586-020-2812-9

 

  1. Das PK, Kielian M. Molecular and structural insights into the life cycle of rubella virus. J Virol. 2021;95(10):45. doi: 10.1128/JVI.02349-20

 

  1. Yoon JW, Choi DS, Liang HC, et al. Induction of an organ-specific autoimmune disease, lymphocytic hypophysitis, in hamsters by recombinant rubella virus glycoprotein and prevention of disease by neonatal thymectomy. J Virol. 1992;66(2):1210-1214. doi: 10.1128/JVI.66.2.1210-1214.1992

 

  1. Yoon JW, Ihm SH, Kim KW. Viruses as a triggering factor of type 1 diabetes and genetic markers related to the susceptibility to the virus-associated diabetes. Diabetes Res Clin Pract. 1989;7(Suppl 1):S47-S58. doi: 10.1016/0168-8227(89)90088-0

 

  1. Ginsberg-Fellner F, Witt ME, Yagihashi S, et al. Congenital rubella syndrome as a model for type 1 (insulin-dependent) diabetes mellitus: Increased prevalence of islet cell surface antibodies. Diabetologia. 1984;27 Suppl:87-89. doi: 10.1007/BF00275655

 

  1. Ginsberg-Fellner F, Witt ME, Fedun B, et al. Diabetes mellitus and autoimmunity in patients with the congenital rubella syndrome. Rev Infect Dis. 1985;7(Suppl 1):S170-S176. doi: 10.1093/clinids/7.supplement_1.s170

 

  1. Numazaki K, Goldman H, Wong I, Wainberg MA. Infection of cultured human fetal pancreatic islet cells by rubella virus. Am J Clin Pathol. 1989;91(4):446-451. doi: 10.1093/ajcp/91.4.446

 

  1. Loretelli C, Assi E, Seelam AJ, Ben Nasr M, Fiorina P. Cell therapy for type 1 diabetes. Expert Opin Biol Ther. 2020;20(8):887-897. doi: 10.1080/14712598.2020.1748596

 

  1. Camaya I, Donnelly S, O’Brien B. Targeting the PI3K/Akt signaling pathway in pancreatic beta-cells to enhance their survival and function: An emerging therapeutic strategy for type 1 diabetes. J Diabetes. 2022;14(4):247-260. doi: 10.1111/1753-0407.13252

 

  1. Lund ME, Greer J, Dixit A, et al. A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis. Sci Rep. 2016;6:37789. doi: 10.1038/srep37789

 

  1. Prud’homme GJ, Glinka Y, Wang Q. Immunological GABAergic interactions and therapeutic applications in autoimmune diseases. Autoimmun Rev. 2015;14(11):1048-1056. doi: 10.1016/j.autrev.2015.07.011

 

  1. Gil C, Ginex T, Maestro I, et al. COVID-19: Drug targets and potential treatments. J Med Chem. 2020;63(21):12359-12386. doi: 10.1021/acs.jmedchem.0c00606

 

  1. Kocivnik N, Velnar T. A review pertaining to SARS-CoV-2 and autoimmune diseases: What is the connection? Life (Basel). 2022;12(11):1918. doi: 10.3390/life12111918

 

  1. McHugh J. Molecular mimicry links SARS-CoV-2 infection and MIS-C. Nat Rev Rheumatol. 2024;20(10):598. doi: 10.1038/s41584-024-01166-w

 

  1. Wrobel AG. Mechanism and evolution of human ACE2 binding by SARS-CoV-2 spike. Curr Opin Struct Biol. 2023;81:102619. doi: 10.1016/j.sbi.2023.102619

 

  1. Mullen PJ, Garcia G Jr., Purkayastha A, et al. SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nat Commun. 2021;12(1):1876. doi: 10.1038/s41467-021-22166-4

 

  1. Fenizia S, Gaggini M, Vassalle C. The sphingolipid-signaling pathway as a modulator of infection by SARS-CoV-2. Curr Issues Mol Biol. 2023;45(10):7956-7973. doi: 10.3390/cimb45100503

 

  1. Gerhauser I, Hansmann F, Ciurkiewicz M, Loscher W, Beineke A. Facets of theiler’s murine encephalomyelitis virus-induced diseases: An update. Int J Mol Sci. 2019;20(2):448. doi: 10.3390/ijms20020448

 

  1. Fujinami RS, Zurbriggen A. Is theiler’s murine encephalomyelitis virus infection of mice an autoimmune disease? APMIS. 1989;97(1):1-8. doi: 10.1111/j.1699-0463.1989.tb00746.x

 

  1. Palumbo S. Pathogenesis and progression of multiple sclerosis: The role of arachidonic acid-mediated neuroinflammation. In: Zagon IS, McLaughlin PJ, editors. Multiple Sclerosis: Perspectives in Treatment and Pathogenesis. Singapore: Codon Publications; 2017.

 

  1. Carlson NG, Rojas MA, Redd JW, et al. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death. J Neuroinflammation. 2010;7:25. doi: 10.1186/1742-2094-7-25

 

  1. Rose JW, Hill KE, Watt HE, Carlson NG. Inflammatory cell expression of cyclooxygenase-2 in the multiple sclerosis lesion. J Neuroimmunol. 2004;149(1-2):40-49. doi: 10.1016/j.jneuroim.2003.12.021

 

  1. Li H, Wen X, Ren Y, et al. Targeting PI3K family with small-molecule inhibitors in cancer therapy: Current clinical status and future directions. Mol Cancer. 2024;23(1):164. doi: 10.1186/s12943-024-02072-1

 

  1. Banham-Hall E, Clatworthy MR, Okkenhaug K. The therapeutic potential for PI3K inhibitors in autoimmune rheumatic diseases. Open Rheumatol J. 2012;6:245-258. doi: 10.2174/1874312901206010245

 

  1. Luo Z, Liang Y, Tian M, et al. Inhibition of PIKFYVE kinase interferes ESCRT pathway to suppress RNA virus replication. J Med Virol. 2023;95(2):e28527. doi: 10.1002/jmv.28527

 

  1. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620. doi: 10.1038/s41467-020-15562-9

 

  1. Luan L, Frederick NP, Baskin JM. Emerging approaches for studying lipid dynamics, metabolism, and interactions in cells. Annu Rev Biochem. 2025;94(1):417-446. doi: 10.1146/annurev-biochem-083024-110827

 

  1. Zhou B, Feng Y, Liang J, et al. Pip5k1a regulates mandibular homeostasis by orchestrating osteogenesis in mice. Oral Sci Homeostatic Med. 2025. doi: 10.26599/oshm.2025.9610026
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing