AccScience Publishing / MI / Online First / DOI: 10.36922/mi.7719
REVIEW ARTICLE

Lung development, health, and diseases

Feranmi Emmanuel Obe1* Isaac Olamide Babalola2 Victor Abiodun Adebiyi2 Ayomide Oreoluwa Adetoro3 Florence Inioluwa Omotoso2 Oluwafemi Rachel Alamu2
Show Less
1 Department of Biology, College of Arts and Sciences, University of Texas at Tyler, Tyler, Texas, United States of America
2 Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
3 Department of Nursing Science, Faculty of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
Received: 16 December 2024 | Revised: 21 April 2025 | Accepted: 6 May 2025 | Published online: 12 June 2025
(This article belongs to the Special Issue Immune Responses to Pulmonary Infections)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The lungs emerge from the foregut during the embryonic stage, and as they mature, they go through additional morphological and functional changes that extend into the postnatal stage of development. Each developmental stage of the lung is tightly regulated by specific signaling pathways. Nkx2.1 signaling, which is essential for lung specification, is improved by Wnt/β-catenin signaling but necessitates active bone morphogenic protein signaling. Branching morphogenesis of the lungs requires fibroblast growth factor, while vascular endothelial growth factor signaling promotes endothelial cell survival and capillary development. Disruption at any of these developmental stages can result in congenital lung disorders. Although the lungs are quiescent in adulthood, they retain the capacity for regeneration in response to injury caused by infectious and non-infectious agents. Essentially, the lung’s microbiota plays a role in maintaining lung health and disease. Treatment with probiotics has been established in many infectious lung diseases; however, further research is necessary to fully establish their therapeutic potential in treating these conditions.

Keywords
Development
Embryogenesis
Lungs
Regeneration
Signaling
Funding
None.
Conflict of interest
The authors declare no conflict of interest.
References

 

  1. Correia-Pinto J, Gonzaga S, Huang Y, Rottier R. Congenital lung lesions--underlying molecular mechanisms. Semin Pediatr Surg. 2010;19:171-179. doi: 10.1053/j.sempedsurg.2010.03.003

 

  1. Funk EC, Birol EB, McCune AR. Does the bowfin gas bladder represent an intermediate stage during the lung-to-gas bladder evolutionary transition? J Morphol. 2021;282(4):600-611. doi: 10.1002/jmor.21330

 

  1. Zacharias WJ, Frank DB, Zepp JA, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 2018;555:251-255. doi: 10.1038/nature25786

 

  1. Domyan ET, Ferretti E, Throckmorton K, Mishina Y, Nicolis SK, Sun X. Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development. 2011;138(5):971-981. doi: 10.1242/dev.0594694

 

  1. Schittny JC. Development of the lung. Cell Tissue Res. 2017;367:427-444. doi: 10.1007/s00441-016-2545-0

 

  1. Goss AM, Tian Y, Tsukiyama T, et al. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell. 2009;17:290-298. doi: 10.1016/j.devcel.2009.06.005

 

  1. Chytil F. Retinoids in lung development. FASEB J. 1996;10:986-992. doi: 10.1096/fasebj.10.9.8801181

 

  1. McGowan S, Jackson SK, Jenkins-Moore M, Dai HH, Chambon P, Snyder JM. Mice bearing deletions of retinoic acid receptors demonstrate reduced lung elastin and alveolar numbers. Am J Respir Cell Mol Biol. 2000;23:162-167. doi: 10.1165/ajrcmb.23.2.3904

 

  1. Alescio T, Cassini A. Induction in vitro of tracheal buds by pulmonary mesenchyme grafted on tracheal epithelium. J Exp Zool. 1962;150:83-94. doi: 10.1002/jez.1401500202

 

  1. Fox E, Shojaie S, Wang J, et al. Three-dimensional culture and FGF signaling drive differentiation of murine pluripotent cells to distal lung epithelial cells. Stem Cells Dev. 2015;24:21-35. doi: 10.1089/scd.2014.0227

 

  1. Mullassery D, Smith NP. Lung development. Semin Pediatr Surg. 2015;24:152-155. doi: 10.1053/j.sempedsurg.2015.01.011

 

  1. Yin Y, Wang F, Ornitz DM. Mesothelial-and epithelial-derived FGF9 have distinct functions in the regulation of lung development. Development. 2011;138:3169-3177. doi: 10.1242/dev.065110

 

  1. Wang Y, Tian Y, Morley MP, et al. Development and regeneration of Sox2+ endoderm progenitors are regulated by a Hdac1/2-Bmp4/Rb1 regulatory pathway. Dev Cell. 2013;24:345-358. doi: 10.1016/j.devcel.2013.01.012

 

  1. Chinoy MR, Graybill MM, Miller SA, Lang CM, Kauffman GL. Angiopoietin-1 and VEGF in vascular development and angiogenesis in hypoplastic lungs. Am J Physiol Lung Cell Mol Physiol. 2002;283:L60-L66. doi: 10.1152/ajplung.00317.2001

 

  1. Pauling MH, Vu TH. Mechanisms and regulation of lung vascular development. Curr Top Dev Biol. 2004;64:73-99. doi: 10.1016/S0070-2153(04)64005-1

 

  1. Kadzik RS, Morrisey EE. Directing lung endoderm differentiation in pluripotent stem cells. Cell Stem Cell. 2012;10(4):355-361. doi: 10.1016/j.stem.2012.03.013

 

  1. Han L, Chaturvedi P, Kishimoto K, et al. Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nat Commun. 2020;11(1):4158. doi: 10.1038/s41467-020-17968-x

 

  1. Rankin SA, Han L, McCracken KW, et al. A retinoic acid-hedgehog cascade coordinates mesoderm-inducing signals and endoderm competence during lung specification. Cell Rep. 2016;16(1):66-78. doi: 10.1016/j.celrep.2016.05.060

 

  1. Nikolić M, Sun D, Rawlins E. Human lung development: Recent progress and new challenges. Development. 2018;145:dev163485. doi: 10.1242/dev.163485

 

  1. Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature. 2014;507(7491):190-194. doi: 10.1038/nature12930

 

  1. David M, Lamas-Pinheiro R, Henriques-Coelho T. Prenatal and postnatal management of congenital pulmonary airway malformation. Neonatology. 2016;110(2):101-115. doi: 10.1159/000440894

 

  1. Nabhan AN, Brownfield DG, Harbury PB, et al. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science. 2018;359(6380):1118-1123. doi: 10.1126/science.aam6603

 

  1. Morton SU, Brodsky D. Fetal physiology and the transition to extrauterine life. Clin Perinatol. 2016;43:395-407. doi: 10.1016/j.clp.2016.04.001

 

  1. Elias N, O’Brodovich H. Clearance of fluid from airspaces of newborns and infants. Neoreviews. 2006;7:88-94. doi: 10.1542/neo.7-2-e88

 

  1. O’Donnell CP, Kamlin CO, Davis PG. Crying and breathing by extremely preterm infants immediately after birth. J Pediatr. 2010;156:846-847. doi: 10.1016/j.jpeds.2010.01.007

 

  1. Vento M, Saugstad OD. Resuscitation of the term and preterm infant. Semin Fetal Neonatal Med. 2010;15:216-222. doi: 10.1016/j.siny

 

  1. Hagood JS. Beyond the genome: Epigenetic mechanisms in lung remodelling. Physiology (Bethesda). 2014;29:177-185. doi: 10.1152/physiol.00048.2013

 

  1. Guo W, Shan B, Klingsberg RC, Qin X, Lasky JA. Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Lung Cell Mol Physiol. 2009;297:L864-L870. doi: 10.1152/ajplung.00128.2009

 

  1. Huang SK, Scruggs AM, Donaghy J, et al. Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis. 2013;4:e621. doi: 10.1038/cddis.2013.146

 

  1. Witt O, Deubzer HE, Milde T, Oehme I. HDAC family: What are the cancer relevant targets? Cancer Lett. 2009;277(1):8-21. doi: 10.1016/j.canlet.2008.08.016

 

  1. Yosef N., Shalek AK, Gaublomme, JT, et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature. 2013;496(7446):461-468. doi: 10.1038/nature11981

 

  1. Sundar IK, Yao H, Rahman I. Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases. Antioxid Redox Signal. 2013;18:1956-1971. doi: 10.1089/ars.2012.4863

 

  1. De Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem J. 2003;370(3):737-749. doi: 10.1042/bj20021321

 

  1. Bertrand P. Inside HDAC with HDAC inhibitors. Eur J Med Chem. 2010;45(6):2095-2116. doi: 10.1016/j.ejmech.2010.02.030

 

  1. Caldeira I, Fernandes-Silva H, Machado-Costa D, Correia- Pinto J, Moura RS. Developmental pathways underlying lung development and congenital lung disorders. Cells. 2021;10:2987. doi: 10.3390/cells10112987

 

  1. Ursini WP, Ponce CC. Congenital pulmonary airway malformation. Autopsy case Rep. 2018;2:e2018022. doi: 10.4322/acr.2018.022

 

  1. Yaremenko AV, Pechnikova NA, Porpodis K, et al. Association of fetal lung development disorders with adult diseases: A comprehensive review. J Pers Med. 2024;14:368. doi: 10.3390/jpm14040368

 

  1. Belcher E, Lawson MH, Nicholson AG, Davison A, Goldstraw P. Congenital cystic adenomatoid malformation presenting as in-flight systemic air embolisation. Eur Respir J. 2007;30:801-804. doi: 10.1183/09031936.00153906

 

  1. Ou J, Lei X, Fu Z, et al. Pulmonary sequestration in children: A clinical analysis of 48 cases. Int J Clin Exp Med. 2014;7:1355-1365.

 

  1. Bolca N, Topal U, Bayram S. Bronchopulmonary sequestration: Radiologic findings. Eur J Radiol. 2004;52:185-191. doi: 10.1016/j.ejrad.2004.03.005

 

  1. Litwinska M, Litwinska E, Szaflik K, et al. Management options for fetal bronchopulmonary sequestration. J Clin Med. 2022;11:1724. doi: 10.3390/jcm11061724

 

  1. Ribet ME, Copin MC, Gosselin BH. Bronchogenic cysts of the lung. Ann Thorac Surg. 1996;61:1636-1640. doi: 10.1016/0003-4975(96)00172-5

 

  1. Ortiz RJ, Reusmann A, Boglione MM, et al. Bronchogenic cyst: Lessons learned in 20 years of experience at a tertiary pediatric center. J Pediatr Surg. 2023;58:2516-2159. doi: 10.1016/j.jpedsurg.2023.06.010

 

  1. Demir OF, Hangul M, Kose M. Congenital lobar emphysema: Diagnosis and treatment options. Int J Chron Obstruct Pulmon Dis. 2019;14:921-928. doi: 10.2147/COPD.S170581

 

  1. Ranke FM, Freitas HM, Dinoá V, Miraldi F, Marchiori E. Congenital lobar emphysema. Radiol Bras. 2018;51:205-206. doi: 10.1590/0100-3984.2016.0224

 

  1. Vaikunth SS, Morris LM, Polzin W, et al. Congenital high airway obstruction syndrome due to complete tracheal agenesis: An accident of nature with clues for tracheal development and lessons in management. Fetal Diagn Ther. 2009;26:93-97. doi: 10.1159/000242454

 

  1. Sandu K, Monnier P. Congenital tracheal anomalies. Otolaryngol Clin North Am. 2007;40:193-217. doi: 10.1016/j.otc.2006.10.001

 

  1. Herriges M, Morrisey EE. Lung development: Orchestrating the generation and regeneration of a complex organ. Development. 2014;141:502-513. doi: 10.1242/dev.098186

 

  1. McCauley KB, Hawkins F, Serra M, Thomas DC, Jacob A, Kotton DN. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell. 2017;20:844-857. doi: 10.1016/j.stem.2017.03.001

 

  1. Basil MC, Alysandratos KD, Kotton DN, Morrisey EE. Lung repair and regeneration: Advanced models and insights into human disease. Cell Stem Cell. 2024;31:439-454. doi: 10.1016/j.stem.2024.02.009

 

  1. Xi Y, Kim T, Brumwell AN, et al. Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nat Cell Biol. 2017;19:904-914. doi: 10.1038/ncb3580

 

  1. Giangreco A, Reynolds SD, Stripp BR. Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol. 2002;161:173-182. doi: 10.1016/S0002-9440(10)64169-7

 

  1. Faure S, de Santa Barbara P. Molecular embryology of the foregut. J Pediatr Gastroenterol Nutr. 2011;52:S2-S3. doi: 10.1097/MPG.0b013e3182105a1a

 

  1. Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;23:135. doi: 10.1038/s41392-022-00974-4

 

  1. Moffatt MF, Cookson WO. The lung microbiome in health and disease. Clin Med. (Lond). 2017;17:525-529. doi: 10.7861/clinmedicine.17-6-525

 

  1. Man MA, Ungur RA, Motoc NS, Pop LA, Berindan-Neagoe I, Ruta VM. Lung microbiota in idiopathic pulmonary fibrosis, hypersensitivity pneumonitis, and unclassified interstitial lung diseases: A preliminary pilot study. Diagnostics (Basel). 2023;13:3157. doi: 10.3390/diagnostics13193157

 

  1. Aung HH, Sivakumar A, Gholami SK, Venkateswaran SP, Gorain B, Shadab Md. An overview of the anatomy and physiology of the lung. In: Nanotechnology-based Targeted Drug Delivery Systems for Lung Cancer. United States: Academic Press; 2019. p. 1-20. doi: 10.1016/B978-0-12-815720-6.00001-0

 

  1. Lloyd CM, Hessel EM. Functions of T cells in asthma: More than just T(H)2 cells. Nat Rev Immunol. 2010;10:838-848. doi: 10.1038/nri2870

 

  1. Gollwitzer ES, Saglani S, Trompette A, et al. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014;20:642-647. doi: 10.1038/nm.3568

 

  1. Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5:e8578. doi: 10.1371/journal.pone.0008578

 

  1. Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol. 2013;131:346-352. doi: 10.1016/j.jaci.2012.11.013

 

  1. Kleniewska P, Pawliczak R. Can probiotics be used in the prevention and treatment of bronchial asthma? Pharmacol Rep. 2024;76:740-753. doi: 10.1007/s43440-024-00618-0

 

  1. Garcia-Nuñez M, Millares L, Pomares X, et al. Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease. J Clin Microbiol. 2014;52:4217-4223. doi: 10.1128/JCM.01967-14

 

  1. Wu D, Hou C, Li Y, et al. Analysis of the bacterial community in chronic obstructive pulmonary disease sputum samples by denaturing gradient gel electrophoresis and real-time PCR. BMC Pulm Med. 2014;14:179. doi: 10.1186/1471-2466-14-179

 

  1. Carvalho JL, Miranda M, Fialho AK, et al. Oral feeding with probiotic Lactobacillus rhamnosus attenuates cigarette smoke-induced COPD in C57Bl/6 mice: Relevance to inflammatory markers in human bronchial epithelial cells. PLoS One. 2020;15:e0225560. doi: 10.1371/journal.pone.0225560

 

  1. Hurley MN, Ariff AH, Bertenshaw C, Bhatt J, Smyth AR. Results of antibiotic susceptibility testing do not influence clinical outcome in children with cystic fibrosis. J Cyst Fibros. 2012;11:288-292. doi: 10.1016/j.jcf.2012.02.006

 

  1. Wu BG, Segal LN. Lung microbiota and its impact on the mucosal immune phenotype. Microbiol Spectr. 2017;5(3). doi: 10.1128/microbiolspec.BAD-0005-2016

 

  1. Smith AL, Fiel SB, Mayer-Hamblett N, Ramsey B, Burns JL. Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: Lack of association in cystic fibrosis. Chest. 2003;123:1495-1502. doi: 10.1378/chest.123.5.1495

 

  1. Coffey MJ, Garg M, Homaira N, Jaffe A, Ooi CY. Probiotics for people with cystic fibrosis. Cochrane Database Syst Rev. 2020;22:CD012949. doi: 10.1002/14651858.CD012949.pub2

 

  1. Collard HR, Moore BB, Flaherty KR, et al. Acute exacerbation of idiopathic pulmonary fibrosis. An international working group report. Am J Respir Crit Care Med. 2007;194:636-643. doi: 10.1164/rccm.201604-0801CI

 

  1. Han ML, Zhou Y, Murray S. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: An analysis of the COMET study. Lancet Respir Med. 2014;2:548-556. doi: 10.1016/S2213-2600(14)70069-4

 

  1. Takahashi Y, Saito A, Chiba H, et al. Impaired diversity of the lung microbiome predicts progression of idiopathic pulmonary fibrosis. Respir Res. 2018;19:34. doi: 10.1186/s12931-018-0736-9

 

  1. Tiwari SK, Dicks LM, Popov IV, et al. Probiotics at war against viruses: What is missing from the picture? Front Microbiol. 2020;11:1877. doi: 10.3389/fmicb.2020.01877

 

  1. Kurian SJ, Unnikrishnan MK, Miraj SS, et al. Probiotics in prevention and treatment of COVID-19: Current perspective and future prospects. Arch Med Res. 2021;52:582-594. doi: 10.1016/j.arcmed.2021.03.002

 

  1. Khatiwada S, Subedi A. Lung microbiome and coronavirus disease 2019 (COVID-19): Possible link and implications. Hum Microb J. 2020;17:100073. doi: 10.1016/j.humic.2020.100073

 

  1. Harata G, He F, Hiruta N, Kawase M, Kubota A, Hiramatsu M, Yausi H. Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Lett Appl Microbiol. 2010;50:597-602. doi: 10.1111/j.1472-765X.2010.02844.x

 

  1. Jung YJ, Lee YT, Ngo VL, et al. Heat-killed Lactobacillus casei confers broad protection against influenza a virus primary infection and develops heterosubtypic immunity against future secondary infection. Sci Rep. 2017;7:17360. doi: 10.1038/s41598-017-17487-8

 

  1. Hori T, Kiyoshima J, Shida K, Yasui H. Effect of intranasal administration of Lactobacillus casei shirota on influenza virus infection of upper respiratory tract in mice. Clin Diagn Lab Immunol. 2001;8:593-597. doi: 10.1128/CDLI.8.3.593-597.2001

 

  1. Okwor VC, Okwor CJ, Musayayi SA, et al. Immune modulation and epigenetic therapies for enhanced outcome of treatment in triple-negative breast cancer. Tumor Discov. 2024;3(3):3383. doi: 10.36922/td.3383

 

  1. Allis C, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487-500. doi: 10.1038/nrg.2016.59

 

  1. Angrish MM, Allard P, McCullough, SD, et al. Epigenetic applications in adverse outcome pathways and environmental risk evaluation. Environ Health Perspect. 2018;126(4):045001. doi: 10.1289/EHP2322

 

  1. Leblanc C, Baron M, Desselas E, et al. Congenital pulmonary airway malformations: State-of-the-art review for pediatrician’s use. Eur J Pediatr. 2017;176(12):1559-1571. doi: 10.1007/s00431-017-3032-7

 

  1. Beers M, Morrisey E. The three R’s of lung health and disease: Repair, remodeling, and regeneration. J Clin Invest. 2011;121:2065-2073. doi: 10.1172/JCI45961

 

  1. Schmidt TSB, Raes J, Bork P. The human gut microbiome: From association to modulation. Cell. 2018;172(6):1198-1215. doi: 10.1016/j.cell.2018.02.044

 

Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing